000147674 001__ 147674
000147674 005__ 20241220131257.0
000147674 0247_ $$2doi$$a10.1108/COMPEL-09-2023-0428
000147674 0248_ $$2sideral$$a138889
000147674 037__ $$aART-2024-138889
000147674 041__ $$aeng
000147674 100__ $$aOrtega, José
000147674 245__ $$aNon-linear impedance boundary condition from linear piecewise <i>B</i>-<i>H</i> curve applied to induction heating systems
000147674 260__ $$c2024
000147674 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147674 5203_ $$aPurpose
This paper aims to apply the non-linear impedance boundary condition (IBC) for a linear piecewise B–H curve in frequency domain simulations to find the equivalent impedance of a simple induction heating system model.

Design/methodology/approach
An electromagnetic description of the inductor system is performed to substitute the effects of the induction load, for a mathematical condition, the so-called IBC. This is suitable to be used in electromagnetic systems involving high conductive materials at medium frequencies, as it occurs in an induction heating system.

Findings
A reduction of the computational cost of electromagnetic simulation through the application of the IBC. The model based on linear piecewise B–H curve simplifies the electromagnetic description, and it can facilitate the identification of the induction load characteristics from experimental measurements.

Practical implications
This work is performed to assess the feasibility of using the non-linear boundary impedance condition of materials with linear piecewise B–H curve to simulate in the frequency domain with a reduced computational cost compared to time domain simulations.

Originality/value
In this paper, the use of the non-linear boundary impedance condition to describe materials with B–H curve by segments, which can approximate any dependence without hysteresis, has been studied. The results are compared with computationally more expensive time domain simulations.
000147674 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000147674 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000147674 700__ $$aLahuerta, Óscar$$uUniversidad de Zaragoza
000147674 700__ $$0(orcid)0000-0001-7901-9174$$aCarretero, Claudio$$uUniversidad de Zaragoza
000147674 700__ $$0(orcid)0000-0001-9221-9306$$aMartínez, Juan Pablo$$uUniversidad de Zaragoza
000147674 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000147674 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000147674 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000147674 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000147674 773__ $$g43, 6 (2024), 1139-1149$$pCompel$$tCOMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING$$x0332-1649
000147674 8564_ $$s1235156$$uhttps://zaguan.unizar.es/record/147674/files/texto_completo.pdf$$yPostprint
000147674 8564_ $$s1936702$$uhttps://zaguan.unizar.es/record/147674/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000147674 909CO $$ooai:zaguan.unizar.es:147674$$particulos$$pdriver
000147674 951__ $$a2024-12-20-12:01:42
000147674 980__ $$aARTICLE