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Early afterdepolarizations (EADs) are spontaneous oscillations in membrane potential that occur during the repolariza-12

tion phase of the action potential. EADs can trigger ventricular arrhythmias, such as Torsades de Pointes, in patients13

with long QT syndromes. Understanding the theoretical mechanisms behind EAD generation and developing strategies14

to suppress them are crucial. In this study, we employed bifurcation analysis along with a new fast-slow decomposition15

method on the O’Hara model of human ventricular myocytes. Our goal was to examine how the calcium ion concen-16

tration in the network sarcoplasmic reticulum (NSR) influences the generation of EADs in the context of reduced rapid17

delayed rectifier K+ current. Our findings identified nine distinct EAD states that coexist and can be controlled by18

slight adjustments to the NSR calcium ion concentration at a single time point.19

Keywords: Early afterdepolarization, bifurcations, mathematical calcium ion concentration, mathematical ventricular20

cardiomyocyte model, network sarcoplasmic reticulum21

In diseases such as heart failure, early afterdepolariza-22

tions (EADs) are recognized as a significant cause of lethal23

ventricular arrhythmias. Despite extensive research, a24

deeper understanding of the mechanisms underlying EAD25

generation is still needed. Realistic computational models26

of cardiac electrical activity have made substantial con-27

tributions to studying these phenomena. While highly28

detailed models, with numerous state variables, provide29

a more accurate representation of experimental observa-30

tions and offer valuable biophysical insights, they tend to31

be too complex for in-depth analysis. In this study, we in-32

vestigated the generation of EADs and repolarization fail-33

ure (persistent EAD oscillations) in the O’Hara model by34

analyzing their dependence on various parameters. We35

parameterized [Ca]nsr, the concentration of calcium ions36

in the network sarcoplasmic reticulum (NSR), which is the37

slowest variable in the system. This allowed us to apply bi-38

furcation analysis and utilize a fast-slow decomposition of39

the original model, providing a dynamical systems expla-40

nation for the different observed dynamics. Through theo-41

retical analysis, we explored the influence of NSR calcium42

concentration and identified that the pathological states in43

the original system could be explained by the bifurcations44

in the parameterized model. We demonstrated the coex-45

istence of multiple EADs and repolarization failure states,46

showing that these anomalous states could be controlled47

by adjusting the NSR calcium concentration at a single48

time point.49

I. INTRODUCTION50

Early afterdepolarizations (EADs) are spontaneous oscilla-51

tions in membrane potential occurring during the repolarizing52

phase of the action potential. EADs can trigger ventricular53

arrhythmias, such as Torsades de Pointes1–3, particularly in54

patients with long QT syndromes, which may lead to sudden55

death due to ventricular fibrillation. This study focuses on the56

theoretical analysis of EADs. Typically, EAD occurrence is57

associated with an increase in the L-type calcium current or a58

decrease in potassium current1,4–17.59

Investigating mathematical cardiac models is crucial for un-60

derstanding the mechanisms behind EAD generation. Low-61

dimensional models have been analyzed using bifurcation62

theory and time-scale separation, or fast-slow analysis18–21.63

These studies have shown that EADs can result from various64

dynamical systems phenomena, including Hopf and homo-65

clinic bifurcations in mathematical models22, which have also66

been observed in experiments23. Other mechanisms include67

folded node singularities of the slow flow19,24,25, canards25–28,68

period-doubling bifurcation cascades29, and delayed subcrit-69

ical Hopf bifurcations30. Landaw and Qu developed an it-70

erated map model that showed long-periodic solutions with71

alternating EAD and no-EAD episodes, caused by a Hopf72

bifurcation in the discrete-time model31. While these low-73

dimensional models help clarify the mathematical mecha-74

nisms of EAD generation from a dynamical systems perspec-75

tive, high-dimensional models incorporating a wide range of76

ionic currents are needed to explore the biological mecha-77

nisms.78

Previous studies using detailed mathematical models have79

shown that EAD generation is associated with slow variables80
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such as intracellular sodium ion concentration, as demon-81

strated by Krogh-Madsen and Christini32. Tsumoto et al.82

studied the multi-stability of transient EADs33 (short term83

EAD orbits before converging to another state), and Xie et84

al. revealed that repeating EAD and no-EAD states exhibit85

hysteresis characteristics34. These phenomena’s dependence86

on system parameters has been examined through bifurcation87

analysis35. Different models feature other slow variables, such88

as intracellular potassium and calcium ion concentrations.89

The intracellular potassium concentration, for example, may90

drift over time without reaching a steady state36, so it is typi-91

cally fixed. The number of EADs has been linked to calcium92

ion concentrations in various compartments, including the93

sarcoplasmic reticulum (SR)37,38, intracellular compartment1,94

junctional sarcoplasmic reticulum (JSR)9,39, cytoplasm2, and95

network sarcoplasmic reticulum (NSR)40. However, these96

studies primarily focused on observations of these phenom-97

ena.98

In this study, we aimed to investigate the effects of cal-99

cium ion concentrations on EAD generation —specifically the100

number of EADs— using bifurcation theory. We sought to101

provide a theoretical explanation for the observed phenom-102

ena. Previous studies41,42 have shown that bifurcations in the103

Luo-Rudy 3D model and the 27D model by Sato et al. lead to104

the creation of the first EAD, but a more detailed bifurcation105

analysis of the 27D model is required. Thus, the main objec-106

tive of this article is to conduct a comprehensive bifurcation107

analysis in a realistic cardiomyocyte model.108

Our analysis revealed that a higher concentration of calcium109

ions in the NSR promotes the formation of more EADs or110

small oscillations. We demonstrated the coexistence of mul-111

tiple EAD states and showed that these states could be con-112

trolled —transitioning to fewer EADs— by adjusting the NSR113

calcium ion concentration. By examining ionic currents dur-114

ing this transition, we found that increasing the inward rec-115

tifier potassium current suppressed EADs, while increasing116

the outward calcium current through the L-type channel pro-117

moted them. Additionally, we clarified that the ultra-long ac-118

tion potential duration (APD) and related fibrillation observed119

in experiments39,43–47 and simulations4,39,48,49 were driven by120

elevated NSR calcium concentrations. These findings may121

provide new theoretical insights or practical approaches for122

controlling EAD generation.123

This article is structured as follows: Section II provides a124

brief description of the O’Hara mathematical model for the125

human ventricular myocyte. In Section III, we introduce the126

parameterized model and analyze its dynamics. Section IV127

compares both models using a fast-slow decomposition ap-128

proach. In Section V, we propose a simple control mechanism129

to mitigate EADs. Finally, Section VI offers a discussion and130

our conclusions.131

II. O’HARA HUMAN VENTRICULAR CARDIOMYOCYTE132

MODEL133

The O’Hara model is a realistic mathematical model that134

describes the electrophysiological mechanisms of human ven-135

tricular myocytes50. The membrane potential is governed by136

C
dV
dt

=−(INa + INaK + ICaL + ICaNa + ICaK + INaCai
137

+INaCass
+ INaCa + IKs + IKr + IK1 + Ito138

+INab + ICab + IKb + IpCa + Isti), (1)139

where V (mV) represents the membrane potential, C (µF) is140

the cell membrane capacitance, and I j (µA/µF) represents the141

ionic currents, excluding the stimulus pulse current Isti, which142

has an amplitude of 60 (µA/µF), a duration of 1 (ms), and a143

period of 2000 (ms). Table 150 provides a list of all ionic144

currents included in this model.145

Some ionic currents have the following form146

I j = g j · ym1
g1

ym2
g2

ym3
g3

· (V −E j),147

where g j is the maximum conductance and E j is the reversal148

potentials for ion j. The gating variables yg are given by149

dyg

dt
=

y∞,g − yg

τyg

150

where τyg and y∞,g are time constant and the value of yg in the151

steady state, respectively. The O’Hara model includes 29 gat-152

ing variables and is described by a system of 41-dimensional153

ordinary differential equations (see Ref. 50 for the full model154

equations). We fixed the sodium and potassium ion concen-155

trations at 8.0 (mM) and 140.0 (mM), respectively, reducing156

the model to 37 dimensions. It is known that EADs can be157

induced by blocking IKr during slow pacing, so we selected158

the IKr multiplier as a control parameter. The typical maxi-159

mum conductance of IKr is 0.0368, and we varied gKr (0 to160

100%) as the control parameter. All other parameters were set161

to their normal values50.162

Table I. Ionic currents in O’Hara model

Abbreviation Ionic current
INa Na+ current
INaK Na+/K+ ATPase current
ICaL Ca2+ current through the L-type Ca2+ channel
ICaNa Na+ current through the L-type Ca2+ channel
ICaK K+ current through the L-type Ca2+ channel
INaCai

myoplasmic component of Na+/Ca2+ exchange current
INaCass

subspace component of Na+/Ca2+ exchange current
INaCa total Na+/Ca2+ exchange current
IKs slow delayed rectifier K+ current
IKr rapid delayed rectifier K+ current
IK1 inward rectifier K+ current
Ito transient outward K+ current
INab Na+ background current
ICab Ca2+ background current
IKb K+ background current
IpCa sarcolemmal Ca2+ pump current

It is worth noting that while more detailed models exist in163

the literature, the O’Hara model offers valuable insights into164

the realistic dynamics of human ventricular myocytes.165
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In this study, all numerical continuation analyses of bifurca-166

tions, both for equilibria and periodic orbits, were conducted167

using specialized software described in Ref. 51. This soft-168

ware is particularly suited for continuation studies in high-169

dimensional systems. It employs standard continuation tech-170

niques and also facilitates stability analysis of equilibria and171

periodic orbits through the calculation of eigenvalues of the172

Jacobian matrix and the Floquet multipliers, respectively.173

III. PARAMETERIZED MODEL AND DYNAMICS174

To investigate the mechanisms behind the generation of175

EADs in the O’Hara model, we initially attempted to apply176

the same approach used in recent studies on low-dimensional177

models, which employed a fast-slow decomposition of the178

system’s dynamics. In these studies, various 3D or 4D car-179

diomyocyte models were examined18–21,24–28, where slow180

variables were easily identifiable.181

Fast-slow decomposition has proven to be an effective182

method for studying the bifurcation origins of EADs in low-183

dimensional systems. For example, Ref. 41 established a link184

between numerical simulations in a realistic model and the185

fast-slow decomposition of a low-dimensional model (the 3D186

Luo-Rudy model). However, it remains unclear whether this187

decomposition remains valid in a realistic high-dimensional188

model, as obtaining such a decomposition presents significant189

computational challenges. In this paper, we aim to address190

this issue by investigating whether the assumptions made in191

the literature hold in a realistic model. Our focus is on de-192

veloping an approach that allows us to perform a fast-slow193

decomposition in a highly complex system.194

Since we are dealing with a high-dimensional problem, our195

approach differs from those used in previous studies19,24–28 on196

low-dimensional models with small explicit parameters. We197

begin by identifying the slowest variable in the absence of a198

stimulus, then fix that variable to create two models: the orig-199

inal model and a modified version with the slowest variable200

held constant (the limiting case). The primary reasoning is201

that the stimulus induces rapid depolarization, after which the202

system’s dynamics are governed by the behavior without the203

stimulus. This observation allows us to approximate the fast204

subsystem by treating the slowest variable as constant and re-205

moving the stimulus to focus on the model’s internal dynam-206

ics. Given the high dimensionality of the reduced model (36207

variables), it is crucial to examine its bifurcations and under-208

stand how they organize the dynamics of the original prob-209

lem. This approach mirrors those used in low-dimensional210

models19,24–28.211

As a first step, we examined the convergence speed of212

all state variables in the O’Hara model without a stimulus213

(Isti = 0). We present the results for the two slowest variables,214

[Ca]nsr (calcium ion concentration in the network sarcoplas-215

mic reticulum) and [Ca]jsr (calcium ion concentration in the216

junctional sarcoplasmic reticulum), in Fig. 1(a). The verti-217

cal axis shows the difference between the previous time point218

([Ca]i−1
{n,j}sr) and the current time point ([Ca]i

{n,j}sr) during219

numerical integration with a fixed step size of 1/256 ms. Note220

that all state variables converge to an equilibrium point for221

the chosen parameter values, causing these differences to ap-222

proach zero.223

We found that [Ca]nsr and [Ca]jsr exhibited the slowest dy-224

namics. Therefore, to determine which variable to fix, we225

considered two cases, fixing either [Ca]nsr or [Ca]jsr, and226

checked the convergence speed in each case. Figure 1(b)227

shows that the speed was significantly improved when [Ca]nsr228

was fixed, due to the fact that the slow dynamics of [Ca]nsr229

affect the convergence speed of [Ca]jsr. As a result, we cre-230

ated a new system, referred to as the [Ca]nsr-parameterized231

system, where [Ca]nsr is treated as a parameter and Isti = 0232

(no stimulus).233

As discussed, this reduced model will serve as the fast sub-234

system, with the fixed variable [Ca]nsr acting as a bifurcation235

parameter to study the fast-slow decomposition.236
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Figure 1. Convergence of state variables to equilibrium point
at gKr = 1.0. (a) Top two slowest variables in original system.
(b) Slowest state variable in [Ca]nsr-parameterized system and in
[Ca]jsr-parameterized system.

237

238

Once we derive a slightly simplified model, the [Ca]nsr-239

parameterized system, we can apply bifurcation analysis tech-240

niques using the methods and software outlined in Ref. 51.241

Despite the fact that this simplified model still comprises 36242

variables, making it highly dimensional and complex, it can243

be viewed as the fast subsystem of the original model, allow-244

ing for comparison between the two systems through standard245

fast-slow analysis.246

In Fig. 2, we show a subcritical Hopf bifurcation curve on247

the parameter plane of a specific equilibrium. We also iden-248

tify the main bifurcations of the unstable limit cycles that arise249

from this Hopf bifurcation. Firstly, these cycles undergo a250

Fold bifurcation, giving rise to stable limit cycles. Subse-251
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quently, they experience a sequence of period-doubling (PD)252

bifurcations. Notably, a large region of the parameter plane253

contains at least one stable equilibrium, while in some areas,254

stable and unstable limit cycles coexist.255

The stable equilibrium point (approximately at V = −12256

(mV)) is present throughout all shaded regions following the257

subcritical Hopf bifurcation. Between the Hopf and Fold bi-258

furcations, an unstable limit cycle exists, and after the Fold bi-259

furcation, a small-amplitude stable limit cycle appears and ex-260

ists in the region between Fold and period-doubling (PD) bi-261

furcations, coexisting with the unstable limit cycle. Following262

the period-doubling bifurcation, additional period-doublings263

occur, leading to a cascade of bifurcations and chaotic dy-264

namics. More details on these bifurcations are discussed in the265

following section. We emphasize that this description pertains266

to the dynamics of the parameterized model, where [Ca]nsr is267

fixed and no external stimulus is applied.268

 [
C

a]
n

sr
p
ar

am
et

er
iz

ed

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

(mM)

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0

gKr

Hopf

Fold

PDstable PO

unst
able
 PO

PARAMETERIZED MODEL

stable equilibrium

stable equilibrium

Figure 2. Two-parameter bifurcation diagram (gKr, [Ca]nsr) in the
[Ca]nsr-parameterized system. Hopf bifurcation of an equilibrium
point, and period-doubling (PD) and Fold bifurcations of limit cycles
are present. A stable equilibrium point is observed in a large region,
and stable and unstable limit cycles created at the Hopf bifurcation
are observed in dark gray and light gray regions, respectively.

The key question is: what are the dynamics of the original269

O’Hara model, and how do they relate to those observed in the270

parameterized model? Figure 3(a) presents a one-parameter271

bifurcation diagram for the original system, where [Ca]nsr272

is now a variable of the model. The vertical axis shows the273

[Ca]nsr values at intervals of 2000 (ms) (i.e. Poincaré map-274

ping) for different steady states, such as repolarization failure,275

EADs, and normal behavior. Additionally, it highlights the re-276

gion where transient EADs occur —EADs that disappear after277

a convergence process— when gKr exceeds 0.4.278

The figure also includes the bifurcation sets calculated for279

the [Ca]nsr-parameterized system, previously presented in280

Fig. 2. Notably, the region containing transient EADs, repo-281

larization failure (persistent EAD oscillations), and EADs lies282

within the region of limit cycles in the parameterized system.283

Furthermore, the upper boundary of orbits with EADs is pre-284

cisely defined by the period-doubling bifurcation curve of the285

limit cycles in the parameterized model, while repolarization286

failure occurs within the stable limit cycle region, between the287

Fold and period-doubling bifurcation curves.288

These observations are important for two key reasons. First,289

the parameterized system approach allows us to clearly delin-290

eate the regions of interest, as all orbits with EADs and repo-291

larization failure are accurately bounded by the bifurcations in292

the parameterized model. Moreover, this approach enables the293

use of fast-slow decomposition techniques, as detailed in the294

next section. Second, it underscores the significant connection295

between the generation of EADs and the prior development of296

alternans, in this case through period-doubling bifurcations.297

This relationship has been demonstrated in both experiments298

and numerical simulations41,52, but explicit bifurcation analy-299

sis in high-dimensional models has been lacking, despite be-300

ing conjectured in both low- and high-dimensional models42.301

An enlarged and superimposed diagram of a section from302

Fig. 3(a) is shown in Fig. 3(b). Within a narrow parame-303

ter range of gKr, we observe multiple stable states, including304

repolarization failure, 16 types of EADs, and normal states.305

The stable repolarization failure in the original system occurs306

within the region where stable limit cycles are found in the307

[Ca]nsr-parameterized system.308

In this context, the notation mk–ns represents sequences of k309

successive m EADs followed by s successive n EADs, where310

m and n indicate the number of EADs within a 2000 (ms)311

period (one action potential). In our simulations, up to ten312

states were found to coexist simultaneously. It is worth not-313

ing that detecting coexisting states in such a high-dimensional314

system is challenging due to their strong dependence on initial315

conditions and the complexity of the initial condition space.316

Our approach involved using a large initial value of [Ca]nsr317

(since higher [Ca]nsr was found to promote more EADs, as318

shown later) at a fixed gKr, and we confirmed convergence to319

a specific state —whether it be repolarization failure, EADs,320

or normal. Once an attractor was found for a given gKr, we321

used it as the initial condition for a slightly adjusted gKr. Re-322

peating this process allowed us to discover a wide range of323

stable states in the desired parameter region, and we estimate324

that, in most cases, we were able to capture all coexisting at-325

tractors. In Fig. 3(b), we observe that the region of unstable326

limit cycles in the parameterized system encompasses all or-327

bits with EADs, while repolarization failure occurs within the328

stable limit cycle region. Fast-slow analysis will provide fur-329

ther insight into this phenomenon.330

Is there any ordering in the orbits with EADs? The answer331

is, of course, yes. In Fig. 3(b), we highlight several pathways332

among the EAD orbits, indicated by arrows and circles. For333

example, the main route leading to repolarization failure is on334

the left side, progressing from a normal beat (denoted by the 0335

pattern) to infinity, following the sequence ∞ via 0 → 0m–1 →336

0–1 → 0–2 → 0–n → ∞. The corresponding waveforms of337
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Figure 3. (a) One-parameter bifurcation diagram in the original sys-
tem. The bifurcations curves from the parameterized system (Fig. 2)
are shown for comparison. The values of [Ca]nsr every 2000 (ms),
i.e. Poincaré mapping, show EADs (blue), repolarization failure
(red), and normal (green) behavior. Transient EADs are also ob-
served. The upper limit of its existence corresponds to a period-
doubling bifurcation curve (dotted curve) from the parameterized
system. (b) A magnification of the EAD-repolarization failure re-
gion. 16 kinds of EADs, repolarization failure, and normal states
coexist in the original system. Several transition routes between dif-
ferent EAD patterns are highlighted (see text for details).

the membrane potentials for some of these attractors, depicted338

in Fig. 3(b), are shown in Figs. 4(a) to (e). Additionally, there339

are intermediate symbolic dynamics, such as the route from340

0 to 1 via 0–1l , from 1 to 2 via 1–2l . More complex cases341

also arise, such as transitions of the form 0–2–1–2, and other342

variations. Below, in Fig. 5, we present examples of patterns343

with these more intricate symbolic representations.344
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Figure 4. Membrane potential waveforms. EADs are indicated by
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at gKr = 0.42.(b) 1 EAD at gKr = 0.36. (c) 1–2 EADs at gKr = 0.36.
(d) 0–3 EADs at gKr = 0.32. (e) Repolarization failure (persistent
EAD oscillations) at gKr = 0.36.
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Figure 5. Complex membrane potential waveforms with several
EAD rates. (a) EAD pattern 016–1 with rate 0.058 at gKr = 0.38.
(b) EAD pattern 07–1–05–1 with rate 0.14 at gKr = 0.37. (c) EAD
pattern (04–1)2–02–1 with rate 0.23 at gKr = 0.365.
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Figure 6. EAD rate calculated after n = 1000 APs (EAD rate = num-
ber EADs/number APs).

To explain the transition from the 0m-1 state to 0–1 state345

in Fig. 3(b), we defined the EAD rate as the number of346

EADs divided by the number of action potentials (consider-347

ing n = 1000 action potentials). Figure 6 illustrates the EAD348

rate between gKr = 0.35 and 0.39. In the 0m–1 state from349

Fig. 3(b), we observe a transition from an EAD rate of 0 (nor-350

mal) to 0.23, revealing the so-called cardiac devil’s staircase351

structure41,42. This staircase curve reflects how the EAD rate352

increases step by step. The mechanism driving the discontin-353

uous transitions from 0m–1 to 02–1, and from 02–1 to 0–1,354

is based on the presence of intermediate complex patterns that355

facilitate the switch between different states. For a detailed ex-356

planation of this transition in the devil’s staircase for another357

cardiomyocyte model, see Ref. 41. More complex membrane358

potential waveforms with varying EAD ratios are presented in359

Fig. 5.360

We observe that intermediate complex patterns can coexist,361

leading to transient or stable chaotic dynamics over a narrow362

range of parameters. By using the EAD rate, we can more363

easily classify these patterns. For instance, the 0–4, 1–3, and364

2 EAD patterns in Fig. 3(b) all share the same EAD rate of 2365

and are nearly aligned along the same line. This highlights the366

intricate structure of the periodic orbits with EADs and, more367

importantly, shows that they are confined to specific regions in368

the one-parameter diagram. The different coexisting periodic369

orbits occupy distinct ranges of the [Ca]nsr variable.370

IV. PARAMETERIZED AND ORIGINAL MODEL:371

FAST-SLOW DECOMPOSITION372

In Fig. 3, we observed how the bifurcations in the pa-373

rameterized model delineate certain dynamics of the original374

model. This makes it worthwhile to explore the spatial posi-375

tion of the orbits in the original system relative to the parame-376

terized model in greater detail. To do so, we computed various377

bifurcation sets for the [Ca]nsr-parameterized model at a fixed378

value of gKr. We then generated one-parameter bifurcation di-379

agrams, using the voltage variable V as the vertical axis, and380

superimposed some of the orbits from the original model onto381

these diagrams.382

In Fig. 7, we present a one-parameter bifurcation diagram383

for the parameterized model in the ([Ca]nsr, V ) plane for384

gKr = 0.38, highlighting the manifold of equilibria in green385

and marking the subcritical Hopf bifurcation point. The heavy386

black curves represent the limit cycles, with the maximum and387

minimum membrane potential V values of the cycles shown.388

Solid curves indicate stable invariants, while dashed curves389

indicate unstable ones. The manifold of equilibria forms the390

slow manifold of the fast subsystem of the original model,391

which is represented by the parameterized model (with the392

slowest variable fixed). The fast-manifold of the fast sub-393

system is made up of the limit cycles of the parameterized394

system. This fast-manifold takes on a "Mexican hat" shape,395

consisting of both unstable and stable sheets (we provide a396

schematic of this surface configuration). The stable branches397

of the limit cycles undergo period-doubling bifurcations, re-398

sulting in a period-doubling cascade that leads to chaotic be-399

havior. It is important to note that this chaotic behavior forms400

the core mechanism behind the generation of highly complex401

dynamics in the original model.402

Figures 8(a) and 8(b) show one-parameter bifurcation dia-403

grams for the [Ca]nsr-parameterized system at gKr = 0.4 and404

gKr = 0.38, respectively. In the gKr = 0.4 case, we superim-405

posed a trajectory (thin gray) and an attractor (cyan) from the406
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Figure 7. One-parameter bifurcation diagram for gKr = 0.38 (green:
equilibrium point (EQ), heavy black curves: limit cycle (LC),
solid curves: stable, and dashed curve: unstable) in the [Ca]nsr-
parameterized system. The maximum and minimum membrane po-
tential of repolarization failure in the original system corresponds
to LCmax and LCmin in the [Ca]nsr-parameterized system. The
fast-slow decomposition of the parameterized system permits to de-
scribe the slow-manifold of equilibria and the fast-manifold of the
limit cycles. The fast-manifold has a ’Mexican hat’ shape with un-
stable and stable sheets. The stable branches of limit cycles meet
period-doubling bifurcations, leading to a period-doubling cascade
into chaotic behavior.

original system. The waveform of this trajectory’s membrane407

potential is shown in Fig. 9. For gKr = 0.38, we superimposed408

several attractors (cyan, blue, and red).409

In Fig. 8(a), the trajectory exhibits ultra-long action po-410

tential duration (APD), repolarization failure, transient states411

with 2−3 EADs, 1−2 EADs, 1 EAD, and eventually a nor-412

mal beat as the steady state. The repolarization failure in413

the original system corresponds to the stable limit cycle in414

the [Ca]nsr-parameterized system, and the long APD results415

from the trajectory following the path of the stable equilib-416

rium point in the parameterized system. Additionally, tran-417

sient EADs are observed between the values of [Ca]nsr asso-418

ciated with the normal and repolarization failure states.419

The fast-slow decomposition effectively describes the or-420

bit dynamics, particularly the stable periodic orbit of the nor-421

mal beat. In this scenario, the orbit remains in quiescence422

on the slow manifold of equilibrium EQ2 until a stimulus de-423

polarizes the cell, sending the orbit to the upper branch of424

the fast-manifold, after which repolarization occurs, restarting425

the process. As gKr decreases, these transient EADs become426

locked into multiple stable EADs, as seen in Fig. 8(b). This is427

significant because, at lower gKr values, numerous coexisting428

patterns with different numbers of EADs appear depending429

on the initial conditions of the [Ca]nsr variable in the original430

model. In the parameterized model, there is a multitude of un-431

stable periodic orbits generated by a period-doubling cascade.432

The presence of such orbits can give rise to multiple coexist-433

ing stable periodic orbits if they are stabilized in the original434

system, as happens at lower gKr values.435

By varying [Ca]nsr, we navigate along the fast-manifold436

of the parameterized model. In Fig. 8(b), we see that on the437

left side, where [Ca]nsr ≃ 1.7mM, the EAD orbit exhibits a438

0m–1 signature, closely resembling the normal beat. How-439

ever, as [Ca]nsr increases, the stable orbits shift along the440

fast-manifold, resulting in the emergence of additional EADs441

generated by the fast loops on the attracting sheets of the442

manifold. Notably, the normal beat transitions from the slow443

manifold to the fast-manifold, with EADs being generated on444

smaller loops within the fast-manifold. In the limiting case,445

the stable orbit remains entirely on the stable branch of the446

fast-manifold, without descending to the slow manifold. This447

condition leads to repolarization failure, as the rapid oscilla-448

tions inhibit the cell from returning to its original resting state.449

Fig. 8(b) clearly illustrates this phenomenon, demonstrating450

how the parameterized study effectively delineates the region451

of repolarization failure and its bifurcation origins. In this sce-452

nario, although the action potential (AP) is present, it fails to453

fully repolarize the cell. As gKr increases, stabilized periodic454

orbits disappear, leaving the normal beat as the only stable455

state. However, a variety of transient dynamics may still oc-456

cur due to the presence of unstable periodic orbits, as shown457

in Fig. 8(a). This combination of using both the original and458

parameterized systems has provided valuable insights into this459

high-dimensional problem.460

From Figs. 3(b) and 8(b), we observe that higher [Ca]nsr461

levels promote an increased EAD rate. To illustrate this ef-462

fect, we present waveforms at gKr = 0.36, where repolariza-463

tion failure coexists with six distinct EAD types, as shown in464

Fig. 10. For comparison, we also include a normal state at465

gKr = 0.39. Additionally, in Fig. 11, we plot the different or-466

bits in a 3D spatial representation of the variables ([Ca]nsr, the467

deactivation gating variable for IKs, and membrane potential468

V ). This figure highlights the role of fast-slow decomposition:469

the EADs manifest as rapid rotations on the fast-manifold of470

the fast subsystem, while the stimulus (applied at the red dot471

corresponding to the normal beat orbit) compels the orbit to472

transition from the slow manifold, characterized by quiescent473

dynamics, to a fast depolarization. We note, as clearly illus-474

trated in Figs. 3(b), 8(b), 10 and 11, that each EAD state is475

organized by the value of [Ca]nsr, since this variable is the476

slowest in the original system, maintaining a narrow range for477

each pattern.478

V. BASIC CONTROL APPROACH479

As demonstrated in previous sections, higher [Ca]nsr lev-480

els promote the occurrence of more EADs or small oscilla-481

tions. Leveraging this characteristic, along with the observa-482

tion that different patterns are located within narrow ranges of483

the [Ca]nsr variable, we aimed to control the states by adjust-484
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Figure 8. One-parameter bifurcation diagram (green: equilibrium point (EQ), heavy black curves: limit cycle (LC), solid curves: stable, and
dashed curve: unstable) in the [Ca]nsr-parameterized system. Maximum and minimum membrane potential of repolarization failure in original
system corresponds to LCmax and LCmin in the [Ca]nsr-parameterized system. (a) Case gKr = 0.4. Thin gray curve shows a trajectory starting
from square point (close to EQ2 curve) in the original system. Cyan curve represents attractor corresponding to normal state in the original
system. This trajectory converges to the attractor orbit via ultra-long APD, repolarization failure, and EADs as transient states. Transient
EADs are observed in the region shown by red arrows. (b) Case gKr = 0.38. Blue, cyan and red curves indicate different coexisting attracting
orbits in the original system. Stable 0m–1, 1–2, 2, 2–3 EADs and repolarization failure orbits coexist in the original system. Repolarization
failure in the original system corresponds to a stable oscillatory solution in the fast-manifold of the [Ca]nsr-parameterized system, leading to
persistent EAD oscillations.

ing the value of [Ca]nsr at a single time point.485

The results of this straightforward strategy are presented486

in Fig. 12. Figures 12(a) and 12(b) show the waveforms of487

the membrane potential, while Figs. 12(c) and 12(d) illus-488

trate the corresponding [Ca]nsr dynamics. The initial states489

corresponded to the converged values of a 2 EADs state490

for Figs. 12(a) and 2(c), and to repolarization failure for491

Figs. 12(b) and 12(d). Notably, we only decreased the value of492

the [Ca]nsr variable at a single time point, t = 12500, within a493

37-dimensional system of differential equations. As a result,494

the membrane potential transitioned to a new stable state, pro-495

ducing fewer EAD states —specifically, a normal state and a496

0−1 EAD state in Figs. 12(a) and 12(b), respectively.497

To elucidate the control mechanism, we calculated all the498

ionic currents following the change in the [Ca]nsr value. Fig-499

ure 13 displays the membrane potential alongside the ionic500

current rates, defined as each ionic current divided by the total501

ionic current. The effects after the [Ca]nsr jump (Figs. 13(b)502

and 13(d), referred to as "control") are compared with the con-503

ditions without the jump (Figs. 13(a) and 13(c), referred to504

as "no control"). After t = 12700, the dominant ionic cur-505

rents observed are ICaL (Fig. 13(c)) and IK1 (Fig. 13(d)). In506

Fig. 13(c), IK1 remains inactive while ICaL becomes predomi-507

nant after t = 12800, leading to the emergence of the EAD, as508

indicated by the arrow in Fig. 13(a). Conversely, in Fig. 13(d),509

ICaL is inactive, and IK1 becomes active, resulting in the mem-510

brane potential returning to the resting state (indicated by the511

arrow in Fig. 13(b)), thereby preventing the occurrence of512

EADs.513

For a more detailed analysis, we calculated the absolute val-514

ues of the inward and outward ionic currents. Since dV/dt =515

−(Iion), these values directly influence the rate of change of516

the membrane potential. Figure 14(a) illustrates the ionic cur-517

rent magnitudes in the vicinity of the decrease in ICaL from518

Fig. 13(c). The figure indicates that the outward currents (rep-519

resented by red curves, primarily IKr, IKs, IK1, INaK , and IKb)520

for both control and no control cases remain nearly identical521

until t = 12760. In contrast, the inward currents (shown by522

black curves, mainly INaCass , INaCai , and ICaL) in the control523

case peak at t ≃ 12720 (highlighted with an ellipse) and sub-524

sequently decline due to the reduction in [Ca]nsr. In the no525

control case, the inward and outward currents become equal at526

t ≃ 12780 (marked with a green circle). This crossover signi-527

fies a change in the slope of the membrane potential waveform528

from negative to positive, indicating the onset of EAD.529

We also presented the main inward and outward currents530

during the same time interval in Figs. 14(b) and 14(c), respec-531

tively. In Fig. 14(b), ICaL under control conditions shows a532
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Figure 9. Time series of the membrane potential V in Fig. 8(a) for gKr = 0.4. We observe a transition from repolarization failure to no EADs
through several EAD states.
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Figure 10. Time series for different initial values of [Ca]nsr at gKr =
0.36. Red dots indicate occurrence of EADs. Normal beat for gKr =
0.39 is shown in dotted green line for comparison.

peak at t ≃ 12720 (noted with an ellipse), corresponding to533

the maximum inward current depicted in Fig. 14(a). This peak534

contributes to the decrease in the membrane potential, which535

in turn activates the outward current IK1, represented by the536

dashed magenta curve in Fig. 14(c). Notably, in the control537

case, IK1 is the only outward current that increases signifi-538

cantly. This sharp IK1 drives the membrane potential back to539

its resting state, thus preventing the occurrence of EADs.540

Given the limited range for [Ca]nsr (approximately 1541

(mM)) and the challenges associated with controlling [Ca]nsr542

through pharmacological means, we investigated the depen-543

dence of [Ca]nsr on pacing cycle length (PCL) and all ionic544

currents. A decrease in INCX or an increase in ICaL signifi-545

cantly elevates [Ca]nsr to levels around 2–3 (mM). Interest-546

ingly, instead of reducing [Ca]nsr in Fig. 12 (a), increasing547

INCX does not eliminate EADs, whereas decreasing ICaL does.548

A detailed analysis of the underlying mechanisms for this dis-549

crepancy will be explored in future work.550
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Figure 11. 3D projection ([Ca]nsr, the deactivation gating variable
for IKs, membrane potential V ) of the different orbits from Fig. 10.
The stimulus forces the orbit to leave the slow-manifold, triggering
fast depolarization. The EADs are represented as fast rotations on the
fast-manifold of the fast subsystem. The different orbits are spatially
separated across small [Ca]nsr intervals.

VI. DISCUSSION AND CONCLUSION551

In this study, we investigated the dependence of early af-552

terdepolarizations (EADs) and repolarization failure on pa-553

rameter values in O’Hara’s realistic mathematical model of554

human ventricular myocytes. We focused on parameterizing555

[Ca]nsr (the calcium ion concentration in the network sar-556

coplasmic reticulum), which is the slowest variable in the557

system. Through an analysis of bifurcations in the [Ca]nsr-558

parameterized system, we identified the mechanisms underly-559

ing the generation of transient states, such as repolarization560

failure and ultra-long action potential duration (APD) in the561

original system. Specifically, we demonstrated that the ultra-562
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variable. Upper and lower black curves indicate [Ca]nsr for 2 EADs and normal, respectively. (d) Time series of the [Ca]nsr variable. Upper
and lower black curves indicate [Ca]nsr for repolarization failure and 0–1 EADs, respectively.
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at gKr = 0.39. Ionic current rates are almost the same for both cases in the gray region. (a) Membrane potential with EAD (no control). (b)
Normal membrane potential (control). (c) Ionic current rate (no control). (d) Ionic current rate (control).

long APD observed in the original model is due to a trajec-563

tory that follows the locus of a stable equilibrium point in the564

[Ca]nsr-parameterized system. Higher values of [Ca]nsr lead565

to longer APDs. Moreover, using the parameterized model566

enabled a fast-slow decomposition of the original system, pro-567

viding a dynamical systems perspective on the diverse behav-568

iors observed. In particular, it revealed that the repolarization569

failure state corresponds to a stable branch of the limit cycles570

(fast-manifold) in the [Ca]nsr-parameterized system. Addi-571

tionally, the EADs were shown to follow the fast-manifold572

of this parameterized system. The bifurcation analysis also573

highlighted the critical role of alternans formation (via period-574

doubling bifurcations in this case) in generating an infinite575

number of unstable periodic orbits through a period-doubling576
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Figure 14. Ionic currents near the activation of ICaL and IK1, as shown
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and without control in the same interval as (a). (c) Main outward
ionic currents with and without control in the same interval as (a).

cascade. This instability permits transient chaotic dynamics577

and the stabilization of multiple coexisting EAD states.578

It is important to note that other slow variables, such as the579

slow accumulation of [Na] or the slow recovery of IKs, may580

also contribute to the complex dynamics of EADs. Given the581

limited range of [Ca]nsr, these additional slow variables likely582

play a significant role, and exploring their influence will be583

part of our future research.584

We discovered numerous coexisting states, such as EADs,585

repolarization failure, and normal beats, which were catego-586

rized based on the value of [Ca]nsr. Leveraging this property,587

we proposed a method for controlling these states. By simply588

decreasing the value of [Ca]nsr in a 37-dimensional system589

of differential equations, we were able to transform EAD or590

repolarization failure behavior into a normal state. Our results591

indicate that this transformation occurs as follows: a reduction592

in [Ca]nsr also lowers calcium concentrations in the subspace,593

junctional SR, and myoplasmic compartments. These reduc-594

tions inhibit Na/Ca exchanger activity, as described in Ref. 53,595

leading to a decrease in Na/Ca exchange currents (INaCass and596

INaCai ). This, in turn, causes inactivation of the L-type cal-597

cium channels, resulting in a decrease in membrane potential.598

The lowered membrane potential then activates IK1, further599

reducing the potential to the resting state, thereby eliminating600

the EAD and restoring the normal rhythm.601

Previous studies40,54 have categorized EADs into two602

types: (1) secondary activation of the L-type calcium current603

during the plateau phase of the action potential, and (2) ac-604

tivation of the Na/Ca exchange current due to increased the605

calcium ion concentration in the myoplasmic compartment,606

following spontaneous calcium release from the SR during607

the late repolarization phase. Our research focused on EAD608

generation corresponding to type (1), while inhibiting EADs609

using the opposite mechanism described in type (2). We con-610

firmed that lowering the calcium ion concentration in vari-611

ous compartments (junctional SR, subspace, and myoplasmic612

compartments) also suppressed EAD generation. However,613

this reduction in [Ca]nsr further decreased membrane poten-614

tial, ultimately determining whether the system stabilized in615

an EAD state or returned to normal. Investigating EAD gen-616

eration under type (2) conditions and examining the effects of617

lowering [Ca]nsr in other mathematical models remain open618

areas of research. Additionally, understanding the relationship619

between calcium ion concentrations and delayed afterdepolar-620

izations will be a key focus in future studies.621

Our study has some limitations. First, while we found ev-622

idence suggesting a role for [Ca]nsr in EAD generation, it623

remains challenging to control [Ca]nsr precisely in experi-624

ments. Spencer et al.45 reported that action potential prolon-625

gation was sensitive to inhibition of Na/Ca exchange in ex-626

perimental settings. Since inhibiting Na/Ca exchange elevates627

[Ca]nsr, this suggests that the fundamental mechanism may628

be related to an increase in [Ca]nsr. Second, our investigation629

was limited to a single mathematical model. Further studies630

using additional models are necessary to confirm the role of631

[Ca]nsr in EAD generation. All these open questions will be632

addressed in our upcoming research.633
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