000147277 001__ 147277
000147277 005__ 20241216115436.0
000147277 0247_ $$2doi$$a10.1140/epjc/s10052-024-13538-3
000147277 0248_ $$2sideral$$a141066
000147277 037__ $$aART-2024-141066
000147277 041__ $$aeng
000147277 100__ $$aBandac, I.
000147277 245__ $$aPrecise 113Cd ß decay spectral shape measurement and interpretation in terms of possible gA quenching
000147277 260__ $$c2024
000147277 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147277 5203_ $$aHighly forbidden β decays provide a sensitive test to nuclear models in a regime in which the decay goes through high spin-multipole states, similar to the neutrinoless double-β decay process. There are only 3 nuclei (50V, 113Cd, 115In) which undergo a 4th forbidden non-unique β decay. In this work, we compare the experimental 113Cd spectrum to theoretical spectral shapes in the framework of the spectrumshape method. We measured with high precision, with the lowest energy threshold and the best energy resolution ever, the β spectrum of 113Cd embedded in a 0.43 kg CdWO4 crystal, operated over 26 days as a bolometer at low temperature in the Canfranc underground laboratory (Spain). We performed a Bayesian fit of the experimental data to three nuclear models (IBFM-2, MQPM and NSM) allowing the reconstruction of the spectral shape as well as the half-life. The fit has two free parameters, one of which is the effective weak axial-vector coupling constant, geffA , which resulted in geffA between 1.0 and 1.2, compatible with a possible quenching. Based on the fit, we measured the half-life of the 113Cd β decay including systematic uncertainties as 7.73+0.60−0.57 ×1015 yr, in agreement with the previous experiments. These results represent a significant step towards a better understanding of low-energy nuclear processes.
000147277 536__ $$9info:eu-repo/grantAgreement/EC/H2020/742345/EU/Cryogenic Rare-event Observatory with Surface Sensitivity/CROSS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 742345-CROSS
000147277 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000147277 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147277 700__ $$aBergé, L.
000147277 700__ $$aCalvo-Mozota, J. M.
000147277 700__ $$aCarniti, P.
000147277 700__ $$aChapellier, M.
000147277 700__ $$aDanevich, F. A.
000147277 700__ $$aDixon, T.
000147277 700__ $$aDumoulin, L.
000147277 700__ $$aFerri, F.
000147277 700__ $$aGiuliani, A.
000147277 700__ $$aGotti, C.
000147277 700__ $$aGras, Ph.
000147277 700__ $$aHelis, D. L.
000147277 700__ $$aImbert, L.
000147277 700__ $$aKhalife, H.
000147277 700__ $$aKobychev, V. V.
000147277 700__ $$aKostensalo, J.
000147277 700__ $$aLoaiza, P.
000147277 700__ $$ade Marcillac, P.
000147277 700__ $$aMarnieros, S.
000147277 700__ $$aMarrache-Kikuchi, C. A.
000147277 700__ $$0(orcid)0000-0002-9043-4691$$aMartinez, M.$$uUniversidad de Zaragoza
000147277 700__ $$aNones, C.
000147277 700__ $$aOlivieri, E.
000147277 700__ $$ade Solórzano, A. Ortiz
000147277 700__ $$aPessina, G.
000147277 700__ $$aPoda, D. V.
000147277 700__ $$aScarpaci, J. A.
000147277 700__ $$aSuhonen, J.
000147277 700__ $$aTretyak, V. I.
000147277 700__ $$aZarytskyy, M.
000147277 700__ $$aZolotarova, A.
000147277 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl.
000147277 773__ $$g84, 11 (2024), 1158 [12 pp.]$$pEur. phys. j., C$$tThe European Physical Journal C$$x1434-6044
000147277 8564_ $$s1394956$$uhttps://zaguan.unizar.es/record/147277/files/texto_completo.pdf$$yVersión publicada
000147277 8564_ $$s2383297$$uhttps://zaguan.unizar.es/record/147277/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147277 909CO $$ooai:zaguan.unizar.es:147277$$particulos$$pdriver
000147277 951__ $$a2024-12-16-11:28:41
000147277 980__ $$aARTICLE