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ABSTRACT   1 

Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous 2 

system (CNS). Many studies of MS patients have described axonal loss in the 3 

optic nerve of the retina, and specifically progressive thinning of the retinal 4 

nerve fiber layer (RNFL). We hypothesize that RNFL thinning involves the 5 

participation of 2 processes that cause CNS damage: autoimmune inflammation 6 

and axonal degeneration. To test this hypothesis, we developed a mathematical 7 

model based on ordinary differential equations to relate the evolution of RNFL 8 

thickness (measured by optical coherence tomography [OCT]) with that of the 9 

Expanded Disability Status Scale (EDSS) score in MS patients. Data were 10 

obtained from a longitudinal study of 114 MS patients who were followed-up for 11 

10 years. After adjusting the parameters using a genetic algorithm, the model’s 12 

prediction of the evolution of RNFL thickness accurately reflected the 13 

progression revealed by the 10-year clinical data. Our findings suggest that 14 

differences in the relative contributions of autoimmune inflammation and axonal 15 

degeneration can account for the complex dynamics of MS, which vary from 16 

one patient to the next. Moreover, our results show that CNS damage occurs 17 

cumulatively from the onset of MS and that most RNFL thinning occurs before 18 

the appearance of significant disability. RNFL thickness could therefore serve 19 

as a reliable biomarker of MS disease course. Our proposed methodology 20 

would enable the use of OCT data from new MS patients to predict the 21 

evolution of RNFL thinning and hence the progression of MS in individual 22 

patients, and to facilitate the selection of patient-specific therapies. 23 
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INTRODUCTION 4 

Multiple sclerosis (MS) is a degenerative disease that affects the central 5 

nervous system (CNS) and is characterized by nerve fiber inflammation and 6 

demyelination and by axonal degeneration. As a result of these phenomena, 7 

neurons partially or completely lose their ability to conduct nerve impulses, 8 

giving rise to the various symptoms of this pathology [1]. 9 

Several studies [2–4] have demonstrated increased thinning of the retinal nerve 10 

fiber layer (RNFL) in MS patients versus healthy controls. The mechanism by 11 

which this thinning occurs in MS patients that have not experienced an episode 12 

of optic neuritis remains unclear. Because the RNFL is composed of the 13 

unmyelinated axons of the retinal ganglion cells (RGCs) that form the optic 14 

nerve, thinning of this layer may be linked to the aforementioned phenomena of 15 

inflammation and axonal degeneration [5]. 16 

Several longitudinal studies have shown that the decrease in RNFL thickness in 17 

MS patients exceeds that associated with ageing [6–8]. A follow-up study of 61 18 

patients [7] found that the progressive decrease in RNFL thickness was more 19 

pronounced in MS patients than in aging healthy controls. Similarly, Talman et 20 

al. [8] described a decrease in RNFL thickness of 2 µm/year in MS patients, as 21 

compared with 0.49 µm over 3 years in controls. 22 
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There are numerous non-invasive imaging techniques currently available that 1 

allow measurement of the thickness of the different retinal layers. The most 2 

widespread technique is optical coherence tomography (OCT) [9], which is used 3 

to diagnose and monitor multiple diseases of the retina and optic nerve [5]. 4 

A key use of OCT in monitoring MS progression is to determine whether 5 

variations in RNFL thickness are linked to irreversible damage caused by the 6 

disease or, conversely, are the result of acute episodes of the disease. It has 7 

been shown that a single episode of optic neuritis does not imply a greater risk 8 

of a progressive decrease in RNFL thickness [10].  9 

In this study, we focus on the mechanisms that cause thinning of the 10 

unmyelinated fibers that comprise the RNFL. Because the interaction and 11 

evolution of the inflammatory and degenerative processes caused by MS are 12 

poorly understood, is particularly difficult to predict the course of MS [11]. 13 

Several hypotheses have been proposed to explain the dynamics of MS: some 14 

consider the underlying pathological changes to be the result of simultaneous 15 

inflammatory and degenerative processes, while others propose that the 16 

disease course consists of a series of discrete phases [12,13]. Regardless, it is 17 

clear that CNS damage in MS is caused by acute inflammatory processes 18 

initiated by the immune system and by axonal degeneration caused by 19 

demyelination [14,15]. 20 

Recently, Kotelnikova et al. [16] hypothesized that the evolution of MS is driven 21 

by an autoimmune response against the CNS itself that causes inflammation, 22 

axonal degeneration, and loss or regeneration of myelin. They concluded that 23 

the manner in which each process occurs varies between different clinical 24 
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subgroups. They designed a mathematical model to explain experimental data 1 

derived from brain magnetic resonance images (MRI) [17] obtained from a 2 

longitudinal study of 66 MS patients. Other studies have attempted to establish 3 

whether there is any relationship between RNFL thickness and patient disability, 4 

as measured using the Expanded Disability Status Scale (EDSS) in transversal 5 

studies, but failed to produce sufficiently robust data [18,19].  6 

In the present study, we propose a mathematical model that relates axonal 7 

degeneration to disease progression in MS patients. This model is consistent 8 

with clinical data obtained in a longitudinal study of 114 MS patients over 10 9 

years, and distinguishes between the relative contributions of different biological 10 

processes (inflammation, axonal degeneration, and axonal regeneration) in 11 

different patient groups. Two novel aspects of this study underscore its 12 

importance in furthering our understanding of MS. First, we have exploited the 13 

accessibility of the retina, which provides a window into the brain, in order to 14 

develop the first mathematical model to analyze CNS damage (RNFL thinning) 15 

in MS patients, [20,21]. Second, we have used OCT data to distinguish between 16 

the different biological processes that contribute to RNFL thinning.  17 

The ultimate goal of this research is to obtain a validated numerical model that 18 

can predict the evolution of RNFL thinning in new MS patients using only OCT 19 

data and EDSS scores obtained at their first visit. RNFL thinning is known to be 20 

linked to the progression of MS-associated disease disability [18]. Sufficient 21 

control of disease activity in MS patients is crucial to prevent unfavorable 22 

outcomes. Therefore, our model could be highly useful to clinicians, helping 23 
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them to establish patient-specific treatments and deciding between first- and 1 

second-line therapies. 2 

MATERIALS AND METHODS 3 

Longitudinal study 4 

The longitudinal study followed a cohort (“discovery cohort”) of 114 MS patients 5 

from the Miguel Servet University Hospital (Zaragoza, Spain). All patients 6 

underwent complete ophthalmologic evaluations during the course of the 10 7 

year follow-up period (baseline, 2.5 years, 5 years, and 10 years). This 8 

examination includes assessment of best-corrected visual acuity (BCVA) using 9 

the Snellen scale, colour vision, a visual field examination, and an OCT 10 

examination. Simultaneously, the same protocol was applied to a cohort of 60 11 

healthy control patients in order to distinguish between age-associated RNFL 12 

thinning and that caused by disease progression. Finally, 5-year follow-up data 13 

obtained from a third cohort of 70 MS patients (validation cohort) were used to 14 

validate the proposed mathematical model. From these 3 cohorts of patients of 15 

white European origin, one eye from each subject was randomly selected for 16 

analysis (excluding eyes for which previous episodes of optic neuritis were 17 

recorded) [22]; in total 244 eyes were included in the longitudinal study. The 18 

main clinical features of these 3 cohorts are summarized in Table 1. 19 

Baseline evaluation 
Healthy controls 

(n = 60) 

Discovery cohort 

(n = 114) 

Validation cohort 

(n = 70) 

General parameters  

Age [years] 43.0 ± 13.3 41.3 ± 10.5 43.1 ± 10.3 

Sex (M - F) 10 - 50 32 - 82 28 - 42 

BCVA [Snellen] 0.972 ± 0.219 0.846 ± 0.205 0.837 ± 0.335 
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MS parameters  

Disease duration [years] – 10.5 ± 7.9 9.2 ± 9.2 

Subtypes (RR - SP - PP) – 104 - 8 - 2 65 - 4 - 1 

EDSS – 2.5 ± 2.1 2.7 ± 2.1 

OCT parameters – RNFL thickness  

Mean thickness [µm] 100.93 ± 10.30 89.99 ± 18.84 89.72 ± 12.82 

Superior thickness [µm] 123.36 ± 18.34 110.11 ± 23.91 114.16 ± 19.82 

Nasal thickness [µm] 79.53 ± 15.62 74.75 ± 21.50 72.55 ± 13.90 

Inferior thickness [µm] 131.55 ± 17.58 115.96 ± 27.99 114.34 ± 18.63 

Temporal thickness [µm] 71.13 ± 19.09 60.08 ± 20.17 57.16 ± 16.76 

Table 1. Clinical parameters, multiple sclerosis (MS) data, and retinal nerve fiber layer (RNFL) 1 
measurements determined using optical coherence tomography (OCT) for the baseline visit of 2 
healthy controls and the discovery and validation cohorts. Data for MS patients (discovery and 3 
validation cohorts) also include disease duration, MS subtypes (RR, relapsing-remitting; SP, 4 
secondary-progressive; PP, primary-progressive) and EDSS scores. 5 

The required inclusion criteria were as follows: BCVA of 20/40 or higher; 6 

refractive error within ±5.00 diopters equivalent sphere and ±2.00 diopters 7 

astigmatism; and transparent ocular media (nuclear color/opalescence, cortical 8 

or posterior subcapsular lens opacity <1), according to the Lens Opacities 9 

Classification System III system [23]. Exclusion criteria included previous 10 

intraocular surgery, diabetes or other diseases affecting the visual field or 11 

nervous system, any optic neuritis episode in the 6 months preceding inclusion 12 

in the study, and ongoing use of medications that could affect visual function. 13 

All subjects gave prior consent to participate in this study, which was conducted 14 

in accordance with the Declaration of Helsinki, and the protocol was approved 15 

by the Ethics Committee for Clinical Research of Aragon (CEICA) for the 16 

protection of human subjects. After the baseline visit, patients were evaluated 17 

2.5, 5, and 10 years later in order to assess changes in RNFL thickness and 18 

EDSS score. The ophthalmologic evaluation was performed by an 19 
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ophthalmologist expert in MS and the EDSS score was determined by a 1 

neurologist. 2 

 3 

Figure 1. Optic disc cube 200 × 200 scan protocol (right eye). This peripapillary scanning 4 
protocol centers on the optic nerve and determines the thickness of the retinal nerve fiber layer 5 
(RNFL) in each of 4 quadrants (S, superior; N, nasal; I, inferior; T, temporal) into which the 6 
peripapillary area is divided, based on which the total mean RNFL thickness is calculated. The 7 
RNFL is delimited by the vitreoretinal interface (VRI, red line) and the ganglion cell layer (GCL, 8 
blue line). 9 

The objective of this study was to characterize the relationship between RNFL 10 

thinning and MS disease progression, and thereby assess the utility of RNFL 11 

thickness as biological marker of disease progression. RNFL thickness was 12 

measured using Cirrus HD-OCT technology (model 4000; Carl Zeiss Meditec, 13 

Dublin, CA). Specifically, we used the Optic Disc Cube 200 × 200 study 14 

protocol, which scans an area of 6 × 6 mm centered on the papilla, capturing a 15 

data cube of 200 × 200 sweeps for a total of 40,000 data points in 1.5 seconds. 16 

The image quality is based on the signal strength measurement, which 17 

combines the signal-to-noise ratio with the uniformity of the signal within a scan. 18 



 

9 

The quality score ranges from 0 (poor) to 10 (excellent). Only images with a 1 

quality score of ≥7 were included in our analysis. The OCT system 2 

automatically identifies the center of the papilla and creates a circle-shaped 3 

sweep of 3.46 mm in diameter. This protocol calculates mean RNFL thickness 4 

by first determining the values corresponding to each of 4 quadrants into which 5 

the peripapillary area is divided (Figure 1).  6 

Clustering of patients 7 

To reduce the high level of clinical heterogeneity among patients, clustering of 8 

the patients in the discovery cohort was performed using the k-means clustering 9 

algorithm, which assigns patients to k sub-groups based on proximity to the 10 

mean value of a given sub-group. The k-means clustering algorithm is one of 11 

the most commonly used techniques for this purpose, owing to its ability to 12 

quickly and efficiently segment large samples, including outliers. Since this 13 

method is highly sensitive to the initial number of groups assigned, the 14 

algorithm was executed several times using k-values (i.e. number of clusters) 15 

ranging from 2–10. The Silhouette method was used to validate the number of 16 

groups that best classified the data set. This method measures how close each 17 

data point is to its own cluster and its closest neighbors in order to determine 18 

the optimum k-value. Silhouette analysis is widely used in the evaluation of k-19 

means clustering since it is faster and more cost-effective than other available 20 

methods (e.g. cost function analysis) [24]. 21 

The proposed methodology was developed to predict the evolution of RNFL 22 

thickness in new MS patients after their first visit. Baseline parameters were 23 

used to classify patients. We applied a 3D classification procedure using the 24 
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following variables: EDSS score (patient´s disability is related to axonal damage 1 

[2]); BCVA (50% of patients present some form of visual impairment); and 2 

disease duration ratio (time since disease onset relative to patient’s age), which 3 

represents the proportion of patient’s life spent with MS. 4 

Mathematical model 5 

In this section we describe the development of a mathematical model to 6 

characterize the evolution of RNFL thickness in MS patients. 7 

Biological considerations 8 

At disease onset, the predominant pathological consequences of MS are 9 

demyelination and axonal transection (i.e. complete and transversal section of 10 

the nerve fiber). However, as the pathology progresses, CNS inflammation and 11 

axonal degeneration predominate [25]. Unlike the study performed by 12 

Kotelnikova et al. [16], which modeled inflammatory attack, demyelination, 13 

remyelination, and nerve fiber loss, our model does not account for myelin-14 

related processes, since RNFL nerve fibers are unmyelinated. 15 

The proposed mathematical model, based on ordinary differential equations 16 

(ODEs), comprises 3 processes thought to be implicated in the evolution of the 17 

RNFL thinning in MS patients: autoimmune inflammation; axonal degeneration; 18 

and axonal regeneration. While autoimmune inflammation occurs in all forms of 19 

MS, its overall contribution relative to axonal degeneration and regeneration, as 20 

well as its temporal profile, can vary from one patient to the next [26]. By 21 

contrast, axonal degeneration does not follow autoimmune dynamics: damage 22 

accumulates as a consequence of the poor regenerative capacity of the CNS 23 
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[15]. As is well documented, both inflammation and axonal degeneration cause 1 

numerous types of disabilities [26]. Finally, while axonal regeneration and 2 

functional recovery can occur in the peripheral nervous system (PNS), the 3 

regenerative capacity of the CNS after injury is very limited [27].  4 

We distinguish between healthy axons, which have not yet been affected by the 5 

disease, and damaged axons, which decrease in thickness as a consequence 6 

of the inflammatory process (see Figure 2). A and Ad represent the proportion of 7 

the total RNFL thickness corresponding to healthy and damaged axons, 8 

respectively. The temporal evolution of these parameters is described by the 9 

following equations: 10 

  

  
                           ( 1 ) 

   

  
                         

   ( 2 ) 

where the constant kinf and the time-dependent parameter autoimmune 11 

response AR(t) represent the inflammation process. Thus, healthy axons that 12 

are affected by an inflammatory outbreak or by progressive inflammation 13 

become damaged axons, with subsequent loss of volume and even total 14 

transection of the nerve fiber. The constants kdegA (healthy axons) and kdegAd 15 

(damaged axons) model axonal loss by volume reduction or axonal transection. 16 

Finally, the poor regeneration of damaged axons, which can partially recover 17 

from an inflammatory episode, is represented by constant kreg. 18 

Axonal degeneration D is defined as the process by which axons decrease in 19 

size, ultimately atrophying and degenerating: 20 
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   ( 3 ) 

Note that both axonal degeneration and transection cause problems in the CNS 1 

by impairing the transmission of nerve impulses. 2 

 3 

Figure 2. Graphical representation of the proposed mathematical model. The model represents 4 
the evolution in MS patients of the thickness of the RNFL, which is composed of healthy axons 5 
(A) and by axons affected by autoimmune inflammation (Ad). The inflammatory process is 6 
modeled by the autoimmune response AR(t) and constant kinf. Both healthy and damaged 7 
axons can decrease in volume as a result of axonal degeneration or transection (D), according 8 
to constants kdegA and kdegAd, respectively. A small proportion of damaged axons can 9 
regenerate, recovering their initial volume: constant kreg represents this weak regenerative 10 
capacity. 11 

Representation of autoimmune inflammation 12 

Autoimmune inflammation is represented by EDSS scores obtained during the 13 

10-year follow-up of the discovery cohort, since progression of this score 14 

correlates with a significant change in neurological status [28]. Hence, 15 
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incremental changes in disability (ΔEDSS) were considered when EDSS score 1 

increased by ≥1 between visits (selection of larger increments would exclude 2 

patients with slower progressing disability). Autoimmune inflammation is 3 

modeled considering the time between changes in EDSS score. Time intervals 4 

(ΔT) between ΔEDSS were computed. Mean ΔT values were calculated for 5 

each patient in the discovery cohort. These data were grouped by clustering 6 

and then the probability distribution that best fit these experimental values was 7 

determined. By adjusting AR(t) to these probability distributions, we can 8 

represent the autoimmune inflammation that corresponds to an increase in 9 

disability and consequently, in EDSS score. Thus, in our proposed model 10 

patients with more slowly progressing disability experience autoimmune 11 

inflammation later than patients with faster progressing disability.  12 

Adaptation of the model to clinical outcomes 13 

In order to adjust the constants of the model to the clinical data it is necessary 14 

to set boundary conditions, taking into account both biological considerations 15 

and conservation laws. 16 

The variable measured by OCT corresponds to RNFL thickness. In our 17 

numerical model, this thickness is the sum of the thickness of both healthy and 18 

damaged axons: 19 

                 ( 4 ) 

In all simulations, we assume that all axons are healthy at the start of the follow-20 

up period and therefore that damaged axons and degeneration are absent at 21 
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baseline. The thickness measurement at baseline is thus considered the 1 

reference and the starting point: 2 

                                         ( 5 ) 

Conservation law states that the sum of healthy axons, damaged axons and 3 

degenerated axonal thickness must remain constant in time: 4 

                                   ( 6 ) 

Based on data from literature, a range of values and a hierarchy between 5 

constants was defined in order to satisfy the different biological processes. 6 

Because the rate of CNS regeneration is very low [27], this parameter will have 7 

the smallest value (range, 0–0.0001). For axonal loss, the parameters represent 8 

the percentage of healthy or damaged axons involved in each process, and 9 

therefore the corresponding values can range from 0 (no axonal loss) to 1 10 

(entire volume of the axon is affected) [1]. Finally, autoimmune inflammation is 11 

represented by the constant kinf (range, 0–10) and the autoimmune response 12 

AR(t) [16]. The units of all constants are 1/day since thickness is measured in 13 

µm and its evolution is expressed in µm/day. 14 

Optimization of model parameters  15 

An optimization algorithm was used to determine the optimal parameters for the 16 

proposed model, minimizing the root mean square error (RMSE) between the 17 

values predicted by our mathematical model and the clinical data. RMSE 18 

quantifies the difference between analytical and experimental values in units of 19 

thickness. Specifically, Matlab (version R2017b, Mathworks Inc., Natick, MA) 20 

was used to implement a genetic algorithm based on natural selection and 21 
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genetics, and designed to drive evolution of an initial population towards optimal 1 

fitness. This use of this type of algorithm for a similar purpose has been 2 

previously described [29]. 3 

For the purposes of our analysis, the chromosome is composed of our 4 4 

constants (kinf, kreg, kdegA and kdegAd). Each individual is represented by 56 bits, 5 

which corresponds to the binary coding of these 4 constants. The selection 6 

method used was fit-fit, whereby the most competitive individuals cross with the 7 

best and the least competitive with the worst. For the creation of new 8 

individuals, the 2-point crossover operator was used for binary coding, where 9 

children contain entire variables of both parents [30]. To avoid the loss of 10 

diversity that crossing processes can cause and to prevent blocking of the 11 

algorithm, a mutation probability of 20% was established. Mutation was applied 12 

to new descendants, introducing a random modification in one or several genes. 13 

An optimization cycle was simulated for each group of patients and for each 14 

zone of the peripapillary area, with 100 iterations and a population size of 1000 15 

individuals, since in this problem the initial population had a greater influence on 16 

the results than the number of iterations. 17 

RESULTS 18 

Longitudinal study 19 

Differences in the evolution of RNFL thickness between the discovery cohort 20 

and healthy controls were compared using the Wilcoxon test (p-values <0.05 21 

were considered significant). The mean and standard deviation were computed 22 

for each cohort and for different peripapillary areas. As described in the 23 
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Supplementary Material (Figure 1S), thinning of the RNFL in both MS patients 1 

and controls was observed between the baseline and 10-year follow-up visits, 2 

confirming that natural aging is an important component of this phenomenon. 3 

However, as also described previously [31], this thinning was of a greater 4 

magnitude in MS patients, confirming that RNFL thinning is also caused by MS 5 

progression. Specifically, at baseline mean RNFL thickness was 10.89% lower 6 

in MS patients than in respect to healthy controls. The reduction in RNFL 7 

thickness was even more pronounced at the 10-year follow up visit (7.80% and 8 

14.12% decreases relative to corresponding baseline values in controls and MS 9 

patients, respectively). 10 

Comparison of 10-year follow-up data for the control and MS groups revealed 11 

the following p-values: mean RNFL, 0.00029; superior RNFL, 0.0069, nasal 12 

RNFL, 0.5653; inferior RNFL, 0.0047; temporal quadrant RNFL, 0.00023. 13 

Therefore, significant differences in RNFL thinning were observed between MS 14 

patients and controls in all areas, except in the nasal quadrant. 15 

Clustering of patients 16 

After performing group selection using Silhouette analysis in the k-means 17 

clustering algorithm, an optimal number of 3 groups was established, with a 18 

Silhouette value of 0.8349. As shown in Figure 3, group 1 corresponds to 19 

patients who began follow-up with a higher EDSS score while group 3 20 

corresponds to those with the least advanced disability. While subjects were 21 

classified using other variables and different combinations thereof, the resulting 22 

Silhouette values were always lower than 0.8349. 23 
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 1 

Figure 3. Clustering of patients into the optimal number of groups according to Silhouette 2 
criterion. 3D classification was performed using the following variables: BCVA (X axis), disease 3 
duration ratio (Y axis), and EDSS score (Z axis). Patient clustering was as follows: group 1, 22 4 
patients (age, 45.7 ± 11.9; disease duration, 14.7 ± 10.6; EDSS, 6.1 ± 0.3); group 2, 52 patients 5 
(age, 41.7 ± 9.2; disease duration, 11.1 ± 7.6; EDSS, 2.6 ± 0.6); group 3, 40 patients (age, 38.3 6 
± 11; disease duration, 7.2 ± 5; EDSS, 0.5 ± 0.5). 7 

Once patients in the discovery cohort were grouped into different clusters, the 8 

evolution of RNFL thickness over the 10-year follow-up period could be 9 

analyzed. Figure 2S shows the temporal evolution (baseline and 2.5, 5, and 10 10 

years) of RNFL thickness for each group and for each quadrant of the 11 

peripapillary area. These values always decrease over time. To provide a 12 

comprehensive overview of RNFL thinning in MS patients, these data are 13 

summarized in Table 2, which shows the percentage decrease over the 10-year 14 

follow-up period. Group 1 shows a smaller decrease in RNFL thickness in 4 of 15 

the 5 areas analyzed with respect to group 2, and in all 5 areas with respect to 16 

group 3. RNFL thinning in the peripapillary area in group 1 was 1.64 times lower 17 

than that observed in group 2, which in turn was 1.14 times lower than that 18 

observed in group 3. Taken together these data reveal a lower magnitude of 19 

RNFL thinning in patients who began the follow-up period with greater disability 20 

(group 1). Therefore, most of this thinning occurs during the initial stages of 21 
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disability (groups 2 and 3). However, the differences in RNFL thinning between 1 

the 3 patient groups were not significant (p>0.05). 2 

RNFL thinning [µm] Group 1 Group 2 Group 3 

Peripapillary area 7.67 (9.1%) 13.20 (14.9%) 17.07 (17.0%) 

Superior quadrant 7.50 (7.1%) 14.50 (13.6%) 24.00 (19.8%) 

Nasal quadrant 6.50 (9.1%) 9.50 (13.3%) 14.50 (17.3%) 

Inferior quadrant 6.50 (5.7%) 11.00 (9.6%) 20.00 (16.0%) 

Temporal quadrant 9.50 (17.3%) 8.00 (14.3%) 15.00 (21.4%) 

Table 2. Decrease in retinal nerve fiber layer (RNFL) thickness in the entire peripapillary area 3 
and in the 4 quadrants into which it is divided. Values represent the median thinning in µm 4 
during the 10-year duration of the longitudinal study. The decrease observed over the 10-year 5 
follow-up period is represented as a percentage of baseline RNFL thickness. 6 

Furthermore, Figure 2S shows that in all 3 groups the evolution of RNFL 7 

thickness follows a linear trend during follow-up. The negative slope of this 8 

trend decreases as the initial EDSS score increases. 9 

Mathematical model 10 

The autoimmune response AR(t) is assumed to be defined by the probability 11 

distribution that best fits the clinical data. For group 1, the distribution is an 12 

extreme value distribution, with the following probability density function: 13 

           
   

    
   

          
        

        
        

      
( 7 ) 

For groups 2 and 3, the optimal fits are Weibull and Rayleigh distributions, 14 

respectively: 15 
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Figure 4 shows clinical data for each group of the discovery cohort and the 1 

optimal distribution for these data. Each bar represents the probability density of 2 

the number of days between changes in EDSS score. These distributions reflect 3 

the rate of EDSS increase. Thus, group 3 has the highest probability of a 1-4 

point increase in EDSS score (818.7 days) while group 1 has the lowest (2711.8 5 

days). Therefore, the progression of disability in patients in the initial stages of 6 

the disease is faster than that observed in patients with higher EDSS scores. 7 

This observation is also reflected in the slope of the linear approximation for 8 

EDSS score evolution; this slope decreases as the disability state increases. 9 
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 1 

Figure 4. A) Distribution of ΔT values for increments ≥1 point on the Expanded Disability Status 2 
(EDSS) scale for each group in the discovery cohort. The following probability density functions 3 
best fit each group: group 1, extreme value distribution; group 2, Weibull distribution; group 3, 4 
Rayleigh distribution. B) Evolution of mean EDSS score for each group for the 10-year follow-up 5 
period. Dashed line represents the linear approximation of EDSS score evolution. 6 

After defining the autoimmune response, it is necessary to determine the 7 

constants for the model by adjusting it to the clinical data from the discovery 8 
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cohort. These parameters were optimized using our genetic algorithm. The best 1 

adjustment for these 4 constants (kinf, kreg, kdegA and kdegAd) is shown in the 2 

Supplementary Material (Table 1S). In all cases the RMSE value obtained to fit 3 

the mathematical model to the clinical data was very low. The maximum RMSE 4 

value was 2.30 µm for the superior quadrant of group 1 and the minimum value 5 

was 0.12 µm for the peripapillary area of group 2. The values obtained for these 6 

constants are also shown in Figure 5. To identify the biological processes that 7 

most influence the dynamics of each group, we compared the parameters 8 

corresponding to each of the different processes between groups. We found 9 

that patients with greater disability experienced less autoimmune inflammation 10 

(kinf(group1) < kinf(group2) < kinf(group3)), and that consequently the number of 11 

damaged axons slowly increased in group 1 (kdegAd(group1) < kdegAd(group2, 12 

group3)). A similar trend was observed for the degeneration of healthy axons 13 

(kdegA(group1) < kdegA(group2) < kdegA(group3)), revealing that axonal 14 

degeneration in MS patients is greater during early disease stages. However, 15 

the degeneration of damaged axons did not follow this same trend: in this case, 16 

the degeneration of damaged axons was greater in group 2 than group 3 17 

(kdegAd(group2) > kdegAd(group3)). 18 

Finally, we observed that the regeneration process was consistent with the 19 

degree of disability: patients with lower EDSS scores had a greater regenerative 20 

capacity than patients with higher EDSS scores (kreg(group1) < kreg(group2) < 21 

kreg(group3)). 22 
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 1 

Figure 5. Parameter distribution for the 3 groups of patients in the discovery cohort. This box-2 
diagram was generated using the 10 best combinations of parameters (values are shown in 3 
Table 1S). Autoimmune inflammation is represented by kinf, constants kdegA and kdegAd relate to 4 
axonal degeneration, and kreg is the regeneration ratio. 5 

The evolution of each axon type (healthy or damaged) included in our model is 6 

depicted in Figure 6. This mathematical model allows determination of the 7 

evolution of healthy and damaged axons. Therefore, the sum of the thicknesses 8 

of each of these axon types should correspond to the experimental RNFL 9 

thickness measured by OCT. As shown in Figure 6 (right panel), the evolution 10 

of RNFL thickness as determined numerically fit precisely with the OCT clinical 11 

data. Our model can be adjusted to the RNFL thickness data for all patient 12 

groups with minimum error, verifying the model’s ability to reproduce the 13 

different dynamics that occur during MS progression.  14 
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The evolution of total thickness At, healthy axon thickness A, damaged axon 1 

thickness Ad, and cumulative damage D are shown for each group of the 2 

discovery cohort in Figure 6 (left panel). Based on our assumption that all axons 3 

are healthy at the start of follow-up, patients with the greatest disability (group 4 

1) experience less autoimmune inflammation caused by MS, and therefore only 5 

a small proportion of healthy axons transform into damaged axons. However, in 6 

MS patients with less disability (groups 2 and 3), the number of damaged axons 7 

increases markedly. This behavior is conditioned both by the autoimmune 8 

response AR(t) and constant kinf. The results obtained for groups 2 and 3 show 9 

how damaged axons, which have undergone autoimmune inflammation, are 10 

degenerated, since most of the axons affected by MS degenerate in the initial 11 

stages of the disease. After peaking, the curve representing the evolution of 12 

damaged axons in groups 2 and 3 acquires a negative slope because the rate 13 

of degeneration is greater than at the beginning. Finally, due to the 14 

aforementioned effect degeneration D is greater in patients with less disability 15 

(D(group1) < D(group2) < D(group3)). 16 

 17 
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 1 

Figure 6. Theoretical-experimental comparison of the evolution of retinal nerve fiber layer 2 
(RNFL) thickness for each group. Left: temporal evolution of healthy axons A, damaged axons 3 
Ad, and degeneration D. Right: adjustment of RNFL thicknesses obtained with the numerical 4 
model to the clinical data. 5 

Mathematical model validation 6 

Finally, to validate the model generated using mean data from each group in the 7 

discovery cohort over the 10 years of the longitudinal study, we investigated 8 

whether the model could correctly determine the evolution of RNFL thickness in 9 
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individual patients. We calculated RMSE and relative RMSE (RRMSE) for each 1 

patient in the discovery cohort and used a bootstrap procedure to determine 2 

mean RMSE and the corresponding 95% confidence interval (CI) for each 3 

group. This bootstrap method was applied randomly, replacing the original 4 

sample 10,000 times. Using the 10-year follow-up data, the following values 5 

(shown in Figure 7) were obtained for RMSE (group 1, 2.45 µm [95% CI, 1.87–6 

3.06]; group 2, 3.20 µm [95% CI, 2.74–3.66]; group 3, 4.01 µm [95% CI, 3.32–7 

5.59]) and RRMSE (group 1, 3.05% [95% CI, 2.34–3.79]; group 2, 4.20% 8 

[95% CI, 3.52–4.88]; group 3, 4.48% [95% CI, 3.63–5.25]). 9 

We also validated our proposed model using data from a new cohort of patients 10 

(validation cohort) followed-up for 5 years. First, we assigned each patient in the 11 

validation cohort to one of the 3 groups previously defined for the discovery 12 

cohort, using data recorded on their first visit. Next, for each group we 13 

computed the evolution of RNFL thickness over 5 years using our mathematical 14 

model. Finally, following the same procedure described for the discovery cohort, 15 

we compared the theoretical values obtained for the validation cohort with the 16 

corresponding clinical data. As shown in Figure 7, the mean RMSE and 17 

RRMSE values for the validation cohort were sufficiently low and very similar to 18 

those obtained for the discovery cohort. Therefore, this validation exercise 19 

revealed that our proposed model can predict RNFL thinning in new MS 20 

patients with a high level of accuracy. 21 
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 1 

Figure 7. Root mean square error (RMSE) and relative RMSE (RRMSE) values for individual 2 
patients in the discovery and validation cohorts. Mean values and 95% confidence intervals 3 
were obtained after performing a bootstrap method with random replacement of the original 4 
sample 10,000 times. 5 

In summary, we demonstrate that the different disease dynamics in MS patients 6 

can be represented by a combination of the 3 biological processes studied here: 7 

autoimmune inflammation, degeneration, and axonal regeneration. After 8 

clustering patients, our results indicate that RNFL thinning occurs cumulatively 9 

from the onset of MS and that most of this thinning occurs before the 10 

appearance of significant disability. In new MS patients, the proposed model 11 

allows prediction of the evolution of RNFL thickness, which in turn serves as a 12 

biomarker of MS evolution. 13 

DISCUSSION 14 

Using OCT to measure RNFL thickness allows direct visualization of a part of 15 

CNS. Because the RNFL is composed of unmyelinated axons, this parameter 16 

can serve as a measure of axonal loss in MS patients [32]. The use of OCT as 17 
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a biomarker of MS progression has been previously demonstrated [18]. Long-1 

term OCT studies could provide a useful means of evaluating axonal 2 

degeneration and MS progression, and objectively assessing treatment 3 

response in MS patients. 4 

The many commercially available OCT devices include OCT Triton, Optovue 5 

RTVue OCT, Spectralis OCT, and Cirrus HD-OCT. Our selection of Cirrus HD-6 

OCT was based on the results of a study [33] that compared these 4 OCT 7 

devices, analyzing several parameters, and found that Cirrus HD-OCT 8 

performed best.  9 

We used OCT data to relate RNFL thinning with disease progression in MS 10 

patients. It is well known that RNFL thinning occurs as part of normal aging. A 11 

longitudinal study of 187 eyes of healthy patients performed by Parikh et al. [34] 12 

found that mean RNFL thickness decreased by 0.16 µm/year. In our study, 13 

healthy controls showed a mean decrease of 7.86 µm over 10 years, as 14 

compared with a decrease of 12.59 µm in MS patients. These results show that 15 

pathophysiological mechanisms associated with MS cause axonal damage. 16 

Similar conclusions were reached in previous studies in which RNFL thickness 17 

in MS patients was measured by OCT [4,5]. However, to date no studies have 18 

attempted to characterize differences in the underlying pathological processes 19 

among MS patients or the corresponding implications in terms of the degree of 20 

disability.  21 

In contrast the study of Kotelnikova and coworkers, who used MRI to analyze 22 

the evolution of brain volume in MS patients [16], we developed a mathematical 23 

model using RNFL thickness data, obtained by OCT, in order to reproduce the 24 
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dynamics of CNS damage caused by MS. Our model is based on the 1 

hypothesis that MS is a dynamically heterogeneous disease, and proposes that 2 

differences in the relative contributions of 3 key mechanisms underlying RNFL 3 

thinning (autoimmune inflammation, axonal degeneration, and axonal 4 

regeneration) could account for the different disease dynamics observed among 5 

MS patients, and hence the differences between each of the 3 subgroups into 6 

which the MS patients are divided in this longitudinal study.  7 

Before adjusting the parameters of the model using our clinical data, we sought 8 

to reduce the heterogeneity of the data by creating subgroups within the 9 

discovery cohort based on 3 parameters: the patients’ degree of disability, 10 

visual function, and the length of time that they had been living with MS. Using 11 

the k-means algorithm, 3 subgroups were created. We opted not to classify 12 

patients using the 3 classic designations (relapsing-remitting MS [RRMS], 13 

secondary progressive MS [SPMS], and primary progressive MS [15]): because 14 

91.22% of our patients had RRMS, classification using these categories would 15 

not reduce data heterogeneity. 16 

Our model has been optimized to fit the clinical data corresponding to each of 17 

the 3 subgroups of the discovery cohort. Different optimization algorithms using 18 

stochastic search techniques, such as genetic algorithms and particle swarm 19 

optimization [35], can be used to minimize RMSE. Although genetic algorithms 20 

have a high computational cost, we chose this approach to avoid the main 21 

disadvantage of particle swarm optimization, which tends to get stuck in local 22 

minima [36,37]. Our results show that CNS damage occurs cumulatively, 23 

beginning at disease onset, and that most RNFL thinning occurs before the 24 
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onset of significant disability (i.e. while EDSS scores are low). This conclusion is 1 

in line with the findings of a review by Petzold and coworkers [5] of several 2 

cross-sectional studies, but this is the first time it has been confirmed in a 3 

longitudinal study. Therefore, following prior corroboration of the validity of 4 

RNFL thickness as a diagnostic biomarker of MS [3], we demonstrate that this 5 

parameter can also be used to predict the evolution of MS-associated disability. 6 

Our findings provide robust evidence demonstrating that RNFL thickness differs 7 

significantly between MS patients and healthy controls, and can be used to 8 

distinguish one group from the other, as previously suggested in several studies 9 

[6–8]. However, because RNFL thickness does not differ significantly among 10 

MS patients, it cannot be used to distinguish between them. By contrast, our 11 

classification based on EDSS score allows differentiation between 3 subgroups 12 

of MS patients categorized according to the relative contributions of the different 13 

biological processes that contribute to RNFL thinning.  14 

Our model allowed us to quantify the degree to which each different biological 15 

process (autoimmune inflammation, axonal degeneration, and axonal 16 

regeneration) contributes to the evolution of RNFL thickness in the 3 subgroups 17 

of MS patients. As the degree of disability worsens, both autoimmune 18 

inflammation and axonal degeneration attenuate, and the regenerative capacity 19 

of the CNS decreases. Therefore, patients with the highest degree of disability 20 

have the lowest regeneration ratio. Our study is the first to analyze the influence 21 

of these biological processes on RNFL thinning in MS patients.  22 

Some limitations of our study should be noted. Given the paucity of quantitative 23 

biological data on the biological processes described, we adjusted the 24 
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parameters of the model to fit the clinical data, and then subsequently verified 1 

that the parameters were within the established range. The autoimmune 2 

response was supposed to follow the probability distribution of time intervals 3 

between incremental changes in the disability score. Thus, the inflammatory 4 

response was defined in terms of timing in order to capture the dynamics of the 5 

damage. Therefore, this assumption allows to relate the attack response to the 6 

increase of disability. Our results should therefore be considered as trends that 7 

help us better understand the evolution of RNFL thinning and the disease 8 

course of MS. Another limitation is that we cannot experimentally measure the 9 

separate proportions of healthy and damaged axons that comprise the RNFL; 10 

OCT only allows measurement of the thickness of the entire RNFL. It should 11 

also be noted that we did not model all biological processes that can cause 12 

CNS damage, instead focusing on those known to contribute to axonal damage 13 

of retinal nerve fibers in MS. Although EDSS scores and disease duration 14 

varied considerably between patients at the beginning of follow-up, our 15 

clustering method classified patients according to disease status at baseline 16 

(including EDSS score and disease duration ratio). Therefore, differences in 17 

disease status between patients should not affect our results, and, 18 

consequently, RNFL evolution was calculated using parameters specific to each 19 

sub-group. Moreover, the same initial boundary conditions were applied to all 20 

groups, since no data on the percentage of damaged axons at the beginning of 21 

follow-up were available. Further research will be required to identify the 22 

specific regions of the RNFL in which damage occurs. Finally, parameters such 23 

as age, disease duration, and degree of disability of the validation cohort were 24 
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similar to those of the discovery cohort, which may have influenced our 1 

validation process.  2 

Future studies analyzing larger amounts of quantitative data on the biological 3 

processes underlying CNS damage in MS will facilitate the development of 4 

more specific predictive models that could be of benefit to clinicians. The use of 5 

OCT techniques in combination with our mathematical model allows prediction 6 

of the evolution of RNFL thinning. OCT is an objective, reproducible, cost-7 

effective and noninvasive technique that can be conducted by any clinician in a 8 

few minutes, without causing the patient any discomfort. Therefore, clinicians 9 

can rapidly predict the evolution of RNFL thinning and, consequently, the 10 

course of MS-related disability. The next step will be to incorporate this 11 

mathematical model into OCT equipment in order to directly obtain a prediction 12 

of the course of RNFL thinning. This would be of significant benefit to patients, 13 

hastening the process and obviating the need for a separate data analysis 14 

process after OCT examination. Our model will also need to be validated in 15 

other populations in order to demonstrate its utility and to confirm the validity of 16 

RNFL thickness as a reliable biomarker of MS disease course that could be 17 

used to facilitate the selection of therapies specific to a given patient. 18 

CONCLUSION 19 

In summary, our proposed model, generated using 10-year follow-up data 20 

collected from MS patients, demonstrates that differences in the contributions of 21 

the specific biological processes analyzed here can give rise to varying 22 

dynamics of MS progression. This may help explain the high degree of clinical 23 

heterogeneity observed among MS patients. Furthermore, our results indicate 24 
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that the contribution of each of these biological processes varies at different 1 

disease stages. MS should be considered as a progressive disease, the course 2 

of which follows the dynamics of CNS damage, and therapeutic strategies 3 

should seek to reduce this damage beginning in early disease stages. Our 4 

results confirm that RNFL thinning occurs cumulatively from the moment of 5 

disease onset. Our proposed mathematical model allows prediction in new MS 6 

patients of the progression of RNFL thinning, which in turn may serve as a 7 

biomarker of MS disease progression. 8 

    9 
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SUPPLEMENTARY MATERIAL 1 

 2 

Figure 1S. Differences in RNFL thickness in MS patients and healthy controls between baseline 3 
and 10-year follow-up visits. Comparisons are shown for 4 quadrants of the peripapillary area 4 
(superior, nasal, inferior, and temporal) and for the entire peripapillary area (*p<0.05; n.s, not 5 
significant (Wilcoxon signed-rank test). 6 
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 1 

Figure 2S. Evolution of RNFL thickness in different areas for each group over 4 examinations 2 
(0, 2.5, 5, and 10 years). Red, group 1; green, group 2; blue, group 3. 3 



 

44 

Group 1 

kinf [1/day] kreg [1/day] kdegA [1/day] kdegAd [1/day] RMSE [µm] 

Peripapillary area 

0.953 8.850E-07 3.372E-05 2.200E-06 0.26 

Superior quadrant 

0.997 3.597E-06 3.308E-05 4.840E-06 2.30 

Nasal quadrant 

0.918 9.695E-06 2.947E-05 1.372E-05 0.74 

Inferior quadrant 

0.741 1.697E-06 1.969E-05 3.880E-06 0.69 

Temporal quadrant 

1.344 2.826E-06 8.300E-05 6.860E-06 1.86 

Group 2 

kinf [1/day] kreg [1/day] kdegA [1/day] kdegAd [1/day] RMSE [µm] 

Peripapillary area 

0.914 1.080E-05 4.887E-05 3.542E-05 0.12 

Superior quadrant 

0.874 2.440E-06 3.546E-05 4.946E-05 0.14 

Nasal quadrant 

1.108 8.410E-07 6.154E-05 5.120E-06 0.77 

Inferior quadrant 

1.207 2.310E-06 4.495E-05 2.920E-06 2.05 

Temporal quadrant 

1.110 7.469E-06 4.063E-05 4.390E-05 0.32 

Group 3 

kinf [1/day] kreg [1/day] kdegA [1/day] kdegAd [1/day] RMSE [µm] 

Peripapillary area 

1.440 1.400E-05 1.068E-04 1.476E-05 0.17 

Superior quadrant 

1.695 1.302E-06 5.356E-05 6.776E-05 1.73 

Nasal quadrant 

1.386 2.150E-07 1.153E-04 1.296E-05 0.80 

Inferior quadrant 

1.539 1.152E-05 7.381E-05 2.770E-05 1.60 

Temporal quadrant 

1.386 7.649E-06 1.634E-04 8.160E-06 0.92 

Table 1S. Values for the mathematical model parameters (kinf, kreg, kdeg, kdegAd) that best fit 1 
RNFL thickness, as determined by OCT, for the 3 groups of patients in the discovery cohort. 2 
Fitting error is represented as the root mean square error (RMSE). 3 
 4 


