000147685 001__ 147685
000147685 005__ 20241220131257.0
000147685 0247_ $$2doi$$a10.1111/gcb.17580
000147685 0248_ $$2sideral$$a141105
000147685 037__ $$aART-2024-141105
000147685 041__ $$aeng
000147685 100__ $$aMartinez del Castillo, Edurne
000147685 245__ $$aContrasting future growth of Norway spruce and scots pine forests under warming climate
000147685 260__ $$c2024
000147685 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147685 5203_ $$aForests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 Picea abies and Pinus sylvestris stands across Europe to predict species‐specific tree growth variability from 1950 to 2016 (R2 > 0.82) and develop 21st‐century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071–2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.
000147685 536__ $$9info:eu-repo/grantAgreement/EC/H2020/882727/EU/Modelling non-stationary tree growth responses to global warming/MONOSTAR$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 882727-MONOSTAR
000147685 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000147685 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147685 700__ $$aTorbenson, Max C. A.
000147685 700__ $$aReinig, Frederick
000147685 700__ $$aTejedor, Ernesto
000147685 700__ $$0(orcid)0000-0002-7585-3636$$ade Luis, Martín$$uUniversidad de Zaragoza
000147685 700__ $$aEsper, Jan
000147685 7102_ $$13006$$2430$$aUniversidad de Zaragoza$$bDpto. Geograf. Ordenac.Territ.$$cÁrea Geografía Física
000147685 773__ $$g30, 11 (2024), e17580 [13 pp.]$$pGlob. chang. biol.$$tGlobal Change Biology$$x1354-1013
000147685 8564_ $$s11741258$$uhttps://zaguan.unizar.es/record/147685/files/texto_completo.pdf$$yVersión publicada
000147685 8564_ $$s2472630$$uhttps://zaguan.unizar.es/record/147685/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147685 909CO $$ooai:zaguan.unizar.es:147685$$particulos$$pdriver
000147685 951__ $$a2024-12-20-12:01:53
000147685 980__ $$aARTICLE