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A B S T R A C T

We study the synchronisation of neurons in a realistic model under the Hodgkin–Huxley dynamics. To focus
on the role of the different locations of the excitatory synapses, we use two identical neurons where the set
of input signals is grouped at two different distances from the soma. The system is intended to represent a
CA1 hippocampal neuron in which the synapses arriving from the CA3 neurons of the trisynaptic pathway
appear to be localised in the apical dendritic region and are, in principle, either proximal or distal to the
soma. Synchronisation is studied using a specifically defined spiking correlation function as a function of
various parameters such as the distance from the soma of one of the synaptic groups, the inhibition weight
and the associated activation delay. We found that the neurons’ spiking activity depends nonmonotonically on
the relative dendritic location of the synapses and their inhibition weight, while the synchronisation measure
always decreases with inhibition, and strongly depends on its activation time delay. In our model, the synaptic
random subthreshold background activity substantially reduces synchronisation in a monotonic way, while
highlights the importance of a balanced E/I contribution for neuronal synchronisation.
Introduction

The mammalian hippocampus, located in the allocortex, is respon-
sible for both short-term and long-term memory. It is the primary area
affected in Alzheimer’s disease and therefore plays an important role
in cognitive function.

The CA1 pyramidal neurons receive two different sets of inputs: one
coming directly from the entorhinal cortex (the so-called perforant path)
and the other from the CA3 neurons, which receive the signal from
the granule cells, which in turn receive the signals from the entorhinal
cortex (the trisynaptic path, so called because three sets of synapses are
needed to complete this path).

Much of the brain’s function is related to the synchronisation of
incoming signals that ultimately lead to an appropriate output [1–4].
Modelling the overlapping contributions in the depolarising membrane
potential is therefore of great importance for understanding brain func-
tion and for developing theoretical approaches to its malfunctioning.

A large number of papers have investigated the possibility of syn-
chronisation for a large scale of networks using different models. From
Kuramoto oscillators [5,6], the Izhikevich model [7], the integrated-
and-fire (LIF) schemes [8], with its various generalisations [9–11], or
by using the Hodgkin–Huxley (HH) formalism [12], as is the case here.
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An overview on synchronisation in the context of basic HH oscilla-
tors is given in the works by Boccaletti et al. [13,14], where two-neuron
systems, as well as larger network oscillators, are presented.

These modelling efforts have been elucidating many interesting
synchronisation scenarios and developed a broad understanding of
the synchronisation phenomenon. However, many of these approaches
appear limited in different aspects: some of these models represent
the neurons as single dynamic dots without internal structure. This
approach therefore does not take into account the energy loss due to
internal resistance, nor the delays due to the propagation of the current
within the neurons. Moreover, this kind of models do not present a
relationship between their kinetic parameters and the biological mag-
nitudes involved in neuron functioning. Thus, besides the important
basic knowledge it can provide on synchronisation phenomena, this
mesoscopic approach neither bridges the gap between physical dynam-
ics and biochemical understanding of the process, nor can it enter into
possible medical treatments due to the lack of clear microscopic links
between the model parameters and the biological magnitudes (such as
synaptic conductances, rise/decay times, signal propagation) that are
modified by therapeutic treatments.
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Fig. 1. Scheme of the two identical CA1 neurons, specifically the neuron labelled
mpg141017_a1-2_idC [17], that receive inputs from the synapses (red dots in the figure)
randomly distributed at different distances from the soma along the apical dendrites.
The left neuron 𝑁0 receives the closer synapse distribution (𝑑0) to the soma, whilst the
right one (𝑁1) receives the synapses in a more distal region (𝑑1). The model includes
an interneuron (𝑖) which, activated by the somas spiking, acts in inhibiting both neuron
activity.

As regards the former case – point-like models – it is evident that the
different – and stochastic – distribution of excitatory synapses in real
neurons makes the spiking process a complex mechanism involving the
electrodynamics of pulse propagation along the dendrites, complicated
by their shape and geometry [15], or the channel types and their
distribution along the dendrites [16]. All of these mechanisms generate
non trivial phase shifts in the signals arriving at the somas.

In this context, the present work analyses the possibility of synchro-
nisation of the CA1 spikes generated in response to inputs arriving from
CA3 neurons, through synapses distributed at two different distances
from the CA1 soma.

Synchronisation is studied for different biological parameters such
as the distance of synapses from the soma, the contribution of inhibitory
interneurons, the delay of the inhibition, and the activation delay of
the proximal synapstic distribution. The excitatory synaptic currents
considered here are of the AMPA type, implemented with a double
exponential time course with a fast rise and decay time; they are
ubiquitous in all neurons.

In addition, the analysis takes into account the background activity
on the somas to naively account for large network contributions, as
seen in in vivo neural cells.

To this end, we apply HH dynamics to two identical neurons sub-
jected to identical Poisson inputs that activate all synapses at the two
sets of distances considered. We study synchronisation by a newly
defined measure for spiking correlation, using the concept of phase
difference between successive spikes.

The article is organised as follows: In Section 1, we provide an
explanation of the model, along with the correlation measure defined
to assess the synchronisation between spikes. Section 2 contains the
main results for the parameters considered, and Section 3 analyses the
background contribution to the somas. The paper concludes with some
final considerations in Section 4.

1. Methods

The idea is to study the spiking activity on the CA1 neurons,
when the signals arrive from two different paths. To do this, we use
two identical neurons and generate over them the input as provided
2 
by synapses located at two different group positions. The spikes are
generated as input pulses with a Poisson time distribution. The source
– unique for the two neurons – is connected to the target by means
of 𝑁sy n = 20 synapses, that are randomly distributed at a certain mean
distance from the soma and varying in each numerical experiment. The
chosen 𝑁sy n represents a reasonable number of active synapses at a
given time [18].

Fig. 1 shows two identical realistic and optimised neurons (see [17])
receiving their inputs from the same axon coming from the CA1 neu-
rons of the trisynaptic path. The synapses considered here are AMPA-
mediated. This means that their rising current responses are fast, as is
their decay time. Moreover, the position of the synapses is not arbitrary.
The incoming synapses are located in the apical dendritic area, with a
random distribution with a mean value close to the soma in neuron 𝑁0,
and with a greater distance from the soma in neuron 𝑁1 (see Ref. [19]
for a review on hippocampal neuron morphology).

1.1. Equations and model details

The microscopic neuron dynamics is based on the Hodgkin–Huxley
formalism, and the set of equations has been implemented in the
NEURON simulation environment [20].

The HH equations are based on the electrodynamics of the neuron
membrane and gates, which are characterised by a specific excitability
that is reflected in their conductances.

In order to refresh the main mathematics involved in this paper,
we briefly outline the original equations. The membrane potential of
the neuron at any given membrane segment 𝑗 can be described by the
HH-like equations as follows.

𝐶m𝑉̇j = 𝐼extj − 𝐼mj − 𝐼 sy nj , (1)

where 𝐼ext is the external current applied to the gate in the membrane
area (in this work this current is always zero), 𝐼m is the membrane
current generated in the membrane, and 𝐼 sy n is the postsynaptic current
due to the signal received by the incoming synapses. The membrane
current has been described schematically by HH as

𝐼mj = 𝑔Na𝑚
3ℎ(𝑉j − 𝑉Na) + 𝑔K𝑛

4(𝑉j − 𝑉K) + 𝑔L(𝑉j − 𝑉L), (2)

where 𝑔a (a = Na, K, L) represent the maximum conductance for
sodium, potassium and passive channel (L) ionic currents, respectively,
while 𝑉as are the equilibrium potentials of the corresponding channels.
The gating variables 𝑚, ℎ, and 𝑛 represent the activation/inactivation
ratio of the sodium channels and the activation of the potassium
channels, respectively.

The ion channels considered are voltage-gated and their opening
follows the differential equation

𝜏q(𝑉 )
𝑑 𝑞
𝑑 𝑡 = 𝑞∞(𝑉 ) − 𝑞 . (3)

with 𝑞 representing a generic gating variable; the time function can
be expressed as 𝜏q(𝑉 ) = 1

𝛼q(𝑉 )+𝛽q(𝑉 ) , and 𝑧∞(𝑉 ) = 𝛼q(𝑉 )
𝛼q(𝑉 )+𝛽q(𝑉 ) where the

rates 𝛼q and 𝛽q are fitted from experimental data in a sigmoidal fashion
due to their underlying kinetic reaction [21].

Beside this simple summary of the equations, the realistic model
explored here imposes a more complex set of equations than Eq. (2).
In fact, this study considers an extended number of channels that
takes into account the experimentally known features of CA1 pyramidal
cells, as discussed in recent papers on hippocampal neurons [22,23],
against which the configuration and distribution of channels have been
thoroughly validated. The complete set of active membrane properties
includes the essential sodium current (Na), four types of potassium
(KDR, KA, KM, and KD), three types of calcium (CaN, CaL, CaT), the
nonspecific Ih current, and two types of Ca-dependent K+ currents, KCa
and C .
agk
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With all these contributions, the membrane current term of Eq. (2)
odifies in

𝐼mj =
∑

𝑎
𝑔𝑎𝑓𝑎(𝑚, ℎ, 𝑛)(𝑉j − 𝑉𝑎), (4)

where the sum is extended over all the channels considered, 𝑔𝑎 is
the maximum conductance, 𝑓𝑎 the gating variable, 𝑉j the membrane
otential and 𝑉𝑎 the reversal potential for the channel 𝑎, where 𝑎= (Na,

KDR, KA, KM, KD, CaN, CaL, CaT, Ih, KCa, Cagk). More details on the
pecific shape of the functions 𝑓a and the values of 𝑔a can be found in
ef. [22].

All dendritic compartments contain a uniform distribution of chan-
nels, except for KA and Ih which are known to increase linearly with
he distance from the soma [24,25] in pyramidal cells. The values for

the peak conductance of each channel were optimised independently
in each type of neuronal compartment (soma, axon, basal and apical
dendrites), with a difference of one order of magnitude [17].

Concerning the postsynaptic current 𝐼 sy n, this is modelled for each
ynapse as [21]

𝐼 sy nj = −𝑔sy n𝛼(𝑡 − 𝑡spk − 𝜏spk )(𝑉j − 𝐸0), (5)

with 𝑔sy n the maximum synaptic conductance. The rate is a double
exponential 𝛼(𝑡) = 1

𝜏d−𝜏r
(𝑒−𝑡∕𝜏𝑑 −𝑒−𝑡∕𝜏𝑟 ), where the mean rise time 𝜏r and

he decay time 𝜏d are immediately recognised, and the time is reset after
ach spike (𝑡spk), while 𝜏spk represents a refractory period in which the

neuron remains insensitive. 𝐸0 is the synaptic reversal potential, that
akes the values 𝐸0 = 0 mV in excitatory synapses, and 𝐸0 = −80 mV in
nhibitory ones. The different reversal potentials are responsible for the

sign change of the current induced by the two types of synapses in the
dendritic membranes, thus allowing the inhibitory synapses – activated
with a suitable physiological delay after the arrival of the stimulus
in the circuit – to act as fast attenuators of the membrane potential
generated by the excitatory synapses. In this way, the contribution of
the inhibitory synapses plays a crucial role in the possibility that the
propagation of the signal can generate a depolarisation in the soma.

Our simulations use 𝜏r = 3 ms, and 𝜏d = 5 ms, which makes
ur excitatory synapses of fast AMPA-mediated type [26], while the

inhibition rate is modelled as a single exponential with decay time
𝜏I,d = 30 ms.

The presynaptic Poisson source is generated with a mean frequency
𝑓inp = 60 Hz corresponding to a gamma brain activity. The two groups
of synapses are located as follows: the proximal ones at a fixed mean
distance 𝑑0 = 100 μm from the soma on neuron 𝑁0, and the other on
𝑁1 at a variable distance 𝑑1 ∈ [100, 300] μm. The conductance weights
f the 𝑁sy n excitatory synapses are assumed to have the same value
𝑤 = 5 × 10−4 nS, while the weight of the inhibitory synapses is in the
ange 𝑖𝑤 ∈ [0, 0.06] nS.

To reduce the fluctuations of our outcomes, the results of our
imulations have been averaged over 𝑁exp = 100 realisations.

1.2. Phase synchronisation

The correlation between spikes in the two neurons is studied by
eans of the measure 𝑐, which modifies an equivalent measure already
resented in [27]. The idea is to define the phase of a spiking neuron

as [28]:

𝜙i(𝑡) = 2𝜋 𝑡 − 𝑡k
𝑡k +1,i − 𝑡k,i

, (6)

where the index 𝑖 = 0, 1 indicates the neuron 𝑁𝑖, and the time 𝑡k,i is
he time of the 𝑘th spike of 𝑁𝑖. Thus, at time 𝑡, the neuron lies at a
ertain fraction of the total time between two successive spikes, the
atter covering a phase spanning between 0 and 2𝜋. This allows us to
efine the time average of the cosine of the phase difference between
he two neurons in a single trace 𝑗 as

𝑐j =
1 𝑡f in

cos(𝜙1(𝑡) − 𝜙0(𝑡)) 𝑑 𝑡, (7)

𝑡f in − 𝑡in ∫𝑡in

3 
where 𝑡f in− 𝑡in defines the maximum window used for the time average
n which the phase results well-defined for both neurons. This measure
s normalised in the interval [−1, 1], where the value −1 represents

the anti-correlated spiking (phase difference equal to 𝜋) and the full
correlation is given by +1 (phase difference 0). The random distribution
of the phases is then revealed by the correlation value 𝑐j = 0 (mean
hase difference 𝜋∕2).

Given the stochastic nature of the spiking, this measure is then
veraged over the number of simulated realisations 𝑁exp:

⟨𝐶R⟩ =
1

𝑁exp

𝑁exp
∑

𝑗=1
𝑐j, (8)

This spiking synchronisation measure, or others of the same kind,
can be generalised for neuron synchronisation in large networks [27],
although other options are also used for pairwise correlations [29].

The models studied here is fully available in the ModelDB pub-
lic database, accession number 2018009 (https://modeldb.science/
2018009).

2. Results

Fig. 2 shows the frequency response of the two neurons 𝜈0 and 𝜈1
(panels (a) and (b)) under a frequency input 𝑓inp = 60 Hz as a function
of the distance 𝑑1 for different inhibitory weights 𝑖𝑤. We observe a
weak variation of 𝜈0 as a function of 𝑑1, with a nonmonotonic trend.
urprisingly, although the spiking activity decreases for increasing
alues of the 𝑖𝑤 parameter, we note an increase for increasing distances
1 with a saturating trend. This means that the further away the second
et of synapses is from the soma, the smaller tends to be their effect on
0. These behaviours show how rich the spiking phenomenon can be
hen considering realistic neuronal morphologies, and how relevant

he role of the interneuron is in mediating the interaction between
yramidal neurons.

An interesting result is the slight increase in spiking activity for
the neuron 𝑁1 with increasing distance 𝑑1. In fact, panel (𝑏) shows an
increase in 𝜈1 up to a distance of 𝑑∗1 = 150 μm. For larger distances,
the spiking activity of 𝑁1 tends to decrease with a non-monotonic
behaviour, probably due to the highly structured dendritic distribution
of the realistic neuron. We also note that around the same distance
value 𝑑∗1 , the spiking activity of the two neurons inverts in intensity,
s seen in the negative value of the 𝜈1 − 𝜈0 magnitude (panel d), for
1 > 𝑑∗1 . The sawtooth behaviour of the plots in Fig. 2(b–d) depends
n the specific morphology used for all simulations, as confirmed by
imulations carried out by using a different reconstruction (see Fig. A1
n the Appendix).

The phase spiking correlation ⟨𝐶R⟩ presented in panel (e) presents a
monotonic decrease as a function of both 𝑑1 and the inhibition weight
𝑤 (see Fig. 3). This result seems quite natural, given that signals

generated in more distal synapses (in 𝑁1) arrive the soma with reduced
amplitude and smoothed over a wider time envelope, and consequently
may lead to a decrease in spiking correlation.

To better visualise these results, Fig. 3 presents the same calcula-
tions as Fig. 2, replotted as a function of the inhibition weight 𝑖𝑤.
The frequency response of both neurons (panels (a) and (b)) as well
as their average (panel (c)) show a clear non-monotonic behaviour of
the spiking frequency, with a minimum of 𝜈0 around 𝑖𝑤∗ ≈ 0.04 nS,
corresponding to about 40 active inhibitory synapses.

Surprisingly, the synchronisation parameter ⟨𝐶R⟩ appears to de-
rease monotonically with 𝑖𝑤, and does not reflect the non-monotonic
ehaviour evident in the mean spiking frequencies. This result seems

to contradict the well-known fact that a small amount of inhibition im-
roves the spiking synchronisation between neurons [30,31], and the
ssue has been addressed in a paper by Fiasconaro and Migliore [32],

where a series of calculations with realistic neurons showed that, under
a stochastic current source, an increase in synchronisation is obtained

https://modeldb.science/2018009
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https://modeldb.science/2018009
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Fig. 2. Frequency response of the two neurons 𝜈0 (panel a) and 𝜈1 (panel b) to the
Poissonian input at the average frequency 𝑓inp = 60 Hz as a function of the distance
𝑑1 of the synapses from the soma in neuron 𝑁1. Panel (c) shows the mean frequency
between the two neurons, and Panel (d) shows their difference. The spiking correlation
(Panel (e)) shows a monotonic decrease with 𝑑1.

Fig. 3. Frequency response equivalent to the one shown in Fig. 2, shown as a function
f the inhibitory weight 𝑖𝑤. The delay in the inhibition response is here 0 ms.

with inhibition, provided that the inactivation times of the excitatory
synapses 𝜏d are long enough. This is not the case in this study, since
𝜏d < 𝜏I,d.

Fig. 4 shows the spiking traces corresponding to the three cases:
𝑖𝑤 = 0, 0.04, and 0.06 nS. Here we can see another counterintuitive and
interesting phenomenon, i.e. the anticipation of the neuron spiking
with signal from distal synapses with respect to those arriving from
the proximal ones. In fact, the spikes shown in the time window are
characterised by the occasional anticipation of the spikes in 𝑆1, with
ynapse distribution at 𝑑1 = 150 μm, compared to the spikes of 𝑆0,
ith more proximal synapses at 𝑑0 = 100 μm (see 𝑖𝑤 = 0 at about
00 ms, and 𝑖𝑤 = 0.06ns at about 950 ms). This behaviour depends
n the fact that distal dendrites are narrower than proximal ones, and
t has been demonstrated that the depolarising propagation is better
nd more efficient there than in wider dendrites [33]. In fact, the

rebound of the current at the dendritic terminal tips can allow an
verlapping and integration of ion currents inside the dendrite that

can more intensely and efficiently stimulate a spiking arrival to the
soma, even anticipating its depolarisation. This phenomenon can also
increase the overall spiking frequency, thus explaining the increase in

∗ Fig. 2(b).
he frequency response 𝜈1 for 𝑑1 < 𝑑1 shown in

4 
Fig. 4. Time evolution of the spiking activity in the two neurons with different average
synapse locations (𝑑0 = 100 and 𝑑1 = 150 μm) at 𝑓inp = 60 Hz for 𝑖𝑤 = 0, 0.04, 0.06 nS. It
is evident that there is an occasional anticipation of soma spikes in 𝑆1 compared to
𝑆0 (top panel at 500 ms, and bottom panel at 950 ms), and a decrease in frequency
response as 𝑖𝑤 increases, also due to spiking failures. The tiny arrows indicate the
spikes occurring only in one of the two somas.

Fig. 5. Spiking correlation is shown as a function of the synapse inhibitory delay 𝜏I,s for
various values of the inhibitory weight, specifically 𝑖𝑤 = 0, 0.02, 0.04, 0.06 nS. The panels
refer to different mean distances from the soma of 𝑁1, 𝑑1 = 100, 125, 150, 175 μm. The
presence of inhibition (𝑖𝑤 ≠ 0) reduces the spiking synchronisation ⟨𝐶R⟩ in comparison
to the uninhibited values (represented by a full circle in the plots). For inhibited
dynamics, ⟨𝐶R⟩ increases monotonically with a saturating trend, almost reaching the
uninhibited value.

Fig. 4 also evidences the non-monotonic response frequency when
ncreasing the inhibition weight 𝑖𝑤, and the larger difference in 𝑆0
blue line) compared to 𝑆1. Moreover, the spiking response when in-
reasing the inhibitory weight is accompanied by more frequent spiking

failures in 𝑆0 than in 𝑆1.
To better understand the role of some time delays in CA1 syn-

chronisation, we performed a series of calculations by changing the
ynaptic inhibition delay 𝜏I,s, i.e. the delay used by the interneurons
o respond and inhibit both neurons. Fig. 5 shows the phase spiking

correlation ⟨𝐶R⟩ as a function of the synaptic delay 𝜏I,s in the inhibition
of interneuron activation by the soma spiking. The inhibition works
with both a forward and backward mechanism, because, regardless of
which neuron spikes, the interneurons act on both neurons at the same
time (see the graph in Fig. 1).

The interneuron has not been explicitly implemented in the net-
work, but it was modelled as an inhibitory synaptic current according to
Eq. (5). To implement a plausible signal propagation in the circuit, we
introduced a delay for its activation, with respect to the action potential
in the presynaptic pyramidal cell.
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Fig. 6. Spiking correlation as a function of the path delay 𝜏E,del for different inhibition
eights and different distances 𝑑1 from the soma. Synchronisation appears weakly
ffected up to values of 𝜏E,del ≈ 2 ms. The inhibition delay here is 𝜏I,s = 2 ms.

The plots indicate that the presence of inhibition decreases the
synchronisation features. In fact, all the curves (with 𝑖𝑤 = 0.01, 0.02,
0.05 nS) are below the full points in the figures, which represents the
absence of inhibition (𝑖𝑤 = 0 nS). Specifically, the absence of delay
represents the maximum loss of synchronisation, while for increasing
values of 𝜏I,s a saturating increase in synchronisation is reported. The
same behaviour is confirmed for all the distances from the soma in the
neuron 𝑁1 shown in the three panels of Fig. 5, specifically 𝑑1 = 100 μm,
.e. no mean distance between the synaptic location of the two neurons,
1 = 150 μm and 𝑑1 = 200 μm. The difference in the three distances only
eflects the expectable outcome that by increasing the distance 𝑑1, the
ynchronisation decreases, as shown in Fig. 2.

In order to investigate whether and to what extent a difference in
the activation times of the CA3 afferent volleys can affect synchroni-
sation, a series of simulations have been run in which the excitatory
inputs to the proximal set of synapses was delayed by a few millisec-
onds with respect to the distal set. This path delay (𝜏E,del) has been
applied to the synaptic activation time of the 𝑁0 neuron synapses, and
allowed to study the details of their optimal integration with the signal
generated by the distal inputs and propagating towards the soma.

Fig. 6 shows the spiking correlation ⟨𝐶R⟩ as a function of this delay
for four inhibition weights (𝑖𝑤 =0, 0.01, 0.02 and 0.05 nS) and four dis-
ances of the second neuron from the soma: 𝑑1 = 100, 125, 150, 175 μm.

e can observe here that no significant contribution is due to the
xcitatory delay 𝜏E,del in synchronising the signals for the different

inhibition weights studied. In fact, although for all the distances the
curves with 𝑖𝑤 ≠ 0 lie below the full blue dots indicating the correlation
with no inhibition, those curves seem to remain essentially unchanged
for low time delays (𝜏E,del ≲ 1.5 ms), time at which a fast synchronisa-
tion decay occurs. This calculation confirms that the presented model
predicts that the regulatory function of the interneurons with their
inhibitory activity on the CA1 neurons barely affects AMPA-mediated
synapses.

3. Stochastic background contribution

The model described above has been analysed here with the two
neurons disconnected from the brain network, only connected to the
incoming signals modelled as a Poisson process activating the exci-
atory synapses. In order to better understand a more complex and
ealistic scenario, we have carried out a series of calculations in which,
aintaining the distributed synapses already investigated in the pre-

ious section, the two somas are reached by a noisy background,
5 
with the aim of representing in a simple way the stochastic contribu-
tion provided by the many connections of the brain networks on the
ctivity of the two neurons studied here, thus reproducing a in vivo-
ike activity. This contribution follows the Destexhe approach [34,35],

where two synapses, one excitatory and the other inhibitory, are both
characterised by a mean value of the maximum conductances 𝑔OU,x
together with an additional stochastic term. The latter is modelled as
an Ornstein–Uhlenbeck (OU) fluctuation with a given noise intensity
𝜎x and a correlation time 𝜏OU,x, where the suffix 𝑥 indicates the two
possibilities: 𝑥 = 𝐸 or 𝑥 = 𝐼 for the excitatory or inhibitory synapse,
respectively. Using this ‘‘fluctuating conductance approach’’, they were
able to successfully simulate a neocortical neuron response that repro-
duced a typical experimental trace, under simpler conditions than those
presented in this paper.

The equation added to the system is then the two-term contribution
o the current

𝐼 st och = 𝑔OU,E(𝑡)(𝑉 − 𝐸E) + 𝑔OU,I(𝑡)(𝑉 − 𝐸I), (9)

with reversal potential 𝐸E = 0 and 𝐸I = −80, values similar to the dis-
ributed synapses. The maximum conductances follow independently of
ach other an Ornstein–Uhlenbeck process:
𝑑 𝑔OU,x(𝑡)

𝑑 𝑡 = 1
𝜏OU,x

[𝑔OU,x − 𝑔x] +
√

2𝜎𝑥𝜂x(𝑡), (10)

where 𝑔x are the average maximum conductances of the added
ynapses, 𝜏OU,x is the correlation time of the OU process, 𝜎x is the
ntensity of the fluctuations, and 𝜂x(𝑡) is the zero mean uncorrelated
aussian noise (⟨𝜂x(𝑡)⟩ = 0 and correlation ⟨𝜂x(𝑡)𝜂y(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′)).
ee [35,36] for further details on the updating rules for numerical

integration of the above equations.
We carried out three different sets of calculations. In the first, we

panned only some conductance values and corresponding noise inten-
ities with the excitatory term, excluding the inhibitory contribution.
n the second, we only spanned the inhibitory term, again in terms of
ean conductance and fluctuation intensity, excluding the excitatory

ontributions. In the third one, we spanned the combined contributions
f inhibition and excitation, fixing the value of the two corresponding
luctuation intensities to the value of the maxima registered in the
revious cases. The OU time correlations have been fixed to the values
OU,E = 3 ms in the case of excitatory synapses, and to the value 𝜏OU,I =
0 ms in the case of inhibitory ones.

Figs. 7, 8 and 9 show the results of the simulations by spanning the
two parameters respectively considered and schematised in the panels
(a) and (b), which record the output frequencies of the two somas,
panel (c) which shows the spiking correlation ⟨𝐶R⟩ and panel (d) which
shows the projection of ⟨𝐶R⟩ along one of the parameters in the 3D
plots.

In Fig. 7(a) and (b) we can observe how the excitatory-only back-
round activity always increases the average spiking frequency, regard-
ess of the fluctuation intensity. A more structured behaviour is present
n panel (c) for the spiking correlation, where ⟨𝐶R⟩ increases with the
ean conductance, whilst a clear decrease is observed as a function of

he fluctuation intensities 𝜎E, the latter results more visible in panel (d)
or some values of the mean maximum conductance 𝑔E.

More interesting is the response of the neurons to the inhibitory
ackground activity. We can see in Fig. 8 that, besides the expected

monotonic decrease of the output spiking frequencies in both neurons
with the average inhibition weight 𝑔I, the spiking correlation reveals a
non-monotonic behaviour with 𝑔I (see panel (c)) with a clear maximum
that also depends on the noise intensity. Panel (d) shows the correlation
⟨𝐶R⟩ as a function of the average inhibitory weight 𝑔I for three fluc-
tuation intensities, showing a clear maximum with a relative increase
with respect to the previous minimum of about ≈ 10%. Instead, the
correlation decreases monotonically with the noise intensity. Finally,
the third set of calculations has been performed with fixed noise

intensities in both cases (excitatory and inhibitory). Specifically we
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Fig. 7. Spiking correlation as a function of the excitatory fluctuating conductance
parameters: the average conductance 𝑔E and noise intensity 𝜎E. The OU correlation
ime is 𝜏OU,E = 3 ms in this case. The parameters for the distributed synapses in this

plot are 𝑖𝑤 = 0.01 nS, 𝑑1 = 175 μm, and 𝜏d = 5 ms. The excitatory fluctuating term
decreases monotonically the spiking correlation ⟨𝐶R⟩.

have chosen the maximum values of the calculations performed above,
.e. 𝜎E = 0 and 𝜎I = 0, but similar behaviour is recovered with non-

zero noise intensities. This mixture of excitation and inhibition reveals a
clear non-monotonic behaviour of the spiking correlation as a function
of both magnitudes 𝑔E and 𝑔I, with optimal correlations for a proper
𝑔I-𝑔E combination, as seen in Fig. 9(c). Panel (d) shows a selection
f ⟨𝐶R⟩ curves as a function of the 𝑔I for three values of the back-
round excitatory weight 𝑔E, where this complex behaviour of the two

measures appears. The balance between excitation and inhibition is an
important neurophysiological factor. In fact, the absence of inhibition
leads to epileptic activity [37] and loss of sensory selectivity [38]. Some
stimates of the weight of the two conductances have been made using
ata from cortical neurons [39,40], and fitting the output with a LIF

model [41], a 4 to 1 ratio between inhibitory/excitatory conductances
as calculated. In another case, during slow-wave sleep activity and in

depolarised conditions (up-phase), excitatory and inhibitory synaptic
conductances are balanced with a ratio of 1 [42,43], whereas in the
awake state inhibition becomes predominant [44]. In the presented

odel, the inhibitory background activity provides optimal synchroni-
ation conditions at values about one order of magnitude higher than
he excitatory ones.

4. Summary and conclusions

We have studied the synchronisation behaviour of two CA1 neu-
rons subjected to Poissonian inputs at a frequency 𝑓inp = 60 Hz as
a function of the different distances from the soma of the excitatory
synapses arriving from the CA3 neurons of the Hippocampus trisynaptic
path.

The spiking activity in the two neurons appears nonmonotonic with
he distance of the synapse distribution in the second neuron, with a
xtremal value at 𝑑∗1 , which is a minimum value for the neuron with
he synapse distribution at 𝑑0 (see Fig. 2(a)), and a maximum value for
1 with distal synapses (Fig. 2(c)), showing the counterintuitive effect
f increasing spiking frequency for distal synapses.

The spiking activity of both neurons decreases nonmonotonically
ith the inhibitory weight, with a minimum value corresponding to
bout 40 active interneurons (Fig. 3).

Regarding the synchronisation properties measured by the phase
piking correlation ⟨𝐶R⟩ we always observe a decrease with the weight
f the inhibitory synapses, as well as with the distance of the synapse
6 
Fig. 8. Spiking correlation as a function of the inhibitory fluctuating conductance
parameters: average 𝑔OU,I and noise intensity 𝜎I. The OU correlation time is here
𝜏OU,I = 10 ms. The parameters of the distributed synapses are the same as Fig. 7.

Fig. 9. Spiking correlation as a function of both excitatory and inhibitory background
conductances in the OU scheme: The parameters of the distributed synapses are the
same as Figs. 7 and 8.

distribution (Figs. 2 and 3). Moreover, in the limit of small distances
(𝑑1 ≲ 200 μm), synchronisation is weakly influenced by the path time
delays in the excitatory synapses 𝜏E,del if they remain at low values
(𝜏E,del ≲ 2 ms) (see Fig. 6). The absence of an increase in synchronisation
with the inhibition is essentially due to the short time decay of the
AMPA synapses for which the inhibition plays no constructive role.
Nevertheless, we also observe, always in the presence of inhibition,
an increase of the phase spiking correlation with the time delay 𝜏I,s
at which the interneurons activate (Fig. 5).

The results presented here show that, in the absence of a stochastic
ackground, the fast AMPA excitatory synapses are not able to in-
rease the synchronisation of soma spiking, even in the presence of
he inhibition given by interneurons. The latter simply act as modu-
ators, with nonmonotonic behaviour, of the frequency response of the
eurons.

Moreover, the presence of the unavoidable stochastic background
n in vivo functioning (see Figs. 7 to 9) shows that the fluctuations

do not play any constructive role in this model, and that they mainly
contribute to reducing the spiking correlation of the system. Instead,
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an increase in synchronisation can be achieved by a combined excita-
tory/inhibitory background activity in the presence of optimal condi-
tions for a range of suitable conductances, with a dominant inhibition
weight of about one order of magnitude with respect to excitatory
synapses.
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Appendix

Fig. 2 shows a clear sawtooth behaviour in panels (b), (c), and
d). This intriguing feature is only due to the specific morphology
mplemented in our simulations. In order to check out this point, a
eries of calculations have been performed by using a different realistic
orphology, to investigate the analogue outcomes as those reported

bove.
In particular, the structure used is the one labelled

pg141209_A_idA in Ref. [17]. The results are shown in Fig. 10,
equivalent to Fig. 2, where it is evident that the detailed sawtooth
behaviour has disappeared, though leaving the main qualitative trend
previously encountered. In fact, a global maximum is present for the
frequency spiking 𝜈1 as a function of 𝑑1 (panels (b–d)) around the
value 𝑑∗1 ≈ 200 μm, while the other morphology presented it at 𝑑∗1 ≈
150 μm with a sharper peak. Again, the correlation measure appears
monotonic, except for a small increase at the very last value 𝑑1 =
300 μm. This example confirms the strong heterogeneity in the spiking
details that a specific morphology can produce.

Data availability

No data was used for the research described in the article.
7 
Fig. 10. Frequency response of the two neurons 𝜈0 (panel a) and 𝜈1 (panel b) to the
Poissonian input at the average frequency 𝑓inp = 60 Hz as a function of the distance
𝑑1 of the synapses from the soma in neuron 𝑁1. Panel (c) shows the mean frequency
between the two neurons, and panel (d) shows their difference. The spiking correlation
is reported in panel (e).
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