000147703 001__ 147703
000147703 005__ 20241220131257.0
000147703 0247_ $$2doi$$a10.1016/j.physd.2024.134457
000147703 0248_ $$2sideral$$a141152
000147703 037__ $$aART-2025-141152
000147703 041__ $$aeng
000147703 100__ $$0(orcid)0000-0002-4802-2511$$aMayora-Cebollero, Ana$$uUniversidad de Zaragoza
000147703 245__ $$aAlmost synchronization phenomena in the two and three coupled Brusselator systems
000147703 260__ $$c2025
000147703 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147703 5203_ $$aWe present a study of some temporal almost synchronization phenomena of systems of two and three coupled Brusselators: they are approximately synchronized during most of the dynamics, only losing synchronization for small times and quickly returning to an almost synchronized state. Here we show two situations where this phenomenon occurs, one related with codimension-two Hopf–pitchfork bifurcations, and the other one due to the existence of fast–slow dynamics. On the one hand, a detailed characterization of the codimension-two Hopf–pitchfork bifurcations in the model allows us to determine the regions of the parameter space in which this phenomenon occurs. On the other hand, a fast–slow analysis of the two coupled Brusselators, using singular perturbation theory, illustrates the second situation studied here. We next analyze this phenomenon numerically, by explicitly calculating the fraction of time during which different trajectories are almost synchronized. Our results are then extended to the case of three coupled Brusselators.
000147703 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E24-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113052GB-I00
000147703 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000147703 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147703 700__ $$0(orcid)0000-0001-9868-9368$$aJover-Galtier, Jorge A.$$uUniversidad de Zaragoza
000147703 700__ $$aDrubi, Fátima
000147703 700__ $$aIbáñez, Santiago
000147703 700__ $$0(orcid)0000-0002-1184-5901$$aLozano, Álvaro$$uUniversidad de Zaragoza
000147703 700__ $$0(orcid)0000-0002-3431-0926$$aMayora-Cebollero, Carmen$$uUniversidad de Zaragoza
000147703 700__ $$0(orcid)0000-0002-8089-343X$$aBarrio, Roberto$$uUniversidad de Zaragoza
000147703 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000147703 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000147703 773__ $$g472 (2025), 134457 [20 pp.]$$pPhysica, D$$tPHYSICA D-NONLINEAR PHENOMENA$$x0167-2789
000147703 8564_ $$s6447397$$uhttps://zaguan.unizar.es/record/147703/files/texto_completo.pdf$$yVersión publicada
000147703 8564_ $$s2748048$$uhttps://zaguan.unizar.es/record/147703/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147703 909CO $$ooai:zaguan.unizar.es:147703$$particulos$$pdriver
000147703 951__ $$a2024-12-20-12:02:11
000147703 980__ $$aARTICLE