000147223 001__ 147223
000147223 005__ 20241216115435.0
000147223 0247_ $$2doi$$a10.1016/j.biomaterials.2010.01.096
000147223 0248_ $$2sideral$$a76856
000147223 037__ $$aART-2010-76856
000147223 041__ $$aeng
000147223 100__ $$aSmith, CA
000147223 245__ $$aCo-application of a static magnetic field and tat peptide enhance cellular and nuclear uptake go magnetic nanoparticles
000147223 260__ $$c2010
000147223 5203_ $$aMagnetic nanoparticles are widely used in bioapplications such as imaging (MRI), targeted delivery (drugs/genes) and cell transfection (magnetofection). Historically, the impermeable nature of both the plasma and nuclear membranes hinder potential. Researchers combat this by developing techniques to enhance cellular and nuclear uptake. Two current popular methods are using external magnetic fields to remotely control particle direction or functionalising the nanoparticles with a cell penetrating peptide (e.g. tat); both of which facilitate cell entry. This paper compares the success of both methods in terms of nanoparticle uptake, analysing the type of magnetic forces the particles experience, and determines gross cell response in terms of morphology and structure and changes at the gene level via microarray analysis. Results indicated that both methods enhanced uptake via a caveolin dependent manner, with tat peptide being the more efficient and achieving nuclear uptake. On comparison to control cells, many groups of gene changes were observed in response to the particles. Importantly, the magnetic field also caused many change in gene expression, regardless of the nanoparticles, and appeared to cause F-actin alignment in the cells. Results suggest that static fields should be modelled and analysed prior to application in culture as cells clearly respond appropriately. Furthermore, the use of cell penetrating peptides may prove more beneficial in terms of enhancing uptake and maintaining cell homeostasis than a magnetic field.
000147223 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000147223 590__ $$a7.883$$b2010
000147223 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b2 / 25 = 0.08$$c2010$$dQ1$$eT1
000147223 591__ $$aENGINEERING, BIOMEDICAL$$b2 / 69 = 0.029$$c2010$$dQ1$$eT1
000147223 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147223 700__ $$0(orcid)0000-0003-1081-8482$$ade la Fuente, JM$$uUniversidad de Zaragoza
000147223 700__ $$aPelaz, B
000147223 700__ $$aFurlani, EP
000147223 700__ $$aMullin, M
000147223 700__ $$aBerry, CC
000147223 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000147223 773__ $$g31, 15 (2010), 4392-4400$$pBiomaterials$$tBiomaterials$$x0142-9612
000147223 8564_ $$s2085328$$uhttps://zaguan.unizar.es/record/147223/files/texto_completo.pdf$$yVersión publicada
000147223 8564_ $$s2553709$$uhttps://zaguan.unizar.es/record/147223/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147223 909CO $$ooai:zaguan.unizar.es:147223$$particulos$$pdriver
000147223 951__ $$a2024-12-16-11:27:37
000147223 980__ $$aARTICLE