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Computational modeling, simulation and optimization of manufacturing processes and materials 

systems have been a persistent endeavor of the engineering research community at large. 

Significant progress has been achieved in this field due to the exponential increase in computing 

power, and the incorporation of data-driven modeling methods. Process and systems modeling 

often involves expensive and time-intensive simulations and experiments. Incorporation of 

machine learning (ML) models as efficient surrogate models has been proven to enhance the 

human understanding on the behavior of the system at hand, and reduce the computational 

optimization cost of the concerned processes and systems. However, there is a rising need to go 

beyond the conventional data-driven techniques to address challenges, such as, presence of noise 

in data, limited budget, data sparsity, lack of interpretability of ML models, etc. Tackling these 

issues will enable more comprehensive modeling of manufacturing processes and discovery of 

novel material systems.  

 

This special issue focuses in the new paradigm called scientific ML, and aims to explore and 

potentially resolve issues related to improving computational efficiency, incorporating domain-

awareness, improving interpretability and robustness into the models and modeling techniques. In 

particular, this special issue has invited both full research and review papers focusing on research 

advances in the areas of scientific machine learning for manufacturing processes and material 

systems. The announced topics of interest included but were not limited to the following topics:  

(1) Physics-informed ML for process/materials design and optimization.  

(2) Physics-informed ML for diagnostics, prognostics and process control. 

(3) Uncertainty quantification in modeling (including physics-informed ML, etc.).  

(4) Leveraging high-throughput framework for modeling and optimization. 

(5) Efficient modeling through adaptive and active learning algorithms. 

(6) Explainable AI and causal inference augmented predictive modeling. 

(7) Exploring state-of-the-art ML algorithms in modeling and optimization. 

(8) Understanding of systems through knowledge representation and reasoning. 

(9) Leveraging data-fusion and multi-fidelity techniques in modeling. 

 

As result of this call, this issue features nine papers delving into various topics, including: 
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probabilistic printability maps for laser powder bed fusion via functional calibration and 

uncertainty propagation; unsupervised anomaly detection via nonlinear manifold learning; a 

physics-informed general convolutional network for the computational modeling of materials with 

damage; multi-fidelity physics-informed generative adversarial network for solving partial 

differential equations; stochastic defect localization for cooperative additive manufacturing using 

gaussian mixture maps; stress representations for tensor basis neural networks: alternative 

formulations to finger-rivlin-ericksen; machine-learning metacomputing for materials science 

data; physics-informed fully convolutional networks for forward prediction of temperature field 

and inverse estimation of thermal diffusivity and a global feature reused network for defect 

detection in steel images. 

 

Summaries of each of the nine papers published in this special issue are provided below. 

 

Article JCISE-23-1151 “Probabilistic Printability Maps for Laser Powder Bed Fusion via 

Functional Calibration and Uncertainty Propagation” by Wu, Whalen, Ma and Balachandran, 

describes the development of an efficient computational framework for process space exploration 

in laser powder bed fusion (LPBF) based additive manufacturing technology. This framework aims 

to find suitable processing conditions by characterizing the probability of encountering common 

build defects. A Bayesian approach is developed for inferring a functional relationship between 

LPBF processing conditions and the unobserved parameters of laser energy absorption and powder 

bed porosity. The relationship between processing conditions and inferred laser energy absorption 

is found to have good correspondence to the literature measurements of powder bed energy 

absorption using calorimetric methods. The Bayesian approach naturally enables uncertainty 

quantification and its utility is demonstrated by performing efficient forward propagation of 

uncertainties through the modified Eagar–Tsai model to obtain estimates of melt pool geometries, 

which are validated using out-of-sample experimental data from the literature. These melt pool 

predictions are then used to compute the probability of occurrence of keyhole and lack-of-fusion 

based defects using geometry-based criteria. This information is summarized in a probabilistic 

printability map. It is found that the probabilistic printability map can describe the keyhole and 

lack-of-fusion behavior in experimental data used for calibration, and is capable of generalizing to 

wider regions of processing space. This analysis is conducted for SS316L, IN718, IN625, and 

Ti6Al4V using melt pool measurement data retrieved from the literature. 

 

Article JCISE-23-1278 “Unsupervised Anomaly Detection via Nonlinear Manifold Learning” by 

Yousefpour, Shishehbor, Foumani and Bostanabad focuses on the fact that data anomalies are can 

be thought as samples that significantly deviate from the rest of the data and their detection can 

play a major role in building machine learning models that can be reliably used in applications 

such as data-driven design and novelty detection. The majority of existing anomaly detection 

methods either are exclusively developed for (semi) supervised settings, or provide poor 

performance in unsupervised applications where there are no training data with labeled anomalous 

samples. To bridge this research gap, the authors introduce a robust, efficient, and interpretable 

methodology based on nonlinear manifold learning to detect anomalies in unsupervised settings. 

The essence of our approach is to learn a low-dimensional and interpretable latent representation 

(aka manifold) for all the data points such that normal samples are automatically clustered together 

and hence can be easily and robustly identified. This low-dimensional manifold is learned by 

designing a learning algorithm that leverages either a latent map Gaussian process (LMGP) or a 
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deep autoencoder (AE). It is found that the proposed LMGP-based approach, in particular, 

provides a probabilistic perspective on the learning task and is ideal for high-dimensional 

applications with scarce data. The superior performance of proposed approach is demonstrated 

over existing technologies via multiple analytic examples and real-world datasets. 

 

Article JCISE-23-1295 “A Physics-Informed General Convolutional Network for the 

Computational Modeling of Materials with Damage” by Janssen, Haikal, DeCarlo, Hartnett and 

Kirby, focuses on the issue that the adoption of machine learning (ML) methods in computational 

mechanics has been hindered by the lack of availability of training datasets, limitations on the 

accuracy of out-of-sample predictions, and computational cost. This work presents a physics-

informed ML approach and network architecture that addresses these challenges in the context of 

modeling the behavior of materials with damage. The proposed methodology is a novel physics-

informed general convolutional network (PIGCN) framework that features (1) the fusion of a dense 

edge network with a convolutional neural network (CNN) for specifying and enforcing boundary 

conditions and geometry information, (2) a data augmentation approach for learning more 

information from a static dataset that significantly reduces the necessary data for training, and (3) 

the use of a CNN for physics-informed ML applications, which is not as well explored as graph 

networks in the current literature. The PIGCN framework is demonstrated for a simple two-

dimensional, rectangular plate with a hole or elliptical defect in a linear-elastic material, but the 

approach is extensible to three dimensions and more complex problems. The results presented in 

this article show that the PIGCN framework improves physics-based loss convergence and 

predictive capability compared to ML-only (physics-uninformed) architectures. A key outcome of 

this research is the significant reduction in training data requirements compared to ML-only 

models, which could reduce a considerable hurdle to using data-driven models in materials 

engineering where material experimental data are often limited. 

 

Article JCISE-23-1369 “Multi-Fidelity Physics-Informed Generative Adversarial Network for 

Solving Partial Differential Equations” by Taghizadeh, Nabian and Alemazkoor propose a new 

method for solving partial differential equations using multi-fidelity physics-informed generative 

adversarial networks. The proposed approach incorporates physics supervision into the adversarial 

optimization process to guide the learning of the generator and discriminator models. The 

generator has two components: one that approximates the low-fidelity response of the input and 

another that combines the input and low-fidelity response to generate an approximation of high-

fidelity responses. The discriminator identifies whether the input–output pairs accord not only with 

the actual high-fidelity response distribution, but also with physics. The effectiveness of the 

proposed method is demonstrated through numerical examples and compared to existing methods. 

 

Article JCISE-23-1386 “Stochastic Defect Localization for Cooperative Additive Manufacturing 

Using Gaussian Mixture Maps” by Rescsanski, Shah, Tang, and Imani, is addressing the issue on 

how cooperative Robotic Additive Manufacturing (RAM) suffers from the same defect generation 

challenges as conventional systems, thus necessitating improvements in the detection and 

prevention of flaws within fabricated components. Quality assurance can be further bolstered 

through the integration of AM models, which utilize sensor feedback to localize defects, vastly 

reducing false positives. This research explores defect localization through a novel dynamic defect 

model created from simulated sensing data. In particular, two cooperative robots are simulated to 

estimate defect parameters, while observing the workspace and accurately classifying different 
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regions of the part, generating a Gaussian mixture map that identifies and assigns appropriate 

actions based on defect types and characteristics. The experimental result shows that the 

implementation of the dynamic defect model and selective reevaluation achieved an effective 

defect detection accuracy of 99.9%, an improvement of 9.9% without localization. It has been 

shown that the proposed framework holds potential for application in domains that utilize high 

degrees-of-freedom machines and collaborative agents, offering scalability, improved fabrication 

speeds, and enhanced mechanical properties. 

 

Article JCISE-23-1423 “Stress Representations for Tensor Basis Neural Networks: Alternative 

Formulations to Finger–Rivlin–Ericksen” by Fuhg, Bouklas and Jones, focuses on the fact that 

data-driven constitutive modeling frameworks based on neural networks and classical 

representation theorems have recently gained considerable attention due to their ability to easily 

incorporate constitutive constraints and their excellent generalization performance. In these 

models, the stress prediction follows from a linear combination of invariant-dependent coefficient 

functions and known tensor basis generators. However, thus far the formulations have been limited 

to stress representations based on the classical Finger–Rivlin–Ericksen form, while the 

performance of alternative representations has yet to be investigated. This work surveys a variety 

of tensor basis neural network models for modeling hyperelastic materials in a finite deformation 

context, including a number of so far unexplored formulations which use theoretically equivalent 

invariants and generators to Finger–Rivlin–Ericksen. Furthermore, potential-based and 

coefficient-based approaches are compared, as well as different calibration techniques. Nine 

variants are tested against both noisy and noiseless datasets for three different materials. 

Theoretical and practical insights into the performance of each formulation area also given. 

 

Article JCISE-23-1439 “Machine-Learning Metacomputing for Materials Science Data” by 

Steuben, Geltmacher, Rodriguez, Birnbaum, Graber, Rawlings, Iliopoulos, and Michopoulos, 

addresses the issue that materials science data almost invariably require various post-acquisition 

computation efforts to remove noise, classify observations, fit parametric models, or perform other 

operations. Recently developed machine-learning (ML) algorithms have demonstrated great 

capability for performing many of these operations, and often produce higher quality output than 

traditional methods. However, it has been widely observed that such algorithms often suffer from 

issues such as limited generalizability and the tendency to “over fit” to the input data. In order to 

address such issues, this work introduces a metacomputing framework capable of systematically 

selecting, tuning, and training the best available machine-learning model in order to process an 

input dataset. In addition, a unique “cross-training” methodology is used to incorporate underlying 

physics or multiphysics relationships into the structure of the resultant ML model. This 

metacomputing approach is demonstrated on four example problems: repairing “gaps” in a 

multiphysics dataset, improving the output of electron back-scatter detection crystallographic 

measurements, removing spurious artifacts from X-ray microtomography data, and identifying 

material constitutive relationships from tensile test data. The performance of the metacomputing 

framework on these disparate problems is discussed, as are future plans for further deploying 

metacomputing technologies in the context of materials science and mechanical engineering. 

 

Article JCISE-23-1469 “Physics-Informed Fully Convolutional Networks for Forward Prediction 

of Temperature Field and Inverse Estimation of Thermal Diffusivity” by Zhu, Zheng and Lu, 

address the issue that traditional Physics-informed neural networks (PINNs) suffer from low 
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accuracy and efficiency due to the fully-connected neural network framework and the method 

utilized to incorporate physical laws. In this paper, a novel physics-informed learning architecture, 

named physics-informed fully convolutional networks (PIFCNs), is developed to simultaneously 

solve forward and inverse problems of thermal conduction. The use of fully convolutional 

networks (FCNs) significantly reduces the density of connections leading to a computational cost 

reduction. With the advantage of the nodal-level match between inputs and outputs in FCNs, the 

output solution is be used directly to formulate discretized PDEs via a finite difference method, 

which is more accurate and efficient than the traditional approach in PINNs. The results 

demonstrate that PIFCNs can flexibly implement Dirichlet and Neumann boundary conditions to 

predict temperature distribution. Remarkably, PIFCNs can also estimate unknown thermal 

diffusivity with an accuracy exceeding 99%, even with incomplete boundaries and limited 

sampling data. It shown that the results obtained from PIFCNs outperform those obtained from 

PINNs. 

 

Article JCISE-23-1577 “A Global Feature Reused Network for Defect Detection in Steel Images” 

by Yang, Wang, Liu and Cheng focuses on the topic of accurate detection of surface defects for 

steel that is essential to improve surface quality and service life. It has been shown that Deep 

learning (DL) used in steel surface defect detection can solve the problems of low efficiency and 

poor accuracy of traditional manual detection. The classic YOLOv5 as a DL method is used to 

accomplish defect detection tasks without attention mechanisms, resulting in a loss of global 

information. Besides, it is difficult to complete complex network detection tasks with low-

configuration hardware, especially for surface defects with complex defect types and variable 

defect sizes. To address these issues, this paper introduces an improved global feature reuse and 

hardware-aware YOLOv5 by using BoTNet, RepGhost, and EfficientRep model (BGE-YOLOv5). 

The multi-head self-attention layer is used to obtain global information and only part of the 

convolutional layers is replaced to avoid the excessive computational cost. The RepGhost model 

is introduced to extract the remaining feature information for feature reuse. EfficientRep is used 

to replace the original structure to achieve hardware-aware and to balance the detection veracity 

and efficiency. The distance IOU is replaced by SCYLLA-IOU to accelerate the iteration and 

improve stability. The results of the framework on the surface defect database (NEU-DET) show 

that BGE-YOLOv5 achieves a mean average precision of 79.5%, which is 10.3% greater than the 

baseline. The proposed BGE-YOLOv5 has a better performance in steel surface defect detection. 

 

In conclusion, this special issue features innovative approaches for adequate representation and 

techniques applicable to a diverse range of scientific ML applications in manufacturing processes 

and material systems in general. It is our hope that readers will find these papers insightful and 

thought-provoking, fostering further research in this field. The guest editors of this special issue 

extend their sincere gratitude to all the authors and reviewers for their remarkable contributions. 

Additionally, we acknowledge the unwavering support of Professor Yan Wang, the current 

Editor-in-Chief of JCISE. Our profound appreciation goes to Ms. Amy Suski for her timely 

reminders and administrative support. 

  


