000147248 001__ 147248 000147248 005__ 20250923084434.0 000147248 0247_ $$2doi$$a10.1515/nanoph-2024-0462 000147248 0248_ $$2sideral$$a141079 000147248 037__ $$aART-2024-141079 000147248 041__ $$aeng 000147248 100__ $$aCapote-Robayna, Nathaniel 000147248 245__ $$aTwist-tunable in-plane anisotropic polaritonic crystals 000147248 260__ $$c2024 000147248 5060_ $$aAccess copy available to the general public$$fUnrestricted 000147248 5203_ $$avan der Waals (vdW) materials supporting phonon polaritons (PhPs) – light coupled to lattice vibrations – have gathered significant interest because of their intrinsic anisotropy and low losses. In particular, α-MoO3 supports PhPs with in-plane anisotropic propagation, which has been exploited to tune the optical response of twisted bilayers and trilayers. Additionally, various studies have explored the realization of polaritonic crystals (PCs) – lattices with periods comparable to the polariton wavelength. PCs consisting of hole arrays etched in α-MoO3 slabs exhibit Bragg resonances dependent on the angle between the crystallographic axes and the lattice vectors. However, such PC concept, with a fixed orientation and size of its geometrical parameters, constrains practical applications and introduces additional scattering losses due to invasive fabrication processes. Here, we demonstrate a novel PC concept that overcomes these limitations, enabling low-loss optical tuning. It comprises a rotatable pristine α-MoO3 layer located on a periodic hole array fabricated in a metallic layer. Our design prevents degradation of the α-MoO3 optical properties caused by fabrication, preserving its intrinsic low-loss and in-plane anisotropic propagation of PhPs. The resulting PC exhibits rotation of the Bloch modes, which is experimentally visualized by scanning near-field microscopy. In addition, we experimentally determine the polaritons momentum and reconstruct their band structure. These results pave the way for mechanically tunable nano-optical components based on polaritons for potential lasing, sensing, or energy harvesting applications. 000147248 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-141304NB-100$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-147676NB-100$$9info:eu-repo/grantAgreement/ES/DGA/Q-MAD$$9info:eu-repo/grantAgreement/ES/MICINN AEI PID2019-111156GB-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41 000147248 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000147248 590__ $$a6.6$$b2024 000147248 592__ $$a1.765$$b2024 000147248 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b112 / 460 = 0.243$$c2024$$dQ1$$eT1 000147248 591__ $$aOPTICS$$b19 / 125 = 0.152$$c2024$$dQ1$$eT1 000147248 591__ $$aPHYSICS, APPLIED$$b35 / 187 = 0.187$$c2024$$dQ1$$eT1 000147248 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b41 / 147 = 0.279$$c2024$$dQ2$$eT1 000147248 593__ $$aAtomic and Molecular Physics, and Optics$$c2024$$dQ1 000147248 593__ $$aBiotechnology$$c2024$$dQ1 000147248 593__ $$aElectronic, Optical and Magnetic Materials$$c2024$$dQ1 000147248 593__ $$aElectrical and Electronic Engineering$$c2024$$dQ1 000147248 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000147248 700__ $$aTresguerres-Mata, Ana I. F. 000147248 700__ $$aTarazaga Martín-Luengo, Aitana 000147248 700__ $$aTerán-García, Enrique 000147248 700__ $$0(orcid)0000-0001-9273-8165$$aMartin-Moreno, Luis 000147248 700__ $$aAlonso-González, Pablo 000147248 700__ $$aNikitin, Alexey Y. 000147248 773__ $$g13, 26 (2024), 4761-4770$$pNanophotonics$$tNanophotonics$$x2192-8606 000147248 8564_ $$s4193316$$uhttps://zaguan.unizar.es/record/147248/files/texto_completo.pdf$$yVersión publicada 000147248 8564_ $$s2941374$$uhttps://zaguan.unizar.es/record/147248/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000147248 909CO $$ooai:zaguan.unizar.es:147248$$particulos$$pdriver 000147248 951__ $$a2025-09-22-14:45:34 000147248 980__ $$aARTICLE