1 Fast-slow analysis and bifurcations in the generation of the early afterdepolarization phenomenon in a realistic mathematical human ³ ventricular myocyte model

Hiroyuki Kitajima, 1 Toru Yazawa, 1 and Roberto Barrio 2

1) ⁵ *Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi, Takamatsu, Kagawa,*

2) ⁷ *Departamento de Matemática Aplicada and IUMA. Computational Dynamics group. Universidad de Zaragoza. E-50009. Spain.*

⁸ (*Electronic mail: [rbarrio@unizar.es\)](mailto:rbarrio@unizar.es)

⁹ (*Electronic mail: [tryazawa@gmail.com\)](mailto:tryazawa@gmail.com)

¹⁰ (*Electronic mail: [kitajima.hiroyuki@kagawa-u.ac.jp\)](mailto:kitajima.hiroyuki@kagawa-u.ac.jp)

¹¹ (Dated: November 1, 2024)

⁶ *761-0396 Japan*

 Early afterdepolarizations (EADs) are spontaneous oscillations in membrane potential that occur during the repolariza- tion phase of the action potential. EADs can trigger ventricular arrhythmias, such as Torsades de Pointes, in patients ¹⁴ with long QT syndromes. Understanding the theoretical mechanisms behind EAD generation and developing strategies to suppress them are crucial. In this study, we employed bifurcation analysis along with a new fast-slow decomposition method on the O'Hara model of human ventricular myocytes. Our goal was to examine how the calcium ion concen- tration in the network sarcoplasmic reticulum (NSR) influences the generation of EADs in the context of reduced rapid delayed rectifier K^+ current. Our findings identified nine distinct EAD states that coexist and can be controlled by slight adjustments to the NSR calcium ion concentration at a single time point.

²⁰ *Keywords*: Early afterdepolarization, bifurcations, mathematical calcium ion concentration, mathematical ventricular ²¹ cardiomyocyte model, network sarcoplasmic reticulum

²² In diseases such as heart failure, early afterdepolariza-²³ tions (EADs) are recognized as a significant cause of lethal 24 ventricular arrhythmias. Despite extensive research, a ²⁵ deeper understanding of the mechanisms underlying EAD ²⁶ generation is still needed. Realistic computational models ²⁷ of cardiac electrical activity have made substantial con-28 tributions to studying these phenomena. While highly 54 ²⁸ detailed models, with numerous state variables, provide $\frac{5}{36}$ detailed models, with numerous state variables, provide ³⁰ a more accurate representation of experimental observa-31 tions and offer valuable biophysical insights, they tend to 32 be too complex for in-depth analysis. In this study, we in-33 vestigated the generation of EADs and repolarization fail-⁵⁹ 34 ure (persistent EAD oscillations) in the O'Hara model by 60 35 analyzing their dependence on various parameters. We ⁶¹ 36 parameterized [Ca]_{nsr} , the concentration of calcium ions ⁶² 37 in the network sarcoplasmic reticulum (NSR), which is the 63 38 slowest variable in the system. This allowed us to apply bi- 64 39 furcation analysis and utilize a fast-slow decomposition of ⁶⁵ 40 the original model, providing a dynamical systems expla-⁶⁶ 41 nation for the different observed dynamics. Through theo- 67 42 retical analysis, we explored the influence of NSR calcium 68 43 concentration and identified that the pathological states in ⁶⁹ 44 the original system could be explained by the bifurcations $\frac{70}{3}$ 45 in the parameterized model. We demonstrated the coex- 71 46 istence of multiple EADs and repolarization failure states, 72 47 showing that these anomalous states could be controlled 73 48 by adjusting the NSR calcium concentration at a single 74 ⁴⁹ time point.

⁵⁰ I. INTRODUCTION

Early afterdepolarizations (EADs) are spontaneous oscillations in membrane potential occurring during the repolarizing phase of the action potential. EADs can trigger ventricular $_{54}$ arrhythmias, such as Torsades de Pointes^{[1](#page-11-0)-3}, particularly in patients with long QT syndromes, which may lead to sudden death due to ventricular fibrillation. This study focuses on the theoretical analysis of EADs. Typically, EAD occurrence is associated with an increase in the L-type calcium current or a $_{59}$ decrease in potassium current^{[1,](#page-11-0)[4](#page-11-2)[–17](#page-11-3)}.

Investigating mathematical cardiac models is crucial for understanding the mechanisms behind EAD generation. Lowdimensional models have been analyzed using bifurcation ϵ ₆₃ theory and time-scale separation, or fast-slow analysis^{[18–](#page-11-4)[21](#page-11-5)}. These studies have shown that EADs can result from various dynamical systems phenomena, including Hopf and homo- 66 clinic bifurcations in mathematical models^{[22](#page-11-6)}, which have also 67 been observed in experiments^{[23](#page-11-7)}. Other mechanisms include 68 folded node singularities of the slow flow^{[19,](#page-11-8)[24,](#page-11-9)[25](#page-11-10)}, canards^{[25–](#page-11-10)[28](#page-11-11)}, ⁶⁹ period-doubling bifurcation cascades^{[29](#page-11-12)}, and delayed subcrit-⁷⁰ ical Hopf bifurcations^{[30](#page-11-13)}. Landaw and Qu developed an iterated map model that showed long-periodic solutions with alternating EAD and no-EAD episodes, caused by a Hopf 73 bifurcation in the discrete-time model^{[31](#page-11-14)}. While these lowdimensional models help clarify the mathematical mecha-⁷⁵ nisms of EAD generation from a dynamical systems perspec-⁷⁶ tive, high-dimensional models incorporating a wide range of 77 ionic currents are needed to explore the biological mecha-⁷⁸ nisms.

⁷⁹ Previous studies using detailed mathematical models have ⁸⁰ shown that EAD generation is associated with slow variables

4

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
E Publishing

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
Enblishing

 $\frac{1}{81}$ such as intracellular sodium ion concentration, as demon-136 tricular myocytes^{[50](#page-12-10)}. The membrane potential is governed by 82 strated by Krogh-Madsen and Christini^{[32](#page-11-15)}. Tsumoto et al. 83 studied the multi-stability of transient EADs^{[33](#page-11-16)} (short term137 84 EAD orbits before converging to another state), and Xie et 85 al. revealed that repeating EAD and no-EAD states exhibit¹³⁸ $_{86}$ hysteresis characteristics^{[34](#page-11-17)}. These phenomena's dependence 87 on system parameters has been examined through bifurcation as analysis^{[35](#page-11-18)}. Different models feature other slow variables, such 89 as intracellular potassium and calcium ion concentrations.¹⁴¹ 90 The intracellular potassium concentration, for example, may¹⁴² ⁹¹ drift over time without reaching a steady state^{[36](#page-11-19)}, so it is typi-92 cally fixed. The number of EADs has been linked to calcium¹⁴⁴ 93 ion concentrations in various compartments, including the¹⁴⁵ ⁹⁴ sarcoplasmic reticulum $(SR)^{37,38}$ $(SR)^{37,38}$ $(SR)^{37,38}$ $(SR)^{37,38}$, intracellular compartment^{[1](#page-11-0)}, ⁹⁵ junctional sarcoplasmic reticulum (JSR)^{[9,](#page-11-20)[39](#page-12-2)}, cytoplasm^{[2](#page-11-21)}, and ⁹⁶ network sarcoplasmic reticulum (NSR)^{[40](#page-12-3)}. However, these ⁹⁷ studies primarily focused on observations of these phenom- 148 ⁹⁸ ena.

⁹⁹ In this study, we aimed to investigate the effects of cal-100 cium ion concentrations on EAD generation —specifically the¹⁵⁰ ¹⁰¹ number of EADs— using bifurcation theory. We sought to 102 provide a theoretical explanation for the observed phenom-151 103 ena. Previous studies^{[41](#page-12-4)[,42](#page-12-5)} have shown that bifurcations in the 104 Luo-Rudy 3D model and the 27D model by Sato et al. lead to153 105 the creation of the first EAD, but a more detailed bifurcation¹⁵⁴ ¹⁰⁶ analysis of the 27D model is required. Thus, the main objec-107 tive of this article is to conduct a comprehensive bifurcation¹⁵⁶ ¹⁰⁸ analysis in a realistic cardiomyocyte model.

¹⁰⁹ Our analysis revealed that a higher concentration of calcium 110 ions in the NSR promotes the formation of more EADs or¹⁵⁹ 111 small oscillations. We demonstrated the coexistence of mul-160 112 tiple EAD states and showed that these states could be con-161 $_{113}$ trolled —transitioning to fewer EADs— by adjusting the NSR¹⁶² ¹¹⁴ calcium ion concentration. By examining ionic currents dur-¹¹⁵ ing this transition, we found that increasing the inward rec-¹¹⁶ tifier potassium current suppressed EADs, while increasing 117 the outward calcium current through the L-type channel pro-¹¹⁸ moted them. Additionally, we clarified that the ultra-long ac-¹¹⁹ tion potential duration (APD) and related fibrillation observed $_{120}$ in experiments^{[39,](#page-12-2)[43](#page-12-6)[–47](#page-12-7)} and simulations^{[4,](#page-11-2)39,[48,](#page-12-8)[49](#page-12-9)} were driven by ¹²¹ elevated NSR calcium concentrations. These findings may ¹²² provide new theoretical insights or practical approaches for ¹²³ controlling EAD generation.

 This article is structured as follows: Section [II](#page-1-0) provides a brief description of the O'Hara mathematical model for the human ventricular myocyte. In Section [III,](#page-2-0) we introduce the 127 parameterized model and analyze its dynamics. Section [IV](#page-5-0) compares both models using a fast-slow decomposition ap-129 proach. In Section [V,](#page-6-0) we propose a simple control mechanism to mitigate EADs. Finally, Section [VI](#page-8-0) offers a discussion and our conclusions.

132 II. O'HARA HUMAN VENTRICULAR CARDIOMYOCYTE ¹³³ MODEL

¹³⁴ The O'Hara model is a realistic mathematical model that ¹³⁵ describes the electrophysiological mechanisms of human ven-

$$
C\frac{dV}{dt} = -(I_{\text{Na}} + I_{\text{NaK}} + I_{\text{CaL}} + I_{\text{CaNa}} + I_{\text{CaK}} + I_{\text{NaCa}_i}
$$

+
$$
I_{\text{NaCa}_{ss}} + I_{\text{NaCa}} + I_{\text{Ks}} + I_{\text{Kr}} + I_{\text{K1}} + I_{\text{ro}}
$$

+
$$
I_{\text{Nab}} + I_{\text{Cab}} + I_{\text{Kb}} + I_{\text{pCa}} + I_{\text{sti}}),
$$
 (1)

where *V* (mV) represents the membrane potential, $C(\mu F)$ is the cell membrane capacitance, and I_i (μ A/ μ F) represents the $\frac{1}{4}$ ionic currents, excluding the stimulus pulse current I_{sti} , which has an amplitude of 60 ($\mu A/\mu F$), a duration of 1 (ms), and a $_{144}$ period of 2000 (ms). Table 1^{50} 1^{50} 1^{50} provides a list of all ionic currents included in this model.

Some ionic currents have the following form

$$
I_j = g_j \cdot y_{g_1}^{m_1} y_{g_2}^{m_2} y_{g_3}^{m_3} \cdot (V - E_j),
$$

where g_j is the maximum conductance and E_j is the reversal potentials for ion *j*. The gating variables y_g are given by

$$
\frac{dy_g}{dt} = \frac{y_{\infty,g} - y_g}{\tau_{y_g}}
$$

where τ_{y_g} and $y_{\infty,g}$ are time constant and the value of y_g in the steady state, respectively. The O'Hara model includes 29 gating variables and is described by a system of 41-dimensional ordinary differential equations (see Ref. [50](#page-12-10) for the full model equations). We fixed the sodium and potassium ion concentrations at 8.0 (mM) and 140.0 (mM), respectively, reducing ¹⁵⁷ the model to 37 dimensions. It is known that EADs can be induced by blocking I_{Kr} during slow pacing, so we selected the I_{Kr} multiplier as a control parameter. The typical maximum conductance of I_{Kr} is 0.0368, and we varied g_{Kr} (0 to ¹⁶¹ 100%) as the control parameter. All other parameters were set $_{162}$ to their normal values^{[50](#page-12-10)}.

Table I. Ionic currents in O'Hara model

Abbreviation	Ionic current
I _{Na}	$Na+ current$
$I_{\rm NaK}$	Na^{+}/K^{+} ATPase current
$I_{\rm{Cal}}$	Ca^{2+} current through the L-type Ca^{2+} channel
$I_{\rm CaNa}$	$Na+ current through the L-type Ca2+ channel$
$I_{\rm CaK}$	K^+ current through the L-type Ca ²⁺ channel
$I_{\mathrm{NaCa}_{i}}$	myoplasmic component of Na^{+}/Ca^{2+} exchange current
$I_{\text{NaCa}_{ss}}$	subspace component of Na^{+}/Ca^{2+} exchange current
I_{NaCa}	total Na ⁺ /Ca ²⁺ exchange current
$I_{\rm Ks}$	slow delayed rectifier K^+ current
$I_{\rm Kr}$	rapid delayed rectifier K^+ current
$\overline{I_{K1}}$	inward rectifier K^+ current
$I_{\rm to}$	transient outward K^+ current
I_{Nab}	$Na+$ background current
$I_{\rm Cab}$	$Ca2+$ background current
$I_{\rm Kb}$	K^+ background current
I_{pCa}	sarcolemmal Ca^{2+} pump current

¹⁶³ It is worth noting that while more detailed models exist in the literature, the O'Hara model offers valuable insights into the realistic dynamics of human ventricular myocytes.

17 December 2024 12:51:35

17 December 2024 12:51:35

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE ARTICLE AS CITE THIS ARTICLE AS DOI: 1

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

AIP
E Publishing

166 In this study, all numerical continuation analyses of bifurca-221 tions, both for equilibria and periodic orbits, were conducted using specialized software described in Ref. [51.](#page-12-11) This soft-169 ware is particularly suited for continuation studies in high-224 dimensional systems. It employs standard continuation tech- $_{225}$ $_{171}$ niques and also facilitates stability analysis of equilibria and₂₂₆ periodic orbits through the calculation of eigenvalues of the $_{227}$ Jacobian matrix and the Floquet multipliers, respectively.

174 III. PARAMETERIZED MODEL AND DYNAMICS

 175 To investigate the mechanisms behind the generation of²³² 176 EADs in the O'Hara model, we initially attempted to apply 177 the same approach used in recent studies on low-dimensional²³⁴ 178 models, which employed a fast-slow decomposition of the 236
nodels, which employed a fast-slow decomposition of the 236 179 system's dynamics. In these studies, various 3D or 4D car- $_{180}$ $_{180}$ $_{180}$ diomyocyte models were examined^{18-21,24-[28](#page-11-11)}, where slow ¹⁸¹ variables were easily identifiable.

 Fast-slow decomposition has proven to be an effective method for studying the bifurcation origins of EADs in low- dimensional systems. For example, Ref. [41](#page-12-4) established a link between numerical simulations in a realistic model and the fast-slow decomposition of a low-dimensional model (the 3D 187 Luo-Rudy model). However, it remains unclear whether this decomposition remains valid in a realistic high-dimensional model, as obtaining such a decomposition presents significant computational challenges. In this paper, we aim to address this issue by investigating whether the assumptions made in the literature hold in a realistic model. Our focus is on de- veloping an approach that allows us to perform a fast-slow decomposition in a highly complex system.

 Since we are dealing with a high-dimensional problem, our 6 approach differs from those used in previous studies^{19[,24](#page-11-9)-28} on 197 low-dimensional models with small explicit parameters. We begin by identifying the slowest variable in the absence of a 199 stimulus, then fix that variable to create two models: the orig- inal model and a modified version with the slowest variable held constant (the limiting case). The primary reasoning is that the stimulus induces rapid depolarization, after which the system's dynamics are governed by the behavior without the stimulus. This observation allows us to approximate the fast subsystem by treating the slowest variable as constant and re- moving the stimulus to focus on the model's internal dynam-₂₀₇ ics. Given the high dimensionality of the reduced model (36^o) $_{208}$ variables), it is crucial to examine its bifurcations and under- $_{228}^{238}$ stand how they organize the dynamics of the original prob- lem. This approach mirrors those used in low-dimensional $\frac{240}{241}$ $_{211}$ models^{[19](#page-11-8)[,24](#page-11-9)[–28](#page-11-11)}. 237

 212 As a first step, we examined the convergence speed of 243 212 and a model variables in the O'Hara model without a stimulus $\frac{242}{244}$ ²¹⁴ $(I_{sti} = 0)$. We present the results for the two slowest variables,
²¹⁵ [Cal_{lnst} (calcium ion concentration in the network sarcoplas- $[\text{Cal}]_{\text{nsr}}$ (calcium ion concentration in the network sarcoplas-216 mic reticulum) and $\left[\text{Cal}\right]_{\text{JST}}$ (calcium ion concentration in the $_{247}^{240}$ $_{217}$ junctional sarcoplasmic reticulum), in Fig. [1\(](#page-2-1)a). The verti- $_{248}$ 218 cal axis shows the difference between the previous time point $_{249}$ ²¹⁹ ([Ca]^{*i*}₁(n,j}sr) and the current time point ([Ca]^{*i*}_{{n,j}sr}) during 220 numerical integration with a fixed step size of $1/256$ ms. Note 251

that all state variables converge to an equilibrium point for the chosen parameter values, causing these differences to approach zero.

We found that [Ca]_{nsr} and [Ca]_{isr} exhibited the slowest dynamics. Therefore, to determine which variable to fix, we considered two cases, fixing either $[Ca]_{nsr}$ or $[Ca]_{isr}$, and checked the convergence speed in each case. Figure $1(b)$ 228 shows that the speed was significantly improved when [Cal_{nsr} 229 was fixed, due to the fact that the slow dynamics of [Cal_{nsr} affect the convergence speed of $\left[Ca\right]_{\text{isr}}$. As a result, we cre-²³¹ ated a new system, referred to as the [Ca]nsr-*parameterized system*, where [Ca]_{nsr} is treated as a parameter and $I_{\text{sti}} = 0$ (no stimulus).

As discussed, this reduced model will serve as the fast subsystem, with the fixed variable $[Ca]_{nsr}$ acting as a bifurcation parameter to study the fast-slow decomposition.

Figure 1. Convergence of state variables to equilibrium point at $g_{\text{Kr}} = 1.0$. (a) Top two slowest variables in original system. (b) Slowest state variable in [Ca]nsr-parameterized system and in [Ca]_{isr}-parameterized system.

 $_{239}$ Once we derive a slightly simplified model, the [Calnsr] parameterized system, we can apply bifurcation analysis tech-niques using the methods and software outlined in Ref. [51.](#page-12-11) ²⁴² Despite the fact that this simplified model still comprises 36 variables, making it highly dimensional and complex, it can be viewed as the fast subsystem of the original model, allowing for comparison between the two systems through standard fast-slow analysis.

In Fig. [2,](#page-3-0) we show a subcritical Hopf bifurcation curve on the parameter plane of a specific equilibrium. We also identify the main bifurcations of the unstable limit cycles that arise from this Hopf bifurcation. Firstly, these cycles undergo a *Fold* bifurcation, giving rise to stable limit cycles. Subse-

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
E Publishing

 quently, they experience a sequence of *period-doubling* (PD) bifurcations. Notably, a large region of the parameter plane contains at least one stable equilibrium, while in some areas, stable and unstable limit cycles coexist.

256 The stable equilibrium point (approximately at $V = -12$ ²⁸⁴ (mV)) is present throughout all shaded regions following the 255 subcritical Hopf bifurcation. Between the Hopf and Fold bi- furcations, an unstable limit cycle exists, and after the Fold bi- furcation, a small-amplitude stable limit cycle appears and ex-²⁶¹ ists in the region between Fold and period-doubling (PD) bi-₂₈₉ furcations, coexisting with the unstable limit cycle. Following 290 the period-doubling bifurcation, additional period-doublings $_{291}$ occur, leading to a cascade of bifurcations and chaotic dy-265 namics. More details on these bifurcations are discussed in the₂₉₃ ²⁶⁶ following section. We emphasize that this description pertains₂₉₄ $_{267}$ to the dynamics of the parameterized model, where [Ca]_{NST} is₂₉₅ fixed and no external stimulus is applied.

Figure 2. Two-parameter bifurcation diagram (g_{Kr} , [Ca]_{nsr}) in the³²⁰ [Ca]_{nsr-parameterized} system. Hopf bifurcation of an equilibrium³²¹ point, and period-doubling (PD) and Fold bifurcations of limit cycles are present. A stable equilibrium point is observed in a large region, and stable and unstable limit cycles created at the Hopf bifurcation₃₂₄ are observed in dark gray and light gray regions, respectively.

269 The key question is: what are the dynamics of the original³²⁷ 270 O'Hara model, and how do they relate to those observed in the 328 271 parameterized model? Figure [3\(](#page-4-0)a) presents a one-parameter³²⁹ 272 bifurcation diagram for the original system, where $[Cal]$ nsr³³⁰ ²⁷³ is now a variable of the model. The vertical axis shows the $_{274}$ [Ca]_{nsr} values at intervals of 2000 (ms) (i.e. Poincaré map-332 ²⁷⁵ ping) for different steady states, such as repolarization failure, ²⁷⁶ EADs, and normal behavior. Additionally, it highlights the re-277 gion where transient EADs occur—EADs that disappear after₃₃₅ ²⁷⁸ a convergence process— when *gKr* exceeds 0.4.

²⁷⁹ The figure also includes the bifurcation sets calculated for

the [Ca]_{nsr}-parameterized system, previously presented in Fig. [2.](#page-3-0) Notably, the region containing transient EADs, repolarization failure (persistent EAD oscillations), and EADs lies ²⁸³ within the region of limit cycles in the parameterized system. Furthermore, the upper boundary of orbits with EADs is precisely defined by the period-doubling bifurcation curve of the limit cycles in the parameterized model, while repolarization failure occurs within the stable limit cycle region, between the Fold and period-doubling bifurcation curves.

These observations are important for two key reasons. First, the parameterized system approach allows us to clearly delineate the regions of interest, as all orbits with EADs and repolarization failure are accurately bounded by the bifurcations in the parameterized model. Moreover, this approach enables the use of fast-slow decomposition techniques, as detailed in the next section. Second, it underscores the significant connection ²⁹⁶ between the generation of EADs and the prior development of ²⁹⁷ alternans, in this case through period-doubling bifurcations. ²⁹⁸ This relationship has been demonstrated in both experiments $_{299}$ and numerical simulations^{[41](#page-12-4)[,52](#page-12-12)}, but explicit bifurcation analy-³⁰⁰ sis in high-dimensional models has been lacking, despite be- $_{301}$ ing conjectured in both low- and high-dimensional models^{[42](#page-12-5)}.

 An enlarged and superimposed diagram of a section from Fig. [3\(](#page-4-0)a) is shown in Fig. [3\(](#page-4-0)b). Within a narrow parame t_{304} ter range of g_{Kr} , we observe multiple stable states, including repolarization failure, 16 types of EADs, and normal states. The stable repolarization failure in the original system occurs within the region where stable limit cycles are found in the 308 [Ca]_{nsr}-parameterized system.

In this context, the notation $m^k - n^s$ represents sequences of *k* ³¹⁰ successive *m* EADs followed by *s* successive *n* EADs, where ³¹¹ *m* and *n* indicate the number of EADs within a 2000 (ms) ³¹² period (one action potential). In our simulations, up to ten ³¹³ states were found to coexist simultaneously. It is worth not-³¹⁴ ing that detecting coexisting states in such a high-dimensional ³¹⁵ system is challenging due to their strong dependence on initial $\frac{1}{1.0^{317}}$ conditions and the complexity of the initial condition space.
 $\frac{1.0^{317}}{1.0^{317}}$ contract to the initial value of $\frac{1}{1.0^{317}}$ contract to the initial value of $\frac{1}{1.0^{317}}$ Our approach involved using a large initial value of $[Cal_{nsr}]$ 318 (since higher [Ca]_{nSr} was found to promote more EADs, as shown later) at a fixed g_{Kr} , and we confirmed convergence to a specific state —whether it be repolarization failure, EADs, or normal. Once an attractor was found for a given g_{Kr} , we used it as the initial condition for a slightly adjusted g_{Kr} . Repeating this process allowed us to discover a wide range of stable states in the desired parameter region, and we estimate ³²⁵ that, in most cases, we were able to capture all coexisting at-³²⁶ tractors. In Fig. [3\(](#page-4-0)b), we observe that the region of unstable limit cycles in the parameterized system encompasses all orbits with EADs, while repolarization failure occurs within the stable limit cycle region. Fast-slow analysis will provide further insight into this phenomenon.

Is there any ordering in the orbits with EADs? The answer is, of course, yes. In Fig. $3(b)$, we highlight several pathways among the EAD orbits, indicated by arrows and circles. For example, the main route leading to repolarization failure is on the left side, progressing from a normal beat (denoted by the 0) pattern) to infinity, following the sequence ∞ via $0 \to 0^m-1 \to$ $0-1 \rightarrow 0-2 \rightarrow 0-n \rightarrow \infty$. The corresponding waveforms of ORIGINAL MODEL

 7.0 (mM)

An Interdisciplinary Journal of Nonlinear Science Chaos

AIP
E Publishing

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

Figure 3. (a) One-parameter bifurcation diagram in the original system. The bifurcations curves from the parameterized system (Fig. [2\)](#page-3-0) are shown for comparison. The values of $[Ca]_{\text{nsr}}$ every 2000 (ms), i.e. Poincaré mapping, show EADs (blue), repolarization failure (red), and normal (green) behavior. Transient EADs are also observed. The upper limit of its existence corresponds to a perioddoubling bifurcation curve (dotted curve) from the parameterized system. (b) A magnification of the EAD-repolarization failure region. 16 kinds of EADs, repolarization failure, and normal states coexist in the original system. Several transition routes between different EAD patterns are highlighted (see text for details).

³³⁸ the membrane potentials for some of these attractors, depicted 339 in Fig. [3\(](#page-4-0)b), are shown in Figs. [4\(](#page-4-1)a) to (e). Additionally, there 340 are intermediate symbolic dynamics, such as the route from $_{341}$ 0 to 1 via 0–1^{*l*}, from 1 to 2 via 1–2^{*l*}. More complex cases 342 also arise, such as transitions of the form $0-2-1-2$, and other ³⁴³ variations. Below, in Fig. [5,](#page-5-1) we present examples of patterns 344 with these more intricate symbolic representations.

Figure 4. Membrane potential waveforms. EADs are indicated by red dots at the onset to distinguish them from the stimuli. (a) Normal at $g_{Kr} = 0.42$.(b) 1 EAD at $g_{Kr} = 0.36$. (c) 1–2 EADs at $g_{Kr} = 0.36$. (d) 0–3 EADs at $g_{Kr} = 0.32$. (e) Repolarization failure (persistent EAD oscillations) at $g_{Kr} = 0.36$.

An Interdisciplinary Journal of Nonlinear Science Chaos

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
E Publishing

Figure 5. Complex membrane potential waveforms with several $_{379}$ EAD rates. (a) EAD pattern 0^{16} –1 with rate 0.058 at $g_{Kr} = 0.38$. (b) EAD pattern 0^7-1-0^5-1 with rate 0.14 at $g_{Kr} = 0.37$. (c) EAD $_{381}$ pattern $(0^4-1)^2-0^2-1$ with rate 0.23 at $g_{Kr} = 0.365$.

Figure 6. EAD rate calculated after $n = 1000$ APs (EAD rate = num-397) ber EADs/number APs).

 $_{345}$ To explain the transition from the 0^m -1 state to 0–1 state $_{400}$ 346 in Fig. [3\(](#page-4-0)b), we defined the EAD rate as the number of 401 347 EADs divided by the number of action potentials (consider-402) $_{348}$ ing $n = 1000$ action potentials). Figure [6](#page-5-2) illustrates the EAD₄₀₃ rate between $g_{Kr} = 0.35$ and 0.39. In the 0^m-1 state from 404 $_{350}$ Fig. [3\(](#page-4-0)b), we observe a transition from an EAD rate of 0 (nor-405) ³⁵¹ mal) to 0.23, revealing the so-called cardiac devil's staircase

 structure^{[41](#page-12-4)[,42](#page-12-5)}. This staircase curve reflects how the EAD rate increases step by step. The mechanism driving the discontin-³⁵⁴ uous transitions from $0^m - 1$ to $0² - 1$, and from $0² - 1$ to $0⁻¹$, is based on the presence of intermediate complex patterns that facilitate the switch between different states. For a detailed ex- planation of this transition in the devil's staircase for another cardiomyocyte model, see Ref. [41.](#page-12-4) More complex membrane potential waveforms with varying EAD ratios are presented in ³⁶⁰ Fig. [5.](#page-5-1)

 We observe that intermediate complex patterns can coexist, leading to transient or stable chaotic dynamics over a narrow range of parameters. By using the EAD rate, we can more easily classify these patterns. For instance, the 0–4, 1–3, and 2 EAD patterns in Fig. [3\(](#page-4-0)b) all share the same EAD rate of 2 and are nearly aligned along the same line. This highlights the intricate structure of the periodic orbits with EADs and, more 368 importantly, shows that they are confined to specific regions in the one-parameter diagram. The different coexisting periodic orbits occupy distinct ranges of the $\lbrack Ca\rbrack_{\rm nsr}$ variable.

371 IV. PARAMETERIZED AND ORIGINAL MODEL: 372 FAST-SLOW DECOMPOSITION

 373 In Fig. [3,](#page-4-0) we observed how the bifurcations in the pa-³⁷⁴ rameterized model delineate certain dynamics of the original 375 model. This makes it worthwhile to explore the spatial posi-376 tion of the orbits in the original system relative to the parame-377 terized model in greater detail. To do so, we computed various 378 bifurcation sets for the [Ca]_{nSr}-parameterized model at a fixed value of g_{Kr} . We then generated one-parameter bifurcation diagrams, using the voltage variable V as the vertical axis, and superimposed some of the orbits from the original model onto ³⁸² these diagrams.

 In Fig. [7,](#page-6-1) we present a one-parameter bifurcation diagram for the parameterized model in the ([Ca]nsr, *V*) plane for $g_{Kr} = 0.38$, highlighting the manifold of equilibria in green and marking the subcritical Hopf bifurcation point. The heavy black curves represent the limit cycles, with the maximum and minimum membrane potential *V* values of the cycles shown. Solid curves indicate stable invariants, while dashed curves indicate unstable ones. The manifold of equilibria forms the slow manifold of the fast subsystem of the original model, which is represented by the parameterized model (with the slowest variable fixed). The fast-manifold of the fast sub- system is made up of the limit cycles of the parameterized system. This fast-manifold takes on a "Mexican hat" shape, consisting of both unstable and stable sheets (we provide a schematic of this surface configuration). The stable branches of the limit cycles undergo period-doubling bifurcations, re- sulting in a period-doubling cascade that leads to chaotic behavior. It is important to note that this chaotic behavior forms the core mechanism behind the generation of highly complex dynamics in the original model.

> Figures [8\(](#page-7-0)a) and 8(b) show one-parameter bifurcation diagrams for the [Cal_{nsr} -parameterized system at $g_{Kr} = 0.4$ and $g_{Kr} = 0.38$, respectively. In the $g_{Kr} = 0.4$ case, we superimposed a trajectory (thin gray) and an attractor (cyan) from the

17 December 2024 12:51:35

17 December 2024 12:51:35

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE ARTICLE AS CITE THIS ARTICLE AS DOI: 1

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

AIP
E Publishing

Figure 7. One-parameter bifurcation diagram for $g_{Kr} = 0.38$ (green: equilibrium point (EQ), heavy black curves: limit cycle (LC), solid curves: stable, and dashed curve: unstable) in the [Ca]nsrparameterized system. The maximum and minimum membrane po-455 tential of repolarization failure in the original system corresponds to LC $_{\text{max}}$ and LC $_{\text{min}}$ in the [Ca]_{nsr}-parameterized system. The⁴⁵⁷ fast-slow decomposition of the parameterized system permits to describe the slow-manifold of equilibria and the fast-manifold of the₄₅₉ limit cycles. The fast-manifold has a 'Mexican hat' shape with un-₄₆₀ stable and stable sheets. The stable branches of limit cycles meet $_{461}$ period-doubling bifurcations, leading to a period-doubling cascade₄₆₂ into chaotic behavior.

407 original system. The waveform of this trajectory's membrane⁴⁶⁵ 408 potential is shown in Fig. [9.](#page-8-1) For $g_{Kr} = 0.38$, we superimposed⁴⁶⁶ ⁴⁰⁹ several attractors (cyan, blue, and red).

410 In Fig. [8\(](#page-7-0)a), the trajectory exhibits ultra-long action po-⁴⁶⁸ 411 tential duration (APD), repolarization failure, transient states⁴⁶⁹ 412 with $2-3$ EADs, $1-2$ EADs, 1 EAD, and eventually a nor-⁴⁷⁰ 413 mal beat as the steady state. The repolarization failure in⁴⁷¹ 414 the original system corresponds to the stable limit cycle in⁴⁷² 415 the [Ca]_{nsr}-parameterized system, and the long APD results^{473} 416 from the trajectory following the path of the stable equilib- 474 ⁴¹⁷ rium point in the parameterized system. Additionally, tran-⁴⁷⁵ 418 sient EADs are observed between the values of [Cal_{BST} asso- 476 ⁴¹⁹ ciated with the normal and repolarization failure states.

420 The fast-slow decomposition effectively describes the or-⁴⁷⁸ ⁴²¹ bit dynamics, particularly the stable periodic orbit of the nor-⁴²² mal beat. In this scenario, the orbit remains in quiescence 423 on the slow manifold of equilibrium EQ_2 until a stimulus de-⁴⁷⁹ ⁴²⁴ polarizes the cell, sending the orbit to the upper branch of ⁴²⁵ the fast-manifold, after which repolarization occurs, restarting ⁴⁸⁰ 426 the process. As g_{Kr} decreases, these transient EADs become₄₈₁ 427 locked into multiple stable EADs, as seen in Fig. [8\(](#page-7-0)b). This is 482 ⁴²⁸ significant because, at lower *gKr* values, numerous coexisting 429 patterns with different numbers of EADs appear depending484

430 on the initial conditions of the $[Ca]_{\text{nsr}}$ variable in the original 431 model. In the parameterized model, there is a multitude of un- stable periodic orbits generated by a period-doubling cascade. The presence of such orbits can give rise to multiple coexist- ing stable periodic orbits if they are stabilized in the original system, as happens at lower *gKr* values.

 $_{436}$ By varying [Ca]_{nsr}, we navigate along the fast-manifold ⁴³⁷ of the parameterized model. In Fig. [8\(](#page-7-0)b), we see that on the 438 left side, where $\text{[Ca]}_{\text{nsr}} \simeq 1.7 \text{mM}$, the EAD orbit exhibits a 10^m-1 signature, closely resembling the normal beat. How- 440 ever, as $\lbrack \text{Cal}_{\text{nsr}}\rbrack$ increases, the stable orbits shift along the ⁴⁴¹ fast-manifold, resulting in the emergence of additional EADs ⁴⁴² generated by the fast loops on the attracting sheets of the ⁴⁴³ manifold. Notably, the normal beat transitions from the slow 444 manifold to the fast-manifold, with EADs being generated on ⁴⁴⁵ smaller loops within the fast-manifold. In the limiting case, ⁴⁴⁶ the stable orbit remains entirely on the stable branch of the ⁴⁴⁷ fast-manifold, without descending to the slow manifold. This ⁴⁴⁸ condition leads to repolarization failure, as the rapid oscillations inhibit the cell from returning to its original resting state. Fig. [8\(](#page-7-0)b) clearly illustrates this phenomenon, demonstrating ⁴⁵¹ how the parameterized study effectively delineates the region of repolarization failure and its bifurcation origins. In this sce-⁴⁵³ nario, although the action potential (AP) is present, it fails to fully repolarize the cell. As g_{Kr} increases, stabilized periodic ⁴⁵⁵ orbits disappear, leaving the normal beat as the only stable state. However, a variety of transient dynamics may still occur due to the presence of unstable periodic orbits, as shown in Fig. [8\(](#page-7-0)a). This combination of using both the original and parameterized systems has provided valuable insights into this high-dimensional problem.

From Figs. [3\(](#page-4-0)b) and [8\(](#page-7-0)b), we observe that higher $[Ca]_{\text{nsr}}$ levels promote an increased EAD rate. To illustrate this ef-463 fect, we present waveforms at $g_{Kr} = 0.36$, where repolariza-⁴⁶⁴ tion failure coexists with six distinct EAD types, as shown in Fig. [10.](#page-8-2) For comparison, we also include a normal state at $g_{Kr} = 0.39$. Additionally, in Fig. [11,](#page-8-3) we plot the different orbits in a 3D spatial representation of the variables ($[Ca]_{\text{nsr}}$, the deactivation gating variable for I_{Ks} , and membrane potential *V*). This figure highlights the role of fast-slow decomposition: the EADs manifest as rapid rotations on the fast-manifold of the fast subsystem, while the stimulus (applied at the red dot corresponding to the normal beat orbit) compels the orbit to transition from the slow manifold, characterized by quiescent dynamics, to a fast depolarization. We note, as clearly illustrated in Figs. $3(b)$, $8(b)$, [10](#page-8-2) and [11,](#page-8-3) that each EAD state is organized by the value of $[Ca]_{nsr}$, since this variable is the slowest in the original system, maintaining a narrow range for each pattern.

V. BASIC CONTROL APPROACH

As demonstrated in previous sections, higher $[Ca]_{\text{nsr}}$ levels promote the occurrence of more EADs or small oscillations. Leveraging this characteristic, along with the observation that different patterns are located within narrow ranges of the $\lbrack Ca\rbrack_{\rm nsr}$ variable, we aimed to control the states by adjust-

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
E Publishing

Figure 8. One-parameter bifurcation diagram (green: equilibrium point (EQ), heavy black curves: limit cycle (LC), solid curves: stable, and dashed curve: unstable) in the [Ca]_{nsr-}parameterized system. Maximum and minimum membrane potential of repolarization failure in original system corresponds to LC_{max} and LC_{min} in the [Ca]nsr-parameterized system. (a) Case $g_{Kr} = 0.4$. Thin gray curve shows a trajectory starting from square point (close to *EQ*² curve) in the original system. Cyan curve represents attractor corresponding to normal state in the original system. This trajectory converges to the attractor orbit via ultra-long APD, repolarization failure, and EADs as transient states. Transient EADs are observed in the region shown by red arrows. (b) Case $g_{Kr} = 0.38$. Blue, cyan and red curves indicate different coexisting attracting orbits in the original system. Stable 0*m*–1, 1–2, 2, 2–3 EADs and repolarization failure orbits coexist in the original system. Repolarization failure in the original system corresponds to a stable oscillatory solution in the fast-manifold of the $[Ca]_{\text{nsr}}$ -parameterized system, leading to persistent EAD oscillations.

485 ing the value of $[Ca]_{\text{nsr}}$ at a single time point.

486 The results of this straightforward strategy are presented⁵¹⁰ 487 in Fig. [12.](#page-9-0) Figures [12\(](#page-9-0)a) and 12(b) show the waveforms of⁵¹¹ 488 the membrane potential, while Figs. [12\(](#page-9-0)c) and 12(d) illus- 512 489 trate the corresponding [Ca]_{nsr} dynamics. The initial states⁵¹³ ⁴⁹⁰ corresponded to the converged values of a 2 EADs state 491 for Figs. [12\(](#page-9-0)a) and 2(c), and to repolarization failure for₅₁₅ 492 Figs. [12\(](#page-9-0)b) and 12(d). Notably, we only decreased the value of 516 493 the [Cal_{nsr} variable at a single time point, $t = 12500$, within a₅₁₇ ⁴⁹⁴ 37-dimensional system of differential equations. As a result, 495 the membrane potential transitioned to a new stable state, pro-519 496 ducing fewer EAD states —specifically, a normal state and as20 497 0 – 1 EAD state in Figs. [12\(](#page-9-0)a) and 12(b), respectively.

498 To elucidate the control mechanism, we calculated all the⁵²² 499 ionic currents following the change in the [Ca]_{nsr} value. Fig-⁵²³ 500 ure [13](#page-9-1) displays the membrane potential alongside the ionic⁵²⁴ 501 current rates, defined as each ionic current divided by the total⁵²⁵ 502 ionic current. The effects after the [Ca]nsr jump (Figs. [13\(](#page-9-1)b)⁵²⁶ 503 and [13\(](#page-9-1)d), referred to as "control") are compared with the con-⁵²⁷ 504 ditions without the jump (Figs. [13\(](#page-9-1)a) and 13(c), referred to⁵²⁸ 505 as "no control"). After $t = 12700$, the dominant ionic cur-⁵²⁹ 506 rents observed are I_{Cal} (Fig. [13\(](#page-9-1)c)) and I_{K1} (Fig. 13(d)). In₅₃₀ F_{507} Fig. [13\(](#page-9-1)c), I_{K1} remains inactive while I_{Cal} becomes predomi-531 $_{508}$ nant after $t = 12800$, leading to the emergence of the EAD, ass $_{32}$

⁵⁰⁹ indicated by the arrow in Fig. [13\(](#page-9-1)a). Conversely, in Fig. [13\(](#page-9-1)d), I_{Cal} is inactive, and I_{K1} becomes active, resulting in the membrane potential returning to the resting state (indicated by the arrow in Fig. $13(b)$), thereby preventing the occurrence of EADs.

For a more detailed analysis, we calculated the absolute values of the inward and outward ionic currents. Since $dV/dt =$ ⁵¹⁶ −(*Iion*), these values directly influence the rate of change of the membrane potential. Figure $14(a)$ illustrates the ionic cur-⁵¹⁸ rent magnitudes in the vicinity of the decrease in *ICaL* from Fig. $13(c)$. The figure indicates that the outward currents (represented by red curves, primarily I_{Kr} , I_{Ks} , I_{K1} , I_{NaK} , and I_{Kb}) ⁵²¹ for both control and no control cases remain nearly identical until $t = 12760$. In contrast, the inward currents (shown by black curves, mainly $I_{NaCa_{ss}}, I_{NaCa_i},$ and I_{Cal}) in the control case peak at $t \approx 12720$ (highlighted with an ellipse) and subsequently decline due to the reduction in $[Ca]_{\text{nsr}}$. In the no ⁵²⁶ control case, the inward and outward currents become equal at $t \approx 12780$ (marked with a green circle). This crossover signifies a change in the slope of the membrane potential waveform from negative to positive, indicating the onset of EAD.

We also presented the main inward and outward currents during the same time interval in Figs. $14(b)$ and $14(c)$, respec-tively. In Fig. [14\(](#page-10-0)b), I_{Cal} under control conditions shows a

AIP
E Publishing

Figure 9. Time series of the membrane potential *V* in Fig. [8\(](#page-7-0)a) for $g_{Kr} = 0.4$. We observe a transition from repolarization failure to no EADs through several EAD states.

Figure 10. Time series for different initial values of $[Ca]_{\text{nsr}}$ at g_{Kr} = 0.36. Red dots indicate occurrence of EADs. Normal beat for g_{Kr} = 0.39 is shown in dotted green line for comparison.

533 peak at $t \approx 12720$ (noted with an ellipse), corresponding to the maximum inward current depicted in Fig. [14\(](#page-10-0)a). This peak contributes to the decrease in the membrane potential, which in turn activates the outward current I_{K1} , represented by the dashed magenta curve in Fig. [14\(](#page-10-0)c). Notably, in the control case, I_{K1} is the only outward current that increases signifi- 551 cantly. This sharp I_{K1} drives the membrane potential back to its resting state, thus preventing the occurrence of EADs.

541 Given the limited range for [Ca]_{nsr} (approximately 1553) $_{542}$ (mM)) and the challenges associated with controlling [Ca]_{nSr} $_{554}$ ⁵⁴³ through pharmacological means, we investigated the depen- $_{544}$ dence of $\lceil \text{Cal}_{\text{nsr}} \rceil$ on pacing cycle length (PCL) and all ionicsso ⁵⁴⁵ currents. A decrease in *INCX* or an increase in *ICaL* signifi- $_{546}$ cantly elevates [Ca]_{nsr} to levels around 2–3 (mM). Interest- $_{558}$ ⁵⁴⁷ ingly, instead of reducing [Ca]nsr in Fig. [12](#page-9-0) (a), increasing ⁵⁴⁸ *INCX* does not eliminate EADs, whereas decreasing *ICaL* does. ⁵⁴⁹ A detailed analysis of the underlying mechanisms for this dis-⁵⁵⁰ crepancy will be explored in future work.

Figure 11. 3D projection ([Cal_{nsr} , the deactivation gating variable for I_{Ks} , membrane potential *V*) of the different orbits from Fig. [10.](#page-8-2) The stimulus forces the orbit to leave the slow-manifold, triggering fast depolarization. The EADs are represented as fast rotations on the fast-manifold of the fast subsystem. The different orbits are spatially separated across small $[Ca]_{\text{nsr}}$ intervals.

VI. DISCUSSION AND CONCLUSION

⁵⁵² In this study, we investigated the dependence of early afterdepolarizations (EADs) and repolarization failure on parameter values in O'Hara's realistic mathematical model of human ventricular myocytes. We focused on parameterizing $\lbrack Ca\rbrack_{\rm nsr}$ (the calcium ion concentration in the network sarcoplasmic reticulum), which is the slowest variable in the system. Through an analysis of bifurcations in the $[Cal_{nsr}-]$ parameterized system, we identified the mechanisms underlying the generation of transient states, such as repolarization failure and ultra-long action potential duration (APD) in the ⁵⁶² original system. Specifically, we demonstrated that the ultra-

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

Figure 12. Control of EADs by making slight adjustments to the value of [Ca]_{nsr} at a single time point. Values of [Ca]_{nsr} are changed at $t = 12500 \text{ ms}$ for $g_{Kr} = 0.39$ ((a) and (c)) and $g_{Kr} = 0.36$ ((b) and (d)). (a) Time series of the membrane potential *V* transitioning from 2 EADs to normal. (b) Time series of the membrane potential transitioning from repolarization failure to 0–1 EADs. (c) Time series of the [Ca]nsr variable. Upper and lower black curves indicate [Ca]nsr for 2 EADs and normal, respectively. (d) Time series of the [Ca]nsr variable. Upper and lower black curves indicate $[Ca]_{\text{nsr}}$ for repolarization failure and 0–1 EADs, respectively.

Figure 13. Membrane potential and main ionic current rates ($> 10\%$ at most) after a jump in [Ca]_{nsr} (control) and without a jump (no control) at $g_{Kr} = 0.39$. Ionic current rates are almost the same for both cases in the gray region. (a) Membrane potential with EAD (no control). (b) Normal membrane potential (control). (c) Ionic current rate (no control). (d) Ionic current rate (control).

 long APD observed in the original model is due to a trajec- tory that follows the locus of a stable equilibrium point in the 565 [Ca]nsr-parameterized system. Higher values of [Ca]nsr leads72 to longer APDs. Moreover, using the parameterized model enabled a fast-slow decomposition of the original system, pro- viding a dynamical systems perspective on the diverse behav-iors observed. In particular, it revealed that the repolarization failure state corresponds to a stable branch of the limit cycles (fast-manifold) in the $[Ca]_{\text{nsr}}$ -parameterized system. Additionally, the EADs were shown to follow the fast-manifold of this parameterized system. The bifurcation analysis also highlighted the critical role of alternans formation (via period-⁵⁷⁵ doubling bifurcations in this case) in generating an infinite number of unstable periodic orbits through a period-doubling

$$
\underline{\underline{\mathscr{L}}}_{\text{Published}}
$$

pul

An Interdisciplinary Journal

Chaos

Ф

of Nonlinear Scienc

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
E Publishing

Figure 14. Ionic currents near the activation of I_{Cal} and I_{K1} , as shown⁶²⁸ in Fig. [13.](#page-9-1) (a) Total inward and outward ionic currents with and without control. (b) Main inward ionic currents (absolute value) with ϵ_{30} and without control in the same interval as (a). (c) Main outward $_{631}$ ionic currents with and without control in the same interval as (a).

⁵⁷⁷ cascade. This instability permits transient chaotic dynamics ⁵⁷⁸ and the stabilization of multiple coexisting EAD states.

⁵⁷⁹ It is important to note that other slow variables, such as the⁶³⁴ sso slow accumulation of [Na] or the slow recovery of I_{Ks} , may also contribute to the complex dynamics of EADs. Given the limited range of [Ca]_{nsr} , these additional slow variables likely 636 play a significant role, and exploring their influence will be part of our future research.

585 We discovered numerous coexisting states, such as EADs, 639 ⁵⁸⁶ repolarization failure, and normal beats, which were catego-587 rized based on the value of $[Ca]_{nsr}$. Leveraging this property,⁶⁴¹ 588 we proposed a method for controlling these states. By simply⁶⁴² 589 decreasing the value of [Ca]_{nsr} in a 37-dimensional system⁶⁴³ ⁵⁹⁰ of differential equations, we were able to transform EAD or ⁵⁹¹ repolarization failure behavior into a normal state. Our results $_{592}$ indicate that this transformation occurs as follows: a reduction $\frac{1}{593}$ in [Ca]_{nsr} also lowers calcium concentrations in the subspace, ⁵⁹⁴ junctional SR, and myoplasmic compartments. These reduc-595 tions inhibit Na/Ca exchanger activity, as described in Ref. [53,](#page-12-13) 645 leading to a decrease in Na/Ca exchange currents (*INaCass* ⁵⁹⁶ and I_{NaCa_i}). This, in turn, causes inactivation of the L-type cal-

 cium channels, resulting in a decrease in membrane potential. 599 The lowered membrane potential then activates I_{K1} , further reducing the potential to the resting state, thereby eliminating the EAD and restoring the normal rhythm.

⁶⁰² Previous studies^{[40,](#page-12-3)[54](#page-12-14)} have categorized EADs into two types: (1) secondary activation of the L-type calcium current during the plateau phase of the action potential, and (2) ac- tivation of the Na/Ca exchange current due to increased the calcium ion concentration in the myoplasmic compartment, following spontaneous calcium release from the SR during the late repolarization phase. Our research focused on EAD generation corresponding to type (1), while inhibiting EADs using the opposite mechanism described in type (2). We con- firmed that lowering the calcium ion concentration in vari- ous compartments (junctional SR, subspace, and myoplasmic compartments) also suppressed EAD generation. However, this reduction in [Ca]_{nsr} further decreased membrane poten- tial, ultimately determining whether the system stabilized in an EAD state or returned to normal. Investigating EAD gen- eration under type (2) conditions and examining the effects of lowering $[Cal_{nsr}$ in other mathematical models remain open areas of research. Additionally, understanding the relationship between calcium ion concentrations and delayed afterdepolar-izations will be a key focus in future studies.

 Our study has some limitations. First, while we found ev- idence suggesting a role for $[Ca]_{nsr}$ in EAD generation, it remains challenging to control [Ca]nsr precisely in experi- ments. Spencer et al.^{[45](#page-12-15)} reported that action potential prolon- gation was sensitive to inhibition of Na/Ca exchange in ex- perimental settings. Since inhibiting Na/Ca exchange elevates $[Ca]_{\text{nsr}}$, this suggests that the fundamental mechanism may be related to an increase in $[Ca]_{\text{nsr}}$. Second, our investigation was limited to a single mathematical model. Further studies using additional models are necessary to confirm the role of [Ca]_{nsr} in EAD generation. All these open questions will be addressed in our upcoming research.

ACKNOWLEDGMENTS

We thank Prof. T. Yoshinaga of Tokushima University for providing his powerful bifurcation analysis tools. This research was supported by JST Moonshot R&D Grant Number ⁶³⁸ JPMJMS2021. RB has been supported by the Agencia Estatal de Investigación (Spain) and European Regional Development Fund (project PID2021-122961NB-I00), Diputación ⁶⁴¹ General de Aragón and European Regional Development Fund (project E24-23R) and Agencia Estatal de Investigación ⁶⁴³ (Spain) (project TED2021-130459B-I00).

AUTHOR DECLARATIONS

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
Publishing

647 AUTHOR CONTRIBUTIONS

⁷⁰⁷ Hiroyuki Kitajima: Funding acquisition (equal); Formal₇₀₈ ⁶⁴⁹ analysis (lead); Software (lead); Investigation (lead); Method-⁶⁵⁰ ology (equal); Writing-original draft (lead); Writing-review 651 & editing (equal). Toru Yazawa: Formal analysis (support $\frac{711}{712}$ ⁶⁵² ing); Investigation (supporting); Methodology (supporting).¹¹³ 653 Roberto Barrio: Funding acquisition (equal); Writing-review₇₁₄ ⁶⁵⁴ & editing (equal); Methodology (equal); Visualization (lead); ⁶⁵⁵ Investigation (supporting).

656 DATA AVAILABILITY STATEMENT

⁶⁵⁷ The data that support the findings of this study are available⁷²³ ⁶⁵⁸ within the article.

⁶⁵⁹ REFERENCES

660 ¹B.-R. Choi, F. Burton, and G. Salama, "Cytosolic Ca2+ triggers early after-661 depolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT_{722} ⁶⁶² syndrome," The Journal of physiology 543, 615–631 (2002).

2 ⁶⁶³ P. G. Volders, M. A. Vos, B. Szabo, K. R. Sipido, S. M. de Groot, A. P. 664 Gorgels, H. J. Wellens, and R. Lazzara, "Progress in the understanding of $\frac{1}{735}$ 665 cardiac early afterdepolarizations and Torsades de Pointes: time to revise₇₃₆ ⁶⁶⁶ current concepts," Cardiovascular research 46, 376–392 (2000).

³Y. Tsuji, M. Yamazaki, M. Shimojo, S. Yanagisawa, Y. Inden, and T. Muro-668 hara, "Mechanisms of torsades de pointes: an update," [Frontiers in Cardio-](https://doi.org/10.3389/fcvm.2024.1363848)⁶⁶⁹ vascular Medicine 11 [\(2024\), 10.3389/fcvm.2024.1363848.](https://doi.org/10.3389/fcvm.2024.1363848)

670 ⁴S. Zimik, N. Vandersickel, A. R. Nayak, A. V. Panfilov, and R. Pandit, "A 671 comparative study of early afterdepolarization-mediated fibrillation in two $_{742}$ 672 mathematical models for human ventricular cells," PloS one 10, e0130632₇₄₃ ⁶⁷³ (2015).

⁵Z. Zhao, Y. Xie, H. Wen, D. Xiao, C. Allen, N. Fefelova, W. Dun, P. A. Boy-675 den, Z. Qu, and L.-H. Xie, "Role of the transient outward potassium current₇₄₆ 676 in the genesis of early afterdepolarizations in cardiac cells," Cardiovascular $_{747}$ ⁶⁷⁷ research 95, 308–316 (2012).

678 ⁶J. Zeng and Y. Rudy, "Early afterdepolarizations in cardiac myocytes: 679 mechanism and rate dependence," Biophysical journal 68, 949–964 (1995). 680 ⁷ J. N. Weiss, A. Garfinkel, H. S. Karagueuzian, P.-S. Chen, and Z. Qu, "Early 681 afterdepolarizations and cardiac arrhythmias," Heart rhythm 7, 1891–1899₇₅₂ 682 (2010).

683 ⁸Z. Qu, L.-H. Xie, R. Olcese, H. S. Karagueuzian, P.-S. Chen, A. Garfinkel, 684 and J. N. Weiss, "Early afterdepolarizations in cardiac myocytes: beyond₇₅₅ 685 reduced repolarization reserve," Cardiovascular research 99, 6–15 (2013). $_{756}$ 686 ⁹P. C. Viswanathan and Y. Rudy, "Pause induced early afterdepolarizations

687 in the long QT syndrome: a simulation study," Cardiovascular research 42, $\frac{1}{758}$ ⁶⁸⁸ 530–542 (1999). ⁷⁵⁹ ¹⁰ N. Vandersickel, I. V. Kazbanov, A. Nuitermans, L. D. Weise, R. Pandit, $\frac{759}{769}$

690 and A. V. Panfilov, "A study of early afterdepolarizations in a model for $\overline{r_{61}}$ ⁶⁹¹ human ventricular tissue," PloS one 9, e84595 (2014).

¹¹ 692 ¹¹ C. T. January and J. M. Riddle, "Early afterdepolarizations: mechanism of ⁷⁶²₇₆₃ 693 induction and block. A role for L-type Ca2+ current." Circulation research₇₆₄ ⁶⁹⁴ 64, 977–990 (1989).

⁶⁹⁴ **04,** 977–990 (1969).
⁷⁶⁵ ¹² K. Furutani, K. Tsumoto, I.-S. Chen, K. Handa, Y. Yamakawa, J. T. Sack, ₇₆₆ 696 and Y. Kurachi, "Facilitation of I Kr current by some hERG channel block- $_{767}$ 697 ers suppresses early afterdepolarizations," Journal of General Physiology₇₆₈ ⁶⁹⁸ 151, 214–230 (2019).

⁶⁹⁸ **151**, 214–230 (2019).
¹³X. Huang, Z. Song, and Z. Qu, "Determinants of early afterdepolarization₇₇₀ ⁷⁰⁰ properties in ventricular myocyte models," PLoS computational biology 14, ⁷⁰¹ e1006382 (2018).

 14 C. O. Diekman and N. Wei, "Circadian rhythms of early afterdepolariza- 773 703 tions and ventricular arrhythmias in a cardiomyocyte model," Biophysical₇₇₄

⁷⁰⁴ Journal 120, 319–333 (2021).

- ¹⁵ ⁷⁰⁵ Y. Kurata, K. Tsumoto, K. Hayashi, I. Hisatome, M. Tanida, Y. Kuda, and ⁷⁰⁶ T. Shibamoto, "Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models," American Journal of Physiology-Heart and Circulatory Physiology 312, H106-H127 (2017).
	- ¹⁶S. Sridhar, N. Vandersickel, and A. V. Panfilov, "Effect of myocytefibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue," Scientific reports 7, 40985 (2017).
	- ¹⁷Z. Zhang and Z. Qu, "Mechanisms of phase-3 early afterdepolarizations and triggered activities in ventricular myocyte models," Physiological Reports 9, e14883 (2021).
- 18 Y. Xie, L. T. Izu, D. M. Bers, and D. Sato, "Arrhythmogenic transient dy-⁷¹⁷ namics in cardiac myocytes," Biophysical Journal 106, 1391–1397 (2014).

¹⁹ R. Barrio, M. A. Martínez, L. Pérez, and E. Pueyo, "Bifurcations and slow-⁷¹⁹ fast analysis in a cardiac cell model for investigation of early afterdepolar-⁷²⁰ izations," Mathematics 8, 880 (2020).

- ²⁰ E. Slepukhina, L. Ryashko, and P. Kügler, "Noise-induced early afterdepo-⁷²² larizations in a three-dimensional cardiac action potential model," Chaos, Solitons & Fractals 131, 109515 (2020).
- 724 21 Z. Chu, D. Yang, and X. Huang, "Conditions for the genesis of early after-⁷²⁵ depolarization in a model of a ventricular myocyte," Chaos: An Interdisci-
- ⁷²⁶ plinary Journal of Nonlinear Science 30 (2020).
- $727 \over 727$ 22 D. X. Tran, D. Sato, A. Yochelis, J. N. Weiss, A. Garfinkel, and Z. Qu, ⁷²⁸ "Bifurcation and chaos in a model of cardiac early afterdepolarizations," ⁷²⁹ Physical review letters 102, 258103 (2009).
- ⁷³⁰ ²³M. G. Chang, C. Y. Chang, E. De Lange, L. Xu, B. O'Rourke, H. S. Karagueuzian, L. Tung, E. Marbán, A. Garfinkel, J. N. Weiss, et al., "Dynamics of early afterdepolarization-mediated triggered activity in cardiac ⁷³³ monolayers," Biophysical journal 102, 2706–2714 (2012).
	- ²⁴ P. Kügler, A. H. Erhardt, and M. Bulelzai, "Early afterdepolarizations in cardiac action potentials as mixed mode oscillations due to a folded node singularity," PLoS One 13, e0209498 (2018).
- 737 25 T. Vo and R. Bertram, "Why pacing frequency affects the production of early afterdepolarizations in cardiomyocytes: An explanation revealed by slow-fast analysis of a minimal model," Physical Review E 99, 052205 ⁷⁴⁰ (2019).
	- ^{26}A . H. Erhardt, "Early afterdepolarisations induced by an enhancement in the calcium current," Processes 7, 20 (2019).
- 27 J. Kimrey, T. Vo, and R. Bertram, "Big ducks in the heart: Canard analy-⁷⁴⁴ sis can explain large early afterdepolarizations in cardiomyocytes," SIAM Journal on Applied Dynamical Systems 19, 1701–1735 (2020).
- ²⁸ R. Barrio, J. A. Jover-Galtier, M. Martínez, L. Pérez, and S. Serrano, "Mathematical birth of early afterdepolarizations in a cardiomyocyte model," ⁷⁴⁸ Mathematical Biosciences 366, 109088 (2023).
	- 29 P. Kügler, M. Bulelzai, and A. H. Erhardt, "Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early afterdepolarizations," BMC Systems Biology 11, 1-13 (2017).
	- 30 P. Kügler, "Early afterdepolarizations with growing amplitudes via delayed subcritical hopf bifurcations and unstable manifolds of saddle foci in cardiac action potential dynamics," PLoS One 11, e0151178 (2016).
	- 31 J. Landaw and Z. Qu, "Bifurcations caused by feedback between voltage and intracellular ion concentrations in ventricular myocytes." Physical review letters 123, 218101 (2019).
	- 32 T. Krogh-Madsen and D. J. Christini, "Slow [Na+] i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model," Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (2017).
	- ³³ K. Tsumoto, Y. Kurata, K. Furutani, and Y. Kurachi, "Hysteretic dynamics of multi-stable early afterdepolarisations with repolarisation reserve attenuation: a potential dynamical mechanism for cardiac arrhythmias," Scientific reports 7, 10771 (2017).
	- 34 Y. Xie, Z. Liao, E. Grandi, Y. Shiferaw, and D. M. Bers, "Slow [Na] i changes and positive feedback between membrane potential and [Ca] i underlie intermittent early afterdepolarizations and arrhythmias," Circulation: Arrhythmia and Electrophysiology 8, 1472–1480 (2015).
	- ³⁵H. Kitajima and T. Yazawa, "Bifurcation analysis on a generation of early afterdepolarization in a mathematical cardiac model," International Journal of Bifurcation and Chaos 31, 2150179 (2021).
	- ³T. J. Hund, J. P. Kucera, N. F. Otani, and Y. Rudy, "Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model," Biophysical journal 81, 3324–3331 (2001).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0230834

AIP
E Publishing

⁷⁷⁵ ³⁷M. Fink, P. J. Noble, and D. Noble, "Ca2+-induced delayed afterdepolar-⁷⁷⁶ izations are triggered by dyadic subspace Ca2+ affirming that increasing 777 SERCA reduces aftercontractions," American Journal of Physiology-Heart811 ⁷⁷⁸ and Circulatory Physiology 301, H921–H935 (2011). ³⁸ Y. Kurata, K. Tsumoto, K. Hayashi, I. Hisatome, Y. Kuda, and M. Tanida, 813

⁷⁸⁰ "Multiple dynamical mechanisms of phase-2 early afterdepolarizations in a ⁷⁸¹ human ventricular myocyte model: Involvement of spontaneous SR Ca 2+ ⁷⁸² release," Frontiers in Physiology 10, 1545 (2020).

783 ³⁹ Z. Song, C. Y. Ko, M. Nivala, J. N. Weiss, and Z. Qu, "Calcium-voltages17 ⁷⁸⁴ coupling in the genesis of early and delayed afterdepolarizations in cardiac ⁷⁸⁵ myocytes," Biophysical journal 108, 1908–1921 (2015).

 40 C.-H. Luo and Y. Rudy, "A dynamic model of the cardiac ventricular ac-820 ⁷⁸⁷ tion potential. II. Afterdepolarizations, triggered activity, and potentiation." ⁷⁸⁸ Circulation research 74, 1097–1113 (1994).

⁴¹ R. Barrio, M. Martínez, E. Pueyo, and S. Serrano, "Dynamical analy-823 ⁷⁹⁰ sis of early afterdepolarization patterns in a biophysically detailed car-⁷⁹¹ diac model," Chaos: An Interdisciplinary Journal of Nonlinear Science 31 ⁷⁹² (2021).

⁴² R. Barrio, M. Á. Martínez, S. Serrano, and E. Pueyo, "Dynamical mecha-827 nism for generation of arrhythmogenic early afterdepolarizations in cardiac myocytes: Insights from in silico electrophysiological models," Physical Review E 106, 024402 (2022).

 ⁴³M. M. Adamantidis, P. Kerram, J. F. Caron, and B. Dupuis, "Droperidol exerts dual effects on repolarization and induces early afterdepolarizations and triggered activity in rabbit Purkinje fibers." Journal of Pharmacology and Experimental Therapeutics 266, 884–893 (1993).

801 ⁴⁴ F. L. Puisieux, M. M. Adamantidis, B. M. Dumotier, and B. A. Dupuis, 835 802 "Cisapride-induced prolongation of cardiac action potential and early after-836 803 depolarizations in rabbit Purkinje fibres," British journal of pharmacology837 ⁸⁰⁴ 117, 1377–1379 (1996).

805 ⁴⁵ C. I. Spencer, S. Baba, K. Nakamura, E. A. Hua, M. A. Sears, C.-c. Fu,839 J. Zhang, S. Balijepalli, K. Tomoda, Y. Hayashi, *et al.*, "Calcium transients closely reflect prolonged action potentials in iPSC models of inherited car-diac arrhythmia," Stem cell reports 3, 269–281 (2014).

⁴⁶N. El-Sherif, R. H. Zeiler, W. Craelius, W. B. Gough, and R. Henkin, ⁸¹⁰ "QTU prolongation and polymorphic ventricular tachyarrhythmias due to bradycardia-dependent early afterdepolarizations. Afterdepolarizations and ⁸¹² ventricular arrhythmias." Circulation research 63, 286–305 (1988).

⁴⁷C. Cang, K. Aranda, and D. Ren, "A non-inactivating high-voltageactivated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability," Nature communications 5, 5015 (2014).

816 ⁴⁸Z. Qu and D. Chung, "Mechanisms and determinants of ultralong action potential duration and slow rate-dependence in cardiac myocytes," PLoS One 7 (2012).

819 ⁴⁹ S. Heitmann, A. Shpak, J. I. Vandenberg, and A. P. Hill, "Arrhythmogenic effects of ultra-long and bistable cardiac action potentials," PLOS Computational Biology 17, e1008683 (2021).

⁵⁰ T. O'Hara, L. Virág, A. Varró, and Y. Rudy, "Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation," PLoS computational biology 7, e1002061 (2011).

⁵¹ H. Kawakami, "Bifurcation of periodic responses in forced dynamic nonlin-⁸²⁶ ear circuits: Computation of bifurcation values of the system parameters," IEEE Transactions on circuits and systems 31, 248–260 (1984).

⁵²D. D. Chen, R. A. Gray, I. Uzelac, C. Herndon, and F. H. Fenton, "Mechanism for amplitude alternans in electrocardiograms and the initiation of 830 spatiotemporal chaos," Phys. Rev. Lett. 118[, 168101 \(2017\).](https://doi.org/10.1103/PhysRevLett.118.168101)

⁵³ Y. Kurata, I. Hisatome, and T. Shibamoto, "Roles of sarcoplasmic reticulum $Ca2+$ cycling and Na+/Ca2+ exchanger in sinoatrial node pacemaking: insights from bifurcation analysis of mathematical models," American Jour-834 nal of Physiology-Heart and Circulatory Physiology 302, H2285–H2300 $(2012).$

 54 Z. Zhao, H. Wen, N. Fefelova, C. Allen, A. Baba, T. Matsuda, and L.-H. Xie, "Revisiting the ionic mechanisms of early afterdepolarizations in car-⁸³⁸ diomyocytes: predominant by Ca waves or Ca currents?" American Journal of Physiology-Heart and Circulatory Physiology 302, H1636–H1644 $(2012).$