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A B S T R A C T

We present a study of some temporal almost synchronization phenomena of systems of two and three coupled
Brusselators: they are approximately synchronized during most of the dynamics, only losing synchronization
for small times and quickly returning to an almost synchronized state. Here we show two situations where
this phenomenon occurs, one related with codimension-two Hopf–pitchfork bifurcations, and the other one
due to the existence of fast–slow dynamics. On the one hand, a detailed characterization of the codimension-
two Hopf–pitchfork bifurcations in the model allows us to determine the regions of the parameter space in
which this phenomenon occurs. On the other hand, a fast–slow analysis of the two coupled Brusselators, using
singular perturbation theory, illustrates the second situation studied here. We next analyze this phenomenon
numerically, by explicitly calculating the fraction of time during which different trajectories are almost
synchronized. Our results are then extended to the case of three coupled Brusselators.
1. Introduction

A great variety of biological and chemical processes can be studied
using models where identical dynamical systems interact with each
other through simple coupling mechanisms. Many models of neural
networks or diffusively coupled chemical reactors fit this description.
Even simple neural models, such as the Hodgkin–Huxley model [1],
give rise to complex patterns when neurons are coupled; there are
examples ranging from rhythmic patterns occurring in small groups
of cells (Central Pattern Generators, CPGs) [2–4] to collective behav-
iors of large populations of neurons [5,6]. Other interesting examples
in biology and chemistry can be found in the analysis of chemical
reactors, coupled by allowing substances to move from one reactor
to another [7]; such is the case of glycolytic oscillators [8], coupled
Brusselator systems [8,9] or even cells [10].

Perhaps the most interesting problems that one can face when
working with coupled dynamical systems are related to synchronization
phenomena. The scientific community has been fascinated by synchro-
nization for a long time, dating back to 17th century, when Christopher
Huygens described the behavior of two pendulum clocks hanging from
a wall. We can mention other paradigmatic examples such as the
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behavior of fireflies, heart pacemaker cells, the neural networks that
control circadian rhythms or the synchronization of neurons linked to
Parkinson’s disease (see Ref. [11] and references therein). All these
examples show the relevance of the study of synchronization, not only
theoretically but also from the perspective of its application to fields
such as Engineering, Chemistry and Medicine.

Many studies on synchronization deal with networks of coupled
systems. In this context, a network is said to be fully synchronized
when its coupled systems oscillate in a coherent way [12–15]. In net-
works where more than two systems are coupled, partial synchronization
(also called clustered synchronization, polysynchronization or concurrent
synchronization) may also appear [16]. In partial synchronization, the
coupled systems split into two or more subgroups, called clusters, in
such a way that the oscillators synchronize with one another in the
same cluster (i.e. each cluster is fully synchronized), but there is no
synchronization among different clusters. Other various weaker forms
of synchronization have been proposed in literature, such as practical
synchronization [17], phase synchronization [13,18], time-lag synchro-
nization [14], generalized synchronization [19] and collective almost
synchronization [20]. The concept of collective almost synchronization
https://doi.org/10.1016/j.physd.2024.134457
Received 18 April 2024; Received in revised form 5 November 2024; Accepted 19
vailable online 28 November 2024 
167-2789/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
November 2024

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
https://orcid.org/0000-0002-4802-2511
https://orcid.org/0000-0001-9868-9368
https://orcid.org/0000-0003-4335-1292
https://orcid.org/0000-0002-6214-7732
https://orcid.org/0000-0002-1184-5901
https://orcid.org/0000-0002-3431-0926
https://orcid.org/0000-0002-8089-343X
mailto:amayora@unizar.es
mailto:jorgejover@unizar.es
mailto:drubifatima@uniovi.es
mailto:mesa@uniovi.es
mailto:alozano@unizar.es
mailto:cmayora@unizar.es
mailto:rbarrio@unizar.es
https://doi.org/10.1016/j.physd.2024.134457
https://doi.org/10.1016/j.physd.2024.134457
http://creativecommons.org/licenses/by/4.0/


A. Mayora-Cebollero et al. Physica D: Nonlinear Phenomena 472 (2025) 134457 
deals with the distance, measured on the phase space, among orbits of
the systems (with or without lag); when all orbits are close enough,
i.e. their distances are smaller than a small quantity 𝜀, then the net-
work is said to show collective almost synchronization. However, it is
possible to also observe temporal regimes characterized by incomplete
synchronization, which in some fields is referred to as partial synchro-
nization in a more general way than in [16]. Existence of intervals
of near synchronization are also discussed in [21,22] in the context
of mixed-mode oscillations in coupled Fitzhugh–Nagumo oscillators. In
this paper, we deal with networks showing collective almost synchro-
nization only in some time intervals. Based on the concepts mentioned
above, we provide an appropriate definition for the observed phenom-
ena. Specifically, we connect them with fast–slow dynamics on the
model and/or specific bifurcations. It should be noted that our study
focuses on models with a small number of coupled systems, in our case
two and three chemical Brusselators systems, where we can make a
more detailed analysis of the different elements. For larger networks, it
may be more appropriate to use the techniques and concepts developed
for synchronization in coupled oscillators (Kuramoto models) [14].

Regarding the mathematical study of dynamical systems and their
characteristics, it should be noticed that, in a typical natural interaction
scenario, the number of involved individual units can be very large,
even thousands of elements or more in the case of neural networks.
However, the study of models with few elements, even with only two
units, can give some insight into the behavior and characteristics of
more general or realistic systems. Furthermore, certain coupled systems
with only two elements, such as the case of two coupled continuous-
flow stirred tank reactors, have a long research history and a great
practical and theoretical interest (see [23] and references therein). In
particular, synchronization phenomena may occur when only a small
number of systems are coupled. Thus, analyzing the coupling of few
dynamical systems is both relevant for the characterization of the
emerging behaviors, and feasible from an analytical and computational
point of view.

In this paper, we study the coupling of Brusselators using a linear
diffusion mechanism [9]. The general model for the coupling of two
identical dynamical systems can be described as follows. Consider a
dynamical system with coordinates 𝐮 ∈ R𝑛, whose dynamical equation
is 𝐮′ = 𝐹 (𝐮), with 𝐮′ denoting the time derivative and 𝐹 an 𝑛-
dimensional vector field. If two identical copies of this system are
considered, with coordinates 𝐮1,𝐮2 ∈ R𝑛, the equations describing their
coupled evolution are

{

𝐮′1 = 𝐹 (𝐮1) + 𝛬(𝐮2 − 𝐮1),
𝐮′2 = 𝐹 (𝐮2) + 𝛬(𝐮1 − 𝐮2),

(1)

where 𝛬 is an 𝑛 × 𝑛 non-negative definite diagonal matrix. It easily
follows that the manifold 𝛱 = {(𝐮1,𝐮2) ∈ R2𝑛 ∶ 𝐮1 = 𝐮2} is invariant by
the flow of (1). The manifold 𝛱 is called the synchronization manifold,
with each attractor 𝐴 ⊂ 𝛱 determining a synchronized state of the
whole system. Bifurcations of 𝐴 that happen on 𝛱 imply a change
in the observed synchronization phenomenon. For instance, if 𝐴 is a
hyperbolic attracting equilibrium point that undergoes a super-critical
Hopf bifurcation on the invariant manifold 𝛱 , it will change into
a synchronized periodic state. On the other hand, bifurcations that
happen transversely to 𝛱 give rise to desynchronization phenomena.
Again, if 𝐴 is a hyperbolic attracting equilibrium point that undergoes a
pitchfork bifurcation transverse to 𝛱 , it will lose its stability generating
two non-synchronized stable stationary states.

Codimension-two bifurcations on a coupled system such as (1)
appear when one bifurcation on 𝛱 and another one in a direction trans-
verse to 𝛱 collide. A simple scenario would be the pitchfork-pitchfork
interaction, but it would not unfold particularly rich dynamics. Instead,
in this paper we consider codimension-two Hopf–pitchfork (HP in the
sequel) bifurcations, which in some cases give rise to very interesting

phenomena. HP bifurcations are the results of the interaction between

2 
Hopf bifurcations on 𝛱 and pitchfork bifurcations in directions trans-
verse to 𝛱 . HP bifurcations in a coupled system may arise naturally
if the isolated units exhibit a Hopf bifurcation. Codimension-two HP
bifurcations lead to planar reductions identical to those of Hopf–Hopf
bifurcations, which are studied in Refs. [24,25], and of which there
are twelve different cases, classified by Guckenheimer and Holmes
(see Table 7.5.2 in Ref. [24]). Some of the essential features of these
bifurcations are reviewed for completeness in the Appendix.

The focus of the paper is the study of HP bifurcations and syn-
chronization phenomena of diffusion-coupled Brusselator systems. The
Brusselator, as introduced in Ref. [26], is a two-variable system that
models an autocatalytic reaction leading to chemical oscillations. The
model is based on a set of reactions with input products 𝐴, 𝐵; final
products 𝑃 , 𝑄; and intermediates 𝑋, 𝑌 :

𝐴→ 𝑋, 𝐵 +𝑋 → 𝑌 + 𝑃 ,

2𝑋 + 𝑌 → 3𝑋, 𝑋 → 𝑄.
(2)

Denoting the concentrations of input products by positive constants
𝐴,𝐵 > 0, and with concentrations 𝑥 and 𝑦 of the intermediates acting
as variables, the equations of the model are
{

𝑥′ = 𝐴 − (𝐵 + 1)𝑥 + 𝑥2𝑦,

𝑦′ = 𝐵𝑥 − 𝑥2𝑦.
(3)

First quadrant of the (𝑥, 𝑦) plane is forward invariant by the flow, and
the system exhibits a supercritical Hopf bifurcation when 𝐵 = 𝐴2 + 1.
If 𝐵 < 𝐴2 + 1, there is a unique globally attracting equilibrium point
at (𝐴,𝐵∕𝐴), while for 𝐵 > 𝐴2 + 1 there is a unique globally attracting
periodic orbit.

Consider now two identical Brusselators, identified by their coor-
dinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2). The resulting coupled Brusselator system
(2-CBS in the sequel) evolves according to (1), with 𝐹 in this case
describing the dynamics (3) of a single Brusselator:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥′1 = 𝐴 − (𝐵 + 1)𝑥1 + 𝑥21𝑦1 + 𝜆1(𝑥2 − 𝑥1),

𝑦′1 = 𝐵𝑥1 − 𝑥21𝑦1 + 𝜆2(𝑦2 − 𝑦1),

𝑥′2 = 𝐴 − (𝐵 + 1)𝑥2 + 𝑥22𝑦2 + 𝜆1(𝑥1 − 𝑥2),

𝑦′2 = 𝐵𝑥2 − 𝑥22𝑦2 + 𝜆2(𝑦1 − 𝑦2),

(4)

with coupling parameters 𝜆1, 𝜆2 ≥ 0. The first octant with positive
values of all the variables is forward invariant under the flow, and so
is the synchronization manifold 𝛱 .

Numerical solutions show differences in the timescales of the sys-
tem, which motivates to use the tools of singular perturbation theory to
characterize the dynamics. Singular perturbation theory deals with the
description of systems with two differentiated timescales, allowing for
an explicit separation of fast and slow evolution [27–29]. This charac-
terization of dynamics has been proven to be very useful for the analysis
of many dynamical systems, such as cardiac cell models [30–32], neural
models [6,33] and others [34].

The 2-CBS has been studied from different perspectives. In Refs.
[35–37], numerical evidences of the existence of strange attractors
were given. With this motivation, in Ref. [38] (see also Ref. [39]), an
analytical proof of its existence is provided. Recently (see Ref. [9]), a
detailed numerical exploration of the chaotic dynamics displayed by
the family of coupled Brusselators has been carried out. On the other
hand, Ref. [40] presents a study of HP singularities that are unfolded in
the 2-CBS. A rich variety of cases are reported, including bifurcations
of codimensions two, three and four, and those that may unfold chaotic
dynamics are discussed. In total, at least eight of the twelve cases
described in the classification by Guckenheimer and Holmes were
found.

In this paper, we analyze one of the codimension-two cases of HP
bifurcation that is unfolded by the 2-CBS. It is a case that allows
explaining the appearance of ‘‘temporal almost synchronization’’. If
the synchronization manifold 𝛱 of a coupled system becomes unsta-

ble through a bifurcation, stable limit cycles may appear outside of
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𝛱 . Temporal almost synchronization occurs when these limit cycles,
representing unsynchronized states of the system, stay close to 𝛱 for
ong parts of their periods. In other words, coupled systems are said to
o through temporal almost synchronization when for the most part of
heir time evolution they stay approximately synchronized, while only
or small times they are clearly out of synchronization. This interesting
henomenon can be studied in the 2-CBS system by both a numerical
nalysis and a study of bifurcations leading to these phenomena.

This paper is organized as follows. Section 2 shows a detailed
escription of HP bifurcations in the 2-CBS model and the changes
n the limit cycles of the system. Section 3 describes how some of
hese cases exhibit temporal almost synchronization. Moreover, a math-
matical study of the phenomenon is given. Section 4 considers the
oncept of almost synchronization to a fast–slow regime of the 2-CBS
odel. In particular, singular perturbation theory is applied to both a

ingle Brusselator and two coupled Brusselators, showing how temporal
lmost synchronization emerges from this analysis. Section 5 extends
he analysis of previous sections to the study of three coupled Brussela-
ors, characterizing their dynamical properties. Finally, conclusions are
resented in Section 6. The theory of codimension-two Hopf–pitchfork
ifurcations is reviewed in the Appendix.

. Bifurcations in the 2-CBS model

Bifurcations in the 2-CBS model are responsible for the loss of
tability of the synchronization manifold. Elementary bifurcations that
ccur in the 2-CBS model (4) have been studied in Refs. [9,38,40]. In
his section, we focus on the characterization of Hopf–pitchfork (HP)
ifurcations, following the classical theory of bifurcations [24]. A brief
eview of the theory is presented in the Appendix.

For all parameter values there is an equilibrium point at (𝐴,𝐵∕𝐴,𝐴,
∕𝐴) that belongs to the synchronization manifold 𝛱 = {𝑥1 = 𝑥2, 𝑦1 =
2}. Recall that the dynamics on 𝛱 is that of the isolated Brusselator.
oreover, the 2-CBS is invariant under the symmetry

𝑥1, 𝑦1, 𝑥2, 𝑦2) → (𝑥2, 𝑦2, 𝑥1, 𝑦1). (5)

In Ref. [9] it is proven that the system may exhibit up to five equilib-
ium points. Under generic conditions, there is a pitchfork bifurcation
t (𝑥1, 𝑦1, 𝑥2, 𝑦2) = (𝐴,𝐵∕𝐴,𝐴,𝐵∕𝐴) for all parameter values in the
ypersurface

𝑃 =
{

(𝐴,𝐵, 𝜆1, 𝜆2) ∈ 𝑉 ∶ 𝐵 =
(𝐴2 + 2𝜆2)(1 + 2𝜆1)

2𝜆2

}

, (6)

where 𝑉 = {(𝐴,𝐵, 𝜆1, 𝜆2) ∈ R4 ∶ 𝐴 > 0, 𝐵 > 0, 𝜆1 > 0, 𝜆2 > 0}. This
bifurcation is transverse to the synchronization manifold.

The Jacobian matrix has at least one pair of pure imaginary eigen-
values on the bifurcation hypersurfaces of codimension 1,

𝑀1
𝐻 =

{

(𝐴,𝐵, 𝜆1, 𝜆2) ∈ 𝑉 ∶ 𝐵 = 1 + 𝐴2 + 2(𝜆1 + 𝜆2),

𝜆1 >
4𝜆22 + 2𝜆2𝐴2 − 𝐴2

2𝐴2

}

, (7)

hich corresponds to the Hopf bifurcations occurring transversely to
, and
2
𝐻 =

{

(𝐴,𝐵, 𝜆1, 𝜆2) ∈ 𝑉 ∶ 𝐵 = 1 + 𝐴2,

𝐴2(1 + 2𝜆1 − 2𝜆2) + 4𝜆1𝜆2 ≠ 0
}

, (8)

hich corresponds to Hopf bifurcation for the isolated Brusselator
ystem on the invariant plane 𝛱 .

The hypersurfaces 𝑀𝑃 and 𝑀2
𝐻 have a common border along the

bifurcation surface

𝑀𝐻𝑃 =
{

(𝐴,𝐵, 𝜆1, 𝜆2) ∈ 𝑉 ∶ 𝐵 = 1 + 𝐴2,

𝜆1 =
(−1 + 2𝜆2)𝐴2

, 𝜆2 >
1}, (9)
2(𝐴2 + 2𝜆2) 2

3 
n which the Jacobian matrix at (𝑥1, 𝑦1, 𝑥2, 𝑦2) = (𝐴,𝐵∕𝐴,𝐴,𝐵∕𝐴) has
pair of pure imaginary eigenvalues and a zero eigenvalue. There-

ore, 𝑀𝐻𝑃 is a bifurcation surface of Hopf–pitchfork singularities of
odimension at least 2. In Ref. [40], it is proved that several cases of
odimension 2, 3 and 4 are generically unfolded by the 2-CBS.

On the other hand, if the appropriate generic conditions are sat-
sfied, the 2-CBS exhibits a saddle–node bifurcation at an equilibrium
oint outside the synchronization manifold for parameter values on the
ypersurface

𝑆𝑁 =
{

(𝐴,𝐵, 𝜆1, 𝜆2) ∈ 𝑉 ∶ 𝜆2 =
4𝐴2(1 + 2𝜆1)2

(1 + 𝐵 + 2𝜆1)2
,

𝐵 > 3 + 6𝜆1
}

. (10)

So, hypersurface 𝑀𝑆𝑁 separates two regions with either 1 or 5 equilib-
rium points. Transition from 5 to 3 (or from 1 to 3) will take place when
arameters cross the hypersurface 𝑀𝑃 corresponding to the pitchfork
ifurcation.

Results in Ref. [40] show that the 2-CBS exhibits at least eight of
he twelve cases of codimension-two HP bifurcations. In Figure 4 of
ef. [40] one can see a partial map of the different cases that are
etected for parameter values (𝐴, 𝜆2) ∈ [0, 10] × [0, 10]. For instance,
hen 𝐴 = 4 = 𝐴∗ and 𝜆2 = 2 = 𝜆∗2, there is an HP bifurcation of

type VIa for which the emerging invariant torus is attracting. Note that
parameters 𝐵 and 𝜆1 at the bifurcation point are given by the formulas
that characterize the 𝑀𝐻𝑃 surface (9), namely 𝐵 = 17 = 𝐵∗ and
𝜆1 = 6∕5 = 𝜆∗1. All numerical explorations in this paper are done for
parameter values close to (𝐴∗, 𝐵∗, 𝜆∗1 , 𝜆

∗
2).

Fig. 1 shows the results of the exploration along a straight line
in the parameter space with 𝐴 = 𝐴∗, 𝜆1 = 𝜆∗1 + 0.01, 𝜆2 = 𝜆∗2 and
𝐵 ∈ [16.98, 17.12], a small interval containing 𝐵∗. Panels (a) and (b)
correspond to local bifurcations of limit cycles and panel (c) to bifur-
cations of equilibrium points (these bifurcation diagrams were obtained
with the MATCONT continuation software [41,42]). In panel (d), the
spike-counting (SC) technique [43] is used to explore the parametric
plane (𝐵, 𝜆1). This technique detects the number of maximum points
during a period (of variable 𝑥1) of an orbit and assigns a color to each
value (when an orbit reaches the maximum possible number of assigned
maxima, we assume that it shows either chaotic behavior or periodic
behavior with a large number of maxima). Six different orbits (green)
are provided in the upper part of Fig. 1 to illustrate the changes in
the phase-space when the different bifurcations are crossed. It should
be noted that the numbering of each of the six cases agrees with that
used in the theoretical bifurcation diagram displayed in Fig. A.16 in the
Appendix. The synchronization manifold is shown in light blue color.

The transition from Case 1 to Case 2 of Fig. 1 illustrates the Hopf
bifurcation (H) that occurs in the synchronization manifold 𝛱 : the
attracting equilibrium point on 𝛱 changes into a saddle node and
an attracting periodic orbit emerges (compare with bifurcation 𝙿−1 in
Fig. A.16). The bifurcation point is clearly visible in panels (b) and (c).
In the transition from Case 2 to Case 3, a branch point of periodic orbits
is crossed. As a result, the periodic orbit on 𝛱 loses its stability and a
pair of attracting periodic orbits appears outside the synchronization
manifold (compare with bifurcation 𝙿3 in Fig. A.16). This bifurcation
is also shown in panels (a) and (b). A Neimark–Sacker bifurcation
(NS) occurs in the transition from Case 3 to Case 4 (bifurcation H in
Fig. A.16) and an attracting invariant torus emerges. Note that the torus
is only present in a very small range of parameters. In panel (a), one
can check how the stable periodic orbit exhibited in Case 3 loses its
stability. In Case 5, the attracting torus has disappeared and the orbit
goes to an equilibrium point outside the synchronization manifold.
Upper panel in Fig. 1 does not show any change in the transition from
Case 5 to Case 6, but there is indeed a bifurcation; namely, there is a
pair of repelling periodic orbits that disappears through a Hopf bifurca-
tion at an equilibrium point outside the synchronization manifold (this
corresponds to bifurcation 𝙿4 in Fig. A.16). This bifurcation is clear in

panels (a) and (c).
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Fig. 1. The bifurcation diagrams of limit cycles (𝙻𝙲) outside the synchronization plane 𝛱 and in 𝛱 are represented in panels (a) and (b), respectively (NS: Neimark–Sacker
bifurcation, 𝙷: Hopf bifurcation, 𝙱𝙿𝙲: Branch point cycle bifurcation). In panel (c), the bifurcation diagram of equilibrium points (𝙴𝙿) is shown (𝙷: Hopf bifurcation, 𝙿: Pitchfork
bifurcation). In panel (d), the spike-counting sweeping in the parametric plane (𝐵, 𝜆1) is drawn. At the top, some orbits for different values of 𝐵 are represented in green and
the synchronization plane is shown in light blue. The initial conditions used to integrate these orbits are (𝑥1 , 𝑦1 , 𝑥2 , 𝑦2) = (𝐴 − 𝛿, 𝐵∕𝐴 − 𝛿, 𝐴 + 𝛿, 𝐵∕𝐴 + 𝛿) where 𝛿 = 0.01. In the
representations, 𝐴 = 4.0, 𝜆 = 2.0 and 𝜆 = 1.21 (this value of 𝜆 is marked in panel (d) with a horizontal white dashed line).
2 1 1
Regions corresponding to parameter values where orbits tend to an
equilibrium (0 spikes) appear in the darkest blue color in panel (d).
A lighter blue color marks the region where the system exhibits an
attracting periodic orbit (1 spike). Panel (d) also shows a very thin
region in brown color, corresponding to parameter values for which
the phase portrait contains an attracting torus, such as the one shown
in Case 4; in these situations, the number of spikes explodes.

Fig. 2 shows a wider region in the parameter space surrounding the
HP bifurcation point. Panel (a) shows the equilibrium point analysis
and the bifurcation diagram described above, while panel (b) shows
the spike-counting sweeping of the area; the transition from 0 to 1
4 
spikes can be seen. Bifurcation curves in both diagrams were obtained
with MATCONT [41,42]. In both panels, the vertical black dashed line
represents a Hopf bifurcation on the synchronization manifold, which
corresponds to the transition from Case 1 to Case 2 in Fig. 1. There is a
branch point of limit cycles (𝙱𝙿𝙲) along the blue line that emerges from
the HP bifurcation point (green), which corresponds to the transition
from Case 2 to Case 3 in Fig. 1. Tori emerge when parameters cross
the NS bifurcation curve (green), which corresponds to the transition
from Case 3 to Case 4 in Fig. 1. A Hopf bifurcation occurs outside
the synchronization plane along all solid black bifurcation curves,
included the one that emanates from the HP bifurcation point, which
corresponds to the transition from Case 5 to Case 6 in Fig. 1. The red
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Fig. 2. In panel (a), number of equilibrium points and their stability in a region of the biparametric plane (𝐵, 𝜆1). In panel (b), spike-counting sweeping of that parametric plane.
In both panels some bifurcations are marked. The values of the fixed parameters are 𝐴 = 4.0 and 𝜆2 = 2.0.
line corresponds to a pitchfork bifurcation (𝙿) at the equilibrium point
on the synchronization plane. Note that for parameter values below
the pitchfork bifurcation line (yellow region in panel (a)) the system
exhibits three equilibrium points, while above it there are five equilib-
rium points. There is also a saddle–node bifurcation (𝚂𝙽) of equilibria
along the white line; there, the 2-CBS changes from exhibiting five to
only one equilibria. One should compare the bifurcation diagram in
panel (a) of Fig. 2 with that in Fig. A.16 and notice that colors of all
bifurcation curves are in correspondence, except for the case of the
curve 𝙷𝙲 (Heteroclinic cycle) in Fig. A.16, which does not appear in
the bifurcation diagram shown in panel (a). Correspondence between
bifurcation curves in the full system and those in a 2-dimensional
truncated normal form (see (A.5)) is explained in the Appendix.

Indeed, as already mentioned, when general unfoldings of an HP
bifurcation are considered, it is not possible to identify a bifurcation
corresponding to the heteroclinic cycle configuration exhibited in trun-
cated normal forms. However, the ghost of such a bifurcation is present,
since the invariant tori disappear in an abrupt way from the phase
space. The torus shown to illustrate Case 4 in the upper panel of Fig. 1
is very close to forming an heteroclinic cycle configuration (that is, it
is close to the theoretical HC curve shown in Fig. A.16).

For parameter values corresponding to Case 4 in Fig. 1 the 2-
CBS exhibits five equilibrium points: a point, that we denote as 𝑃0,
contained in the synchronization plane and two pairs of symmetric
equilibria, 𝑃± and 𝑄±, outside the synchronization plane. We assume
that the points 𝑃± are those involved in the HP bifurcation. Local
analysis (see Section 3 in Ref. [40]) shows that the Hopf–pitchfork
singularity exhibits an attracting three-dimensional center manifold.
Bifurcations occur in this center manifold. Fig. 3 shows again the invari-
ant torus already displayed in Fig. 1 (orbit 4) in the (𝑥1, 𝑦1, 𝑥2) phase
space and, additionally, a schematic information (panel (a)) about the
ghost of the heteroclinic cycle configuration shown in panel (b). The
elements of the cycle are the equilibrium points 𝑃0 and 𝑃+, the periodic
orbit 𝑃𝑂𝛱 contained in the synchronization plane, and their stable
(𝑊 𝑠) and unstable (𝑊 𝑢) invariant manifolds. We use the notation
𝑃±(𝑚, 𝑛) and 𝑄±(𝑚, 𝑛) to indicate that an equilibrium point has stability
(resp. unstability) index 𝑚 (resp. 𝑛) in the four-dimensional system.
In panel (b), 𝑊 𝑢(𝑃0) ⧵ {𝑃0} is contained in the invariant manifold
𝑊 𝑠(𝑃𝑂𝛱 ). And also, the invariant manifolds 𝑊 𝑢(𝑃𝑂𝛱 ) and 𝑊 𝑠(𝑃+) are
close each other and there is an almost coincidence of branches of the
5 
one-dimensional invariant manifolds 𝑊 𝑢(𝑃+) and 𝑊 𝑠(𝑃0). This almost
coincidence gives rise to the almost heteroclinic cycle. This scenario
allows us to understand how there is a chance for chaotic dynamics.
Shilnikov homoclinic orbits to 𝑃+ and codimension-two heteroclinic
cycles involving 𝑃0, 𝑃+ and 𝑃𝑂𝛱 are likely to appear. Nevertheless,
our numerical results reveal that although possible, chaotic behavior
emerging from HP bifurcations has no relevance in the model, at least
in the parameter region that we are exploring.

The existence of the shadow of a heteroclinic cycle has, however,
other dynamical consequences of remarkable relevance. In their ap-
proximation to that ghost, invariant tori approximate a part of the
synchronization manifold, namely, the unstable manifold of the equi-
librium point 𝑃0. As a consequence, as an orbit approaches the torus it
will exhibit large temporal almost synchronization. This phenomenon
is certainly more general: any orbit converging to an attractor that is
totally or partially close to the synchronization manifold will present
transits of variable length during which it will be very close to be
synchronized.

3. Almost synchronization

As already mentioned, when a trajectory is close to the synchroniza-
tion plane, variables 𝑥1 and 𝑦1 will be close, respectively, to variables
𝑥2 and 𝑦2. In order to quantify this closeness, we introduce the notion
of 𝛽𝜀 almost synchronization.

Definition 1. Let (𝑥1(𝑡), 𝑦1(𝑡), 𝑥2(𝑡), 𝑦2(𝑡)) be a solution of the 2-CBS
defined in an interval [0, 𝑇 ]. Fix 𝜖0 > 0 and take 𝜖 such that 0 < 𝜀 ≤ 𝜖0,
let us consider the following fraction:

𝛽𝜀 =
𝑚(𝐼𝜀)
𝑇

, (11)

where 𝑇 is assumed to be large enough, 𝑚 denotes the Lebesgue
measure on the real line and

𝐼𝜀 = {𝑡 ∈ [0, 𝑇 ] ∶ max{|𝑥1(𝑡) − 𝑥2(𝑡)|, |𝑦1(𝑡) − 𝑦2(𝑡)|} ≤ 𝜀}. (12)

We say that the solution is 𝛽𝜀 almost synchronized if 𝛽𝜀 > 0, i.e. if, for
some fraction 𝛽𝜀 of the total time 𝑇 , the distances between 𝑥1 and
𝑥2 and between 𝑦1 and 𝑦2 are below the threshold 𝜀. In particular,
a fully synchronized solution is 𝛽 almost synchronized with 𝛽 = 1
𝜀 𝜀
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Fig. 3. In panel (a), a 3D theoretical scheme of the stable and unstable manifolds of the unstable limit cycle 𝑃𝑂𝛱 , and the unstable equilibria 𝑃0 and 𝑃+ is shown, together with
a sketch of an orbit showing temporal almost synchronization. In panel (b), this orbit is shown in green in the (𝑥1 , 𝑦1 , 𝑥2) phase space, together with either the eigenvectors, if
real, or their real and imaginary parts, if complex, of the equilibrium points 𝑃0 and 𝑃+, shown in blue if stable and in red if unstable. The orbit stays close to the synchronization
plane when it evolves from 𝑃0 towards the limit cycle 𝑃𝑂𝛱 , hence 𝛽𝜀, defined by (11), is non-zero for appropriate values of 𝜀. Panel (c) shows only part of the orbit, in order
to better present its inside part: when the orbit completes the dome-like structure starting from 𝑃𝑂𝛱 and following the stable manifold of 𝑃+, it jumps towards 𝑃0 along the
directions of the unstable manifold of 𝑃+ and the stable manifold of 𝑃0. This part of the orbit is further enlarged in panel (d). The initial conditions used to integrate this orbit
are (𝑥 , 𝑦 , 𝑥 , 𝑦 ) = (𝐴 − 𝛿, 𝐵∕𝐴 − 𝛿, 𝐴 + 𝛿, 𝐵∕𝐴 + 𝛿), where 𝛿 = 0.01 and with parameters 𝐴 = 4.0, 𝐵 = 17.046795, 𝜆 = 1.21 and 𝜆 = 2.0.
1 1 2 2 1 2
for any 𝜀. Moreover, a solution is said temporally (resp. fully) almost
synchronized when there exists 𝜖 ∈ (0, 𝜖0] such that the solution is 𝛽𝜀
almost synchronized with 0 < 𝛽𝜀 < 1 (resp. 𝛽𝜖 = 1).

Remark 1. Note that 𝜖0 is a maximum threshold introduced to es-
tablish what can be considered almost synchronization. Otherwise,
without a threshold, any solution could be said 𝛽𝜀 almost synchronized
only by taking 𝜖 large enough. Along the paper we consider 𝜖0 = 0.1.

In the 2-CBS, almost synchronization is observed when parameters
cross the branch point of limit cycles (see the transition from Case 2
to Case 3 in Fig. 1 and also the blue bifurcation curve in panel (b) of
Fig. 2). Through that bifurcation, the limit cycle on the synchronization
manifold loses its stability and an attracting limit cycle emerges from
the synchronization manifold 𝛱 (Case 3). Beyond the bifurcation point,
the limit cycle moves away from 𝛱 , hence full almost synchronization
can be briefly detected as long as the distance between the limit cycle

and 𝛱 is not greater than 𝜀0. Far from the bifurcation point no almost

6 
synchronization occurs, as the limit cycle lays far from 𝛱 . However,
after suffering an NS bifurcation, an attracting invariant torus appears
(Case 4), part of which lays close to 𝛱 ; in this situation, temporal
almost synchronizations appear.

Continuing the periodic orbits that emerge through a branch point
of limit cycles and fixing a collection of thresholds, one can compute
the fraction 𝛽𝜀 for each case. Fig. 4 shows the results of such explo-
ration along the bifurcation line already considered in Fig. 1. Principal
bifurcation events outside 𝛱 in this context are drawn in panel (a): the
branch point of limit cycles and the NS bifurcation. As we can observe
in panel (b), for values of 𝐵 below the branch point of limit cycles,
𝛽𝜀 = 1 for all thresholds 𝜀 because there is an attracting limit cycle
contained in the synchronization manifold (gray color corresponds to 𝛽𝜀
almost synchronization for all selected thresholds). Once the parameter
𝐵 crosses the branch point of limit cycles, the periodic solution briefly
exhibits 𝛽𝜀 almost synchronization for different values of 𝜀; the fraction

𝛽𝜀 decreases rapidly as the distance between the limit cycle and the
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Fig. 4. In panel (a), the bifurcation diagram of limit cycles of the periodic orbit outside the synchronization plane 𝛱 is shown (similar to panel (a) in Fig. 1). In panel (b), the 𝛽𝜀
almost synchronization is studied for different values of the threshold 𝜀 and of the parameter 𝐵. In panel (b1), a zoom of the last zone of panel (b) is presented to see what really
happens. In panel (c), the synchronization plane 𝛱 , the stable orbit on such plane for 𝐵 = 17.025 and the stable orbits outside the plane 𝛱 for different values of 𝐵 are drawn. In
panels (c1) and (c2), the differences |𝑥1 − 𝑥2| and |𝑦1 − 𝑦2| of the green orbit (𝐵 = 17.028) of panel (c) are shown, respectively. In both graphics, the dashed lines represent some
thresholds with the same code color as the one in the legend of panel (b). The initial conditions used to obtain these figures are (𝑥1 , 𝑦1 , 𝑥2 , 𝑦2) = (𝐴 − 𝛿, 𝐵∕𝐴 − 𝛿, 𝐴 + 𝛿, 𝐵∕𝐴 + 𝛿)
where 𝛿 = 0.01 and the values of the parameters are 𝐴 = 4.0, 𝜆1 = 1.21 and 𝜆2 = 2.0.
synchronization plane increases (panel (c)). It is noticeable that this
decrease is not instantaneous, but slightly progressive, which indicates
that some parts of the orbit lay closer to 𝛱 than others (panels (c1) and
(c2) for 𝐵 = 17.028 and different values of 𝜀 following colors in legend
of panel (b)). Eventually, the limit cycle lays far enough from 𝛱 so, for
large enough values of 𝐵 after the branch point, 𝛽𝜀 = 0 for all selected
𝜀.

Panel (b) in Fig. 4 also shows that the 𝛽𝜀 almost synchronization is
linked to the invariant torus analyzed in Fig. 3. It is again clear that
this phenomenon occurs in a very small range of parameters, and 𝛽𝜀
almost synchronization is achieved for all considered threshold 𝜀 very
rapidly after the NS bifurcation. This fast evolution from a limit cycle
to a much larger invariant torus could be related to the existence of
torus canards in the system (see Ref. [44]).
7 
This area of interest has been enlarged in panel (b1). As the torus
increases in size and approaches the ghost of the heteroclinic cycle
configuration and therefore also close to the synchronization manifold,
more thresholds are reached. For parameter values close to 𝐵 =
17.046795 all selected thresholds have been reached. The corresponding
𝛽𝜀 values appear to converge to some 𝛽∗ < 1. This value provides the
fraction of time that a solution on the torus is close to the synchro-
nization manifold (with respect to a given threshold); most of the rest
of the time the system stays close to the equilibrium point outside the
synchronization manifold (either 𝑃+, as in Fig. 3, or 𝑃−).

In Fig. 5, solutions of the 2-𝙲𝙱𝚂 that correspond to orbits close to an
attracting torus are shown for different values of 𝐵. For each parameter
value, graphs for all variables are plotted together with two graphs (red
color) corresponding to the differences |𝑥 (𝑡) − 𝑥 (𝑡)| and |𝑦 (𝑡) − 𝑦 (𝑡)|.
1 2 1 2
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Fig. 5. Representation of the time series of the four variables of 2-CBS and the differences |𝑥1 − 𝑥2| and |𝑦1 − 𝑦2| for three different values of parameter 𝐵 in the rightmost region
analyzed in panels Fig. 4.b and 4.b1. The gray shaded stripes in the three subplots highlight regions of the orbit that are close to the synchronization plane, and where almost
synchronization occurs. The initial conditions used for the representations are (𝑥1 , 𝑦1 , 𝑥2 , 𝑦2) = (𝐴 − 𝛿, 𝐵∕𝐴 − 𝛿, 𝐴 + 𝛿, 𝐵∕𝐴 + 𝛿) where 𝛿 = 0.01 and the corresponding values of the
parameters are 𝐴 = 4.0, 𝜆 = 1.21 and 𝜆 = 2.0.
1 2
Fig. 6. Representation of a torus-shaped orbit (an example of 𝛽𝜀 almost synchronization) and two unstable periodic orbits (one of them on the synchronization plane 𝛱) for two
different values of the parameter 𝐵. The initial conditions used for both representations are (𝑥1 , 𝑦1 , 𝑥2 , 𝑦2) = (𝐴 − 𝛿, 𝐵∕𝐴 − 𝛿, 𝐴 + 𝛿, 𝐵∕𝐴 + 𝛿) where 𝛿 = 0.01 and the corresponding
values of the parameters are 𝐴 = 4.0, 𝜆1 = 1.21 and 𝜆2 = 2.0.
Vertical gray stripes are used to mark intervals of time where almost
synchronization occurs. As the invariant torus approaches the ghost of
a heteroclinic cycle configuration the width of the stripes increases,
indicating larger almost synchronization time. Orbits approaching in-
variant tori are depicted in Figs. 6 and 7 (multimedia available online)
for two different values of 𝐵, together with a plot of the synchronization
plane to illustrate how the distance between such invariant manifold
and the tori decreases as 𝐵 increases. The plot of the right shows an
orbit exhibiting an almost heteroclinic cycle.

4. Almost-synchronization in a fast–slow regime of the coupled
Brusselator system

Almost synchronization is not limited to situations such as those
presented in Section 3, but it can occur in many different regimes
of parameters. In this section, we show how almost synchronization
can also be explained by a fast–slow analysis of the system and the
emergence of critical manifolds with several attracting regions which
distribute the trajectories near and far from the synchronization plane.

The Brusselator system (3) shows, for certain values of its parame-
ters, great changes in the speed of the evolution along its stable orbit.
Typically, systems showing two different timescales can be written as

𝐮′ = 𝐹 (𝐮, 𝜏), (13)

with 𝐮 ∈ R𝑛 the coordinates of the system, 𝐹 a family of vector
fields on R𝑛, and 0 < 𝜏 ≪ 1 the small parameter determining the
difference in time scales. This difference can be made explicit by taking
the limit 𝜏 → 0, which is the starting point of singular perturbation
theory [45]. In many cases, variables can be characterized as fast and
8 
slow, allowing for a clear separation of both types in the system of
differential equations [27,28]. However, this is not necessary, as the
form presented in (13) is general and allows for a full fast–slow analysis
of the dynamics [29]. This will be the approach followed in the paper.

The 𝜏 → 0 limit describes the situation in which slow dynamics of
system (13) is neglected, and the resulting set of equations, called the
layer system, describes only the fast dynamics of the original system.
Equilibrium points of the layer system conform the critical manifold of
the system, 𝑆 = {𝐮 ∈ R𝑛 ∶ 𝐹 (𝐮, 0) = 0}. Fenichel’s theorem [45] proves
the existence of invariant slow manifolds close to normally hyperbolic
regions of the critical manifold. When normal hyperbolicity is lost, the
system may enter new fast phases of dynamics, potentially allowing
for the existence of limit cycles with combined fast and slow evolution.
In some cases, movement through fold points causes the system to stay
close to repelling regions of 𝑆 for long times, leading to the appearance
of interesting trajectories called canards, that have a great relevance in
the description of dynamics [46,47].

The Brusselator system can be described using the singular pertur-
bation theory, which gives some insight on its dynamical properties.
Here we present this analysis, as well as its extension to the 2-CBS and
a brief analysis of almost synchronizations in this regime.

4.1. Fast–slow analysis of a single Brusselator

In the following, we will assume that the rates of reactions (2) are
not equal [48]: the rates of the first and the last equations will be 𝜏,
while the rates of the other two equations will be kept equal to 1. The
modified equations of the Brusselator model are therefore
{

𝑥′ = 𝜏(𝐴 − 𝑥) − 𝐵𝑥 + 𝑥2𝑦,
′ 2 (14)

𝑦 = 𝐵𝑥 − 𝑥 𝑦.
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Fig. 7. Static figure taken from the multimedia file illustrating dynamically Figs. 5 and 6: Evolution of the torus-shaped orbits for 𝐵 = 17.046774 (left) and 𝐵 = 17.046795 (right),
with the same initial conditions as in Fig. 6, showing the projections of the orbits onto the (𝑥1 , 𝑥2 , 𝑦1) space (top) and the evolution of all four variables with respect to time
(bottom). Multimedia available online.
The modified system has the same equilibrium point, (𝐴,𝐵∕𝐴), which
now is stable if 𝐵 < 𝜏 +𝐴2 and unstable if 𝐵 > 𝜏 +𝐴2. In the following
it will be assumed that the equilibrium point is unstable, in order to
characterize the stable limit cycle.

In the range of values 0 < 𝜏 ≪ 1, the system exhibits two
different time scales, fast and slow. The fast and slow time scales can
be completely separated by considering the limit 𝜏 → 0; by taking this
limit in (14), the layer system is obtained:
{

𝑥′ = −𝐵𝑥 + 𝑥2𝑦,

𝑦′ = 𝐵𝑥 − 𝑥2𝑦.
(15)

Equilibrium points of the layer system conform the critical manifold of
system (14) 𝑆 = 𝑆1 ∪ 𝑆2, with

𝑆1 = {(0, 𝑦) ∶ 𝑦 ≥ 0}, 𝑆2 =
{(

𝑥, 𝐵
𝑥

)

∶ 𝑥 > 0
}

. (16)

This is a one-dimensional manifold in state space, so (14) is actually a
slow–fast system. However, since both variables exhibit fast and slow
dynamics, it is not in standard form. A detailed analysis of singu-
lar perturbation theory for non-standard form systems can be found
in [29].

The critical manifold is normally hyperbolic everywhere except at
a single fold point (

√

𝐵,
√

𝐵) ∈ 𝑆2. This divides the 𝑆2 into attracting
𝑆𝑎2 and repelling 𝑆𝑟2 regions:

𝑆𝑎2 =
{(

𝑥, 𝐵
𝑥

)

∶ 𝑥 >
√

𝐵
}

,

𝑆𝑟2 =
{(

𝑥, 𝐵
𝑥

)

∶ 0 < 𝑥 <
√

𝐵
}

,
(17)

while the 𝑆1 branch is always attractive. The critical manifold and
its components are plotted in Fig. 8(a), together with the equilibrium
point; assuming it is unstable implies that 𝐴 <

√

𝐵, hence it is located
on 𝑆𝑟2.

The next step in the study of the fast–slow dynamics of the system is
the computation of the layer system, which describes the slow evolution
of the system. Notice, however, that a qualitative description of slow
dynamics along the critical manifold shown in Fig. 8(a) does not
account for the appearance of limit cycles: for a system starting in 𝑆𝑟2, it
may evolve towards the fold point and then jump onto the attracting 𝑆1
branch; but, as this branch lacks a fold point, the system would never
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return to 𝑆𝑟2. A similar situation was described in [49] in the general
framework of autocatalator models. As in our case, the presence of
cubic terms in the dynamical equations causes the fast–slow analysis
to require at least 𝑂(𝜏) terms in order to fully characterize limit cycles.

In this case, we analyze the layer system by computing the slow
manifold as a perturbation of the critical manifold (16) [29]. According
to Fenichel’s theorem [45], for 𝜏 > 0 there exist invariant slow
manifolds close to the critical manifold 𝑆, outside a neighborhood of
the fold point. These slow manifolds can be assumed to be locally a
graph: thus, for the 𝑆1,𝜏 slow manifold close to the 𝑆1 branch, let us
consider 𝑥 as a function of 𝑦:

𝑥 ≡ 𝑥1,𝜏 (𝑦) = 𝜏𝜙(𝑦) + 𝑂(𝜏2). (18)

with lim𝜏→0 𝑥1,𝜏 (𝑦) being 𝑆1. As the slow manifold is invariant, on it we
have 𝑥′ = 𝑑𝑥1,𝜏

𝑑𝑦 𝑦′; substituting (14) yields 𝜙(𝑦) = 𝐴
𝐵 .

Slow dynamics of the system can be described by rescaling the time
by 𝜏, introducing new derivatives �̇� = 𝑥′∕𝜏, �̇� = 𝑦′∕𝜏. Thus, (14) when
restricted to 𝑆1,𝜏 and considering the limit 𝜏 → 0 yields the following
layer system:
{

�̇� = 0,
�̇� = 𝐴.

(19)

The 𝑥 variable is constant, while 𝑦 increases slowly along the slow
manifold 𝑆1,𝜏 .

On the other hand, outside a neighborhood of the fold point,
branches 𝑆𝑎2 and 𝑆𝑟2 give rise respectively to an attracting slow manifold
𝑆𝑎2,𝜏 and a repelling slow manifold 𝑆𝑟2,𝜏 . Both can be described by
considering 𝑦 as a function of 𝑥:

𝑦 ≡ 𝑦2,𝜏 (𝑥) =
𝐵
𝑥

+ 𝜏𝜓(𝑥) + 𝑂(𝜏2), (20)

with 𝑥 ≥ 𝑥0 > 0, 𝑥 ∉ (
√

𝐵 − 𝛿,
√

𝐵 + 𝛿), for some 𝛿 > 0 and
𝑥0 > 0, and with the 𝜏 → 0 limit laying on the branches 𝑆𝑎2 and 𝑆𝑟2. As
before, invariance of slow manifolds implies 𝑦′ = 𝑑𝑦2,𝜏

𝑑𝑥 𝑥′; substituting
(14) yields

𝜓(𝑥) = −
𝐵(𝑥 − 𝐴)

. (21)

𝑥2(𝑥2 − 𝐵)
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Fig. 8. (a) Critical manifold of the modified Brusselator system (14), together with the fold point (red point) and the equilibrium point of the system (in black). The slow manifold
1,𝜏 is shown as a dotted gray line, at distance 𝜏 𝐴

𝐵
from 𝑆1 (not to scale). A schematic representation of the limit cycle for small values of 𝜏 is shown in red, with single

arrows indicating slow evolution and double arrows representing fast evolution. Attracting regions of the critical manifold are shown as solid black lines, and repelling regions are
discontinuous black lines. (b) Numerical solution of system (14) for 𝜏 = 1 (i.e. non-modified Brusselator system (3)), 𝐴 = 1 and 𝐵 = 10. The limit cycle shows the characteristics

described in the fast–slow analysis. (c) Zoom of the squared region in (b).
Thus, the layer system on 𝑆𝑎2,𝜏 and 𝑆𝑟2,𝜏 is

⎧

⎪

⎨

⎪

⎩

�̇� = −
𝑥2(𝑥 − 𝐴)
𝑥2 − 𝐵

,

�̇� =
𝐵(𝑥 − 𝐴)
𝑥2 − 𝐵

.
(22)

Layer systems (19) and (22) allow us to characterize the limit cycle
of the system. Starting close to 𝑆𝑎2 , the system evolves slowly along 𝑆𝑎2,𝜏
according to (22) towards the fold point. When in its neighborhood,
the system enters a fast-evolution phase towards 𝑆1, governed by (15);
notice that 𝑥+𝑦 is a constant along this fast evolution. The system then
remains close to 𝑆1, evolving along the slow manifold 𝑆1,𝜏 with 𝑥 = 𝜏 𝐴𝐵
onstant and 𝑦 slowly increasing. As 𝑆1 and 𝑆𝑟2 are closer as 𝑦 increases,

the system eventually will reach a neighborhood of 𝑆𝑟2 and will enter a
new fast-evolution phase, returning to 𝑆𝑎2 and restarting the cycle (see
Fig. 8(a)).

The description given in terms of fast and slow evolution is valid
even for non-small values of 𝜏. Actually, in the non-modified Brusse-
lator system (Fig. 8(b)), corresponding to 𝜏 = 1, the limit cycle for an
unstable equilibrium point is very similar to the characterization de-
scribed above. This validation of the fast–slow analysis presented for a
single Brusselator motivates the application of the singular perturbation
theory to the 2-CBS model, as the resulting characterization may shed
some light on interesting dynamical properties of this system.

4.2. Critical manifold of the 2-coupled Brusselator system

We present now a fast–slow analysis of the 2-CBS model. As before,
let us introduce a parameter 𝜏 > 0 in the 2-CBS Eqs. (4) that allows us
to perform a fast–slow analysis on the system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥′1 = 𝜏(𝐴 − 𝑥1) − 𝐵𝑥1 + 𝑥21𝑦1 + 𝜆1(𝑥2 − 𝑥1),

𝑦′1 = 𝐵𝑥1 − 𝑥21𝑦1 + 𝜆2(𝑦2 − 𝑦1),

𝑥′2 = 𝜏(𝐴 − 𝑥2) − 𝐵𝑥2 + 𝑥22𝑦2 + 𝜆1(𝑥1 − 𝑥2),

𝑦′2 = 𝐵𝑥2 − 𝑥22𝑦2 + 𝜆2(𝑦1 − 𝑦2).

(23)

The system shows fast–slow behavior for 0 < 𝜏 ≪ 1, and the limit 𝜏 → 0
gives us the layer system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥′1 = −𝐵𝑥1 + 𝑥21𝑦1 + 𝜆1(𝑥2 − 𝑥1),

𝑦′1 = 𝐵𝑥1 − 𝑥21𝑦1 + 𝜆2(𝑦2 − 𝑦1),

𝑥′2 = −𝐵𝑥2 + 𝑥22𝑦2 + 𝜆1(𝑥1 − 𝑥2),

𝑦′2 = 𝐵𝑥2 − 𝑥22𝑦2 + 𝜆2(𝑦1 − 𝑦2).

(24)
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Equilibrium points of the layer system can be computed by solving the
following set of equations:

𝜆1(𝑥2 − 𝑥1) = 𝜆2(𝑦1 − 𝑦2) = 𝐵𝑥1 − 𝑥21𝑦1 = −𝐵𝑥2 + 𝑥22𝑦2. (25)

Solving for 𝑦1 and 𝑦2 from the equalities among second, third and fourth
terms, and then replacing in the equality between the first and second
terms give the following sets of equilibria:

1. In the general case 𝜆1, 𝜆2 ≠ 0, the critical manifold 𝑆 of the
system is the union of three disjoint manifolds of equilibria:

𝑆 = 𝑆𝐴 ∪ 𝑆𝐵 ∪ 𝑆𝐶 . (26)

These manifolds are defined as follows. 𝑆𝐴 is the set of points
on the synchronization manifold 𝛱 with 𝑥1 = 𝑥2 = 0, while 𝑆𝐵
is the set of points on 𝛱 satisfying 𝑥1𝑦1 = 𝑥2𝑦2 = 𝐵:

𝑆𝐴 =
{

(𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ R4 ∶ 𝑥1 = 𝑥2 = 0,

𝑦1 = 𝑦2 = 𝑠, 𝑠 > 0
}

⊂ 𝛱,

𝑆𝐵 =
{

(𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ R4 ∶ 𝑥1 = 𝑥2 = 𝑠,

𝑦1 = 𝑦2 =
𝐵
𝑠 , 𝑠 > 0

}

⊂ 𝛱.

(27)

These two manifolds are the duplication of the critical manifold
(16) of the single Brusselator system onto the synchronization
manifold 𝛱 . Stability of each manifold can be computed through
the Jacobian of system (24). In both cases, the two eigenvalues
corresponding to the restriction of the flow to the (invariant)
synchronization manifold 𝛱 can be obtained from local analysis
in system (15): {0,−𝐵} along 𝑆𝐴 and {0, 𝐵 − 𝑠2} along 𝑆𝐵 . It
easily follows that along 𝑆𝐴 eigenvalues in directions transverse
to 𝛱 are {−𝐵 − 2𝜆1,−2𝜆2}, and therefore the critical manifold
𝑆𝐴 is always attracting. On the other hand, as we already knew,
𝑆𝐵 shows a single fold point when 𝑠 =

√

𝐵 and extra bifurca-
tions can appear in directions transverse to the synchronization
manifold.
Additionally, there exists a manifold 𝑆𝐶 of equilibria transverse
to the synchronization manifold 𝛱 , defined as follows:

𝑆𝐶 =
{

(𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ R4 ∶ 𝑦1 =
𝜆1
𝑥1

+ 𝜆1
𝑥2

+ 𝜆1
𝜆2
𝑥2;

𝑦2 =
𝜆1
𝑥1

+ 𝜆1
𝑥2

+ 𝜆1
𝜆2
𝑥1; 𝑥1, 𝑥2 > 0;

𝜆1(𝑥21𝑥
2
2 + 𝜆2(𝑥

2
1 + 𝑥

2
2)) = 𝐵𝜆2𝑥1𝑥2

}

.

(28)

Using polar coordinates, 𝑥1 = 𝑟 cos 𝜃 and 𝑥2 = 𝑟 sin 𝜃, the
equation 𝜆 (𝑥2𝑥2 + 𝜆 (𝑥2 + 𝑥2)) = 𝐵𝜆 𝑥 𝑥 can be rewritten as
1 1 2 2 1 2 2 1 2
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Fig. 9. Projection onto the (𝑥1 , 𝑥2) plane of the critical manifold (black; attracting as continuous, repelling as discontinuous) and its fold points (red points) of system (23) for
he indicated values of the parameters. (a) Only 𝑆𝐴 and 𝑆𝐵 appear, as the equation for 𝑆𝐶 has no solution for these parameters. Black dot on (0, 0) represents the projection of
𝑆𝐴 onto the plane; this set is attracting. Notice that all the attracting regions lay on the synchronization plane. The only possible limit cycle on the synchronization plane is the
duplication of the single Brusselator limit cycle shown in Fig. 8. (b) Three sets of the critical manifold appear. However, 𝑆𝐶 is repelling everywhere, and it does not affect the
limit cycle, which is identical to the one described for panel (a). (c) If 𝐵 > 4𝜆1, the set 𝑆𝐶 presents two symmetrical attracting regions. This may provide new types of orbits, as
those shown in Fig. 10, that approach these regions.
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follows:

𝑟 = 1
sin(2𝜃)

√

2𝐵𝜆2
𝜆1

sin(2𝜃) − 4𝜆2, (29)

with sin(2𝜃) > 2𝜆1
𝐵 and 𝐵 > 2𝜆1.

There exists no valid solution for the equation if 𝐵 ≤ 2𝜆1. For
values 2𝜆1 < 𝐵 < 4𝜆1, the manifold 𝑆𝐶 is repelling everywhere.
For 𝐵 ≥ 4𝜆1, two symmetric pairs of fold points appear, gener-
ating two symmetric attracting regions. This change is shown in
the plots of Fig. 9.

2. For 𝜆1 = 0, the critical manifold consists of 4 disjoint manifolds

𝑆 = 𝑆𝐴 ∪ 𝑆𝐵 ∪ 𝑆1
𝐶 ∪ 𝑆2

𝐶 , (30)

with 𝑆𝐴, 𝑆𝐵 the same manifolds defined in (27), and the two
manifolds 𝑆1

𝐶 and 𝑆2
𝐶 defined as follows:

𝑆1
𝐶 =

{

(𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ R4 ∶ 𝑥1 = 0, 𝑥2 = 𝑠,

𝑦1 = 𝑦2 =
𝐵
𝑠
, 𝑠 > 0

}

,

𝑆2
𝐶 =

{

(𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ R4 ∶ 𝑥1 = 𝑠, 𝑥2 = 0,

𝑦1 = 𝑦2 =
𝐵
𝑠
, 𝑠 > 0

}

.

(31)

Both manifolds 𝑆1
𝐶 and 𝑆2

𝐶 present a single fold point each,
symmetric to each other. As before, 𝑆𝐴 is attractive, but now
𝑆𝐵 is repelling everywhere; however, the largest eigenvalue of
the Jacobian on 𝑆𝐵 is small enough to allow for trajectories to
remain close to this manifold for a long time. Fig. 10 shows
the critical manifold in this case, together with three different
trajectories of the whole system (23) computed numerically.

3. For 𝜆2 = 0, the critical manifold consists of 2 disjoint manifolds:

𝑆 = 𝑆∗
𝐴 ∪ 𝑆𝐵 , (32)

with 𝑆𝐵 the same as in (27), and 𝑆∗
𝐴 the following two dimen-

sional set:

𝑆∗
𝐴 =

{

(𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ R4 ∶ 𝑥1 = 𝑥2 = 0; 𝑦1, 𝑦2 > 0
}

. (33)

Notice that the intersection between 𝑆∗
𝐴 and the synchronization

manifold 𝛱 is precisely the set 𝑆𝐴 already appearing in the other
cases and defined in (27).

The distribution of attracting regions of the critical manifold plotted
in Fig. 9 shows that most of them lay on the synchronization plane 𝛱 .
Therefore, there may exist trajectories that stay for long times close
to 𝛱 , only being repelled from it to temporally evolve around the
small attracting regions outside 𝛱 . This analysis thus provides a new
setting in which almost synchronization can be studied. Let us start by
detailing the theoretical behavior of orbits.
 d
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Assume that the system begins close to 𝑆𝐴. Reproducing the behav-
or of a single Brusselator, a slow manifold exists in a neighborhood of
𝐴; along it, the system evolves slowly increasing the values of 𝑦1 and
2. Repelling branches of 𝑆𝐵 and 𝑆𝐶 lay close to 𝑆𝐴 for large values of
1 and 𝑦2 (see projections in Fig. 9). Thus, analogously to what occurs in
he description of a single Brusselator, eventually the system will reach
hese repelling branches and a new fast part of dynamics will occur.

The system now may be attracted to different regions, depending on
he values of the parameters. Let us consider a situation with multiple
ttracting regions in 𝑆𝐵 and 𝑆𝐶 , as in Fig. 9(c). The system may be
ttracted to 𝑆𝐵 , mimicking the evolution of a single Brusselator; notice
hat this branch lays on the synchronization plane. However, once
hat the fold point is reached, analysis of the Jacobian of the system
ndicates that the system is repelled from the synchronization plane.
hus, it may now evolve towards the attracting regions on 𝑆𝐶 , outside
he synchronization plane. After a short period of slow evolution, the
ystem will reach a new fold point, then evolving again towards 𝑆𝐴.

The described evolution is a possible behavior of the system based
n the distribution of attracting and repelling regions of the critical
anifold. Numerical computations support these claims. Fig. 10 shows

hree numerical solutions to system (23) with 𝐴 = 0.5, 𝐵 = 1, 𝜆1 = 0,
2 = 1 and 𝜏 = 0.01. For these parameters, the critical manifold 𝑆 is
iven by (30). Sets 𝑆1

𝐶 and 𝑆2
𝐶 present attracting regions that influence

rbits starting outside of the synchronization plane 𝛱 (red and blue
rajectories). As 𝛱 is invariant for the dynamics, a limit cycle also
xists on it (green trajectory). All the trajectories are attracted towards
𝐴, which is attractive everywhere; however, as described, trajectories
volve along slow manifolds in a neighborhood of 𝑆𝐴 and eventually
re repelled from it due to the proximity of other repelling branches.
he three orbits enter a fast evolution period towards 𝑆𝐵 ; this set is
lways repelling, although its largest eigenvalue tends asymptotically
o zero and trajectories remain close to it for large times. Eventually,
ed and blue trajectories are repelled from 𝑆𝐵 and move away from
he synchronization plane 𝛱 ; the associated eigenvector is transversal
o 𝛱 , so this does not affect the green trajectory, which is only
epelled when the second eigenvalue, whose eigenvector is tangent to
, becomes positive.
Fig. 10 clearly shows how part of the trajectories stays very close

o the synchronization manifold. These passages take a long time since
uch trajectories are following slow manifolds. Therefore, the fast–slow
nalysis permits to describe their dynamics. Obviously, these orbits
it in the almost synchronization concept introduced in the previous
ection. We calculate the 𝛽𝜖 value for the orbit in Fig. 10(a):

0.1 = 1.0, 𝛽0.01 = 0.9888, 𝛽0.001 = 0.9881.

hat is, the orbit is almost full synchronized but the small fraction of
ime that it is repelled from the vicinity of the synchronization plane

. Therefore, we have almost synchronization, but due to the fast–slow

ynamics it is practically a fully synchronized orbit.
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Fig. 10. Numerical computation of trajectories of system (23) for the parameter values 𝐴 = 0.5, 𝐵 = 1, 𝜆1 = 0, 𝜆2 = 1 and 𝜏 = 0.01. (a) Critical manifold and three orbits (red, blue,
and green). These orbits lay always close or on the synchronization plane 𝛱 , except on part of the squared region. (b) Enlargement of the squared region in (a), which shows
how red and blue trajectories are repelled from 𝑆𝐵 towards 𝑆1

𝐶 or 𝑆2
𝐶 . The green trajectory, laying on the synchronization plane, is not affected by this, and instead is repelled

from 𝑆𝐵 when the second eigenvalue, whose eigenvector is tangent to the synchronization plane, becomes positive (green diamond-shaped point). All three trajectories are then
attracted towards 𝑆𝐴, and eventually repelled from it, as predicted, because of the proximity of repelling branches of the critical manifold. (c) First two non-zero eigenvalues of
the system along 𝑆𝐵 , parametrized by 𝑥1.
5. A coupling of three Brusselators

We have explored the dynamics of two coupled Brusselators where
the rhythmic patterns and almost synchronization have been key to
understanding the dynamics of the system. Coupling three Brusselators
allows different patterns of (almost) synchronization to appear.

The coupling of three Brusselators is achieved by the following
equations (3-CBS in the sequel), which extend the coupling introduced
in (4) to an additional Brusselator system with coordinates (𝑥3, 𝑦3):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥′1 = 𝐴 − (𝐵 + 1)𝑥1 + 𝑥21𝑦1 + 𝜆1(𝑥2 − 𝑥1) + 𝜆1(𝑥3 − 𝑥1),

𝑦′1 = 𝐵𝑥1 − 𝑥21𝑦1 + 𝜆2(𝑦2 − 𝑦1) + 𝜆2(𝑦3 − 𝑦1),

𝑥′2 = 𝐴 − (𝐵 + 1)𝑥2 + 𝑥22𝑦2 + 𝜆1(𝑥1 − 𝑥2) + 𝜆1(𝑥3 − 𝑥2),

𝑦′2 = 𝐵𝑥2 − 𝑥22𝑦2 + 𝜆2(𝑦1 − 𝑦2) + 𝜆2(𝑦3 − 𝑦2),

𝑥′3 = 𝐴 − (𝐵 + 1)𝑥3 + 𝑥23𝑦3 + 𝜆1(𝑥1 − 𝑥3) + 𝜆1(𝑥2 − 𝑥3),

𝑦′3 = 𝐵𝑥3 − 𝑥23𝑦3 + 𝜆2(𝑦1 − 𝑦3) + 𝜆2(𝑦2 − 𝑦3).

(34)

In order to study the dynamical properties of this system, we have
performed a spike-counting (SC) sweeping [43] for its orbits in a para-
metric region already explored in the 2-CBS, whose results are shown
in Fig. 11. Each color represents the number of maxima the 𝑥1 variable
reaches until the orbit closes. A large number of maxima correlates with
chaotic behavior of the orbit [9]. We can observe that the addition of
a third Brusselator makes the coupled system less chaotic, in the sense
that, compared to the case with 2 Brusselators, the chaotic region is
reduced and the overall number of spikes per cycle is smaller.

In order to understand the possible patterns of synchronization of
this system, we prepared an experiment similar to the one in Ref. [3]
in a two parametric region studied in Ref. [35]. Given a set of initial
conditions and some values for the parameters, the system is integrated
with a DOPRI5 scheme with fixed step 10−3. After 105 units of transient
time we integrate for 10 units of time. As a result, we obtain 6 time
series, one for each coordinate, that we distill into a 6 × 6 symmetric
matrix to understand the almost synchronization pattern. Elements of
this matrix are

𝛽𝑖,𝑗𝜀 =
𝑚(𝐼 𝑖,𝑗𝜀 )
𝑇

,

𝐼 𝑖,𝑗𝜀 = {𝑡 ∈ [0, 𝑇 ] ∶ |𝜉𝑖(𝑡) − 𝜉𝑗 (𝑡)| ≤ 𝜀},
(35)
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for 𝑖, 𝑗 = 1, 2,… , 6, with coordinates 𝜉 = (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3), a thresh-
old 𝜀 > 0 and with 𝑚 the Lebesgue measure on R. These values allow
us to directly measure the almost synchronization between any two
coordinates. Clearly, 𝛽𝑖,𝑗𝜀 = 𝛽𝑗,𝑖𝜀 and 𝛽𝑖,𝑖𝜀 = 1. Thus, these values play a
similar role in the 3-CBS to that of the 𝛽𝜖 fraction defined in (11), and
help to characterize the almost synchronization of the system. Note that
𝛽𝑖,𝑗𝜀 extends Definition 1 of 𝛽𝜀 and it can be applied to any number of
coupled Brusselators.

As indicated, we have arranged the 𝛽𝑖,𝑗𝜀 in a 6 × 6 symmetric
square matrix, in which the first 3 columns and rows are associated
to the 𝑥 variables and the last three to the 𝑦 variables; specifically,
the variables of rows/columns 𝑖 and 𝑖 + 3 are the variables 𝑥𝑖 and
𝑦𝑖, respectively. We will call this matrix the 𝛽𝜀 pattern matrix. Fig. 12
shows the time series and the 𝛽𝜀 patterns with 𝜀 = 0.05 for three
paradigmatic examples of almost synchronization. Panel (b) shows a
full almost synchronization among 𝑥 variables and the same for 𝑦
variables. Notice that 𝑥 and 𝑦 variables are not in synchronization
among all of them, as no term in (34) forces it; this is observed in all of
the computed orbits. Panel (a) shows an orbit where 𝑥1 and 𝑥2 are fully
almost synchronized but 𝑥3 is only temporally almost synchronized
with the others. The 𝑦 variables are fully almost synchronized. Finally,
panel (c) shows a less synchronized orbit. Note that the 𝛽𝜀 pattern
matrices on the right provide a complete description of the temporal
and full almost synchronization. For instance, on the case (b) of full
almost synchronization of the 𝑥 (and 𝑦) variables, the 𝛽𝜀 pattern matrix
with 𝜀 = 0.05 is a block diagonal matrix consisting on 2 yellow blocks,
that means full almost synchronization of the 𝑥 variables on one side
(one yellow block) and the 𝑦 variables (the other yellow block). For the
cases (a) and (c), the 𝛽𝜀 pattern matrices are block diagonal matrices
but with more block elements. In case (a), as 𝑥1 and 𝑥2 are fully almost
synchronized, but no 𝑥3, we have 2 yellow blocks, one of the two fully
almost synchronized variables, and one for the 𝑥3. For the 𝑦 variables
we have just one yellow block as they are fully almost synchronized.
Besides, as 𝑥3 is only temporally almost synchronized with 𝑥1 and 𝑥2,
we have two rectangular blocks in blue color (the fraction of time for
which variables are almost synchronized is quite small, giving a low
𝛽𝑖,𝑗0.05 value). The 𝑥 variables are not almost synchronized with the 𝑦
variables, and so the color indicates a 0 value of 𝛽𝑖,𝑗𝜀 . In case (c), we
have 4 yellow blocks ((𝑥1, 𝑥2), 𝑥3, (𝑦1, 𝑦2) and 𝑦3). Note that in this case
the 𝑦3 variable is only temporally almost synchronized with (𝑦1, 𝑦2),
hence the green colored values.
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Fig. 11. Panels (a) and (a1) show the results of a spike-counting sweeping on the parametric plane (𝐵, 𝜆1) for the 2-CBS. Panels (b) and (b1) reproduce these results, for the same
values of the parameters, in 3-CBS case. Regions with 0 spikes correspond to stable equilibria, while regions with 1 spike indicate the existence of a stable limit cycle. In regions
where the number of spikes explodes (represented as 8 spikes, although the actual number of spikes is much larger), the systems show chaotic behavior. The panels show that
the general distribution of stable equilibria and stable limit cycles is similar in both systems. However, the chaotic region for the 2-CBS is larger and more complex than that for
the 3-CBS. The value of the parameters used for all the figures are 𝐴 = 2 and 𝜆2 = 80.

Fig. 12. In each line, the last 0.5 units of time of some orbits are shown, together with the corresponding 𝛽𝜀 pattern matrix for 𝜀 = 0.05, with elements 𝛽𝑖𝑗0.05 defined
by (35). Different behaviors can be observed. Panels (a) and (c) show full almost synchronization between Brusselators 1 and 2, and different levels of temporal almost
synchronization with the third Brusselator. This full almost synchronization in part of a system is a partial synchronization. Panel (b) shows full almost synchronization among
all Brusselators. All values are computed for parameters values 𝐴 = 2 and 𝜆2 = 80. Others parameters and initial conditions for these orbits are (a) 𝐵 = 5.89 and 𝜆1 = 1,
(𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 , 𝑥3 , 𝑦3) = (0.786027, 4.65982, 0.582159, 4.66024, 0.582159, 4.66024), (b) 𝐵 = 5.89 and 𝜆1 = 1.1, (𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 , 𝑥3 , 𝑦3) = (1.92234, 2.65202, 1.92234, 2.65202, 1.92234, 2.65202), and
(c) 𝐵 = 5.125 and 𝜆1 = 1, (𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 , 𝑥3 , 𝑦3) = (4.76544, 1.36442, 1.37046, 1.41014, 1.37046, 1.41014).
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Fig. 13. Aperiodic temporal almost synchronization of the 3-CBS. Panel (a) contains the time series of the 3-CBS with 𝐴 = 2, 𝐵 = 5.645, 𝜆1 = 1.2 and 𝜆2 = 80, and initial
conditions (𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 , 𝑥3 , 𝑦3) = (0.0562962962962963, 5.51, 6.706428571428571, 8.51, 2.6885714285714286, 15.635). Plot (b) presents the FFT of each time series, which shows a rather
noisy behavior in contrast with the typical sharp spikes for a periodic orbit. However, the 𝛽𝜀 pattern matrix (c) suggests a strong full almost synchronization among the variables
(its color map is the same as the one of Fig. 12). The 3D plots show the projection of the orbit onto different 3 dimensional spaces. The blue colored graph (d) shows the
projection onto the (𝑥1 , 𝑥2 , 𝑥3) space; this projection is fully contained in the 𝑥1 = 𝑥3 plane (in light blue), as pointed out by the 𝛽𝜀 pattern. Similarly, variables 𝑦1 , 𝑦2 , 𝑦3 are
(almost) synchronized, as shown by the red plot (e), where the projection of the orbit lies on the line 𝑦1 = 𝑦2 = 𝑦3. Finally, the purple plot (f) shows the projection onto a space
of non-almost synchronized variables (𝑥1, 𝑥2 and 𝑦1); this figure shows the plane 𝑥1 = 𝑥2 in light blue for reference.
An interesting fact shown in the different patterns observed in
Fig. 12 is that, among the different possible almost synchronizations,
we have found the existence of partial almost synchronizations. Some
of the patterns computed for the 3-CBS show that, during the collective
oscillatory dynamics, some of the variables are almost synchronized,
while other periodic or even chaotic dynamics occur simultaneously for
other variables. In the nonlinear dynamics literature, this kind of pat-
terns are called ‘‘chimera’’ states [50,51]. In fact, these are examples of
the smallest chimera states [52] (illustrated in that reference for three
coupled oscillators). Note that in nature this behavior is observed in
numerous systems, such as the brain, mechanical systems, etc. [53,54].

Moreover, almost synchronization is possible even when the orbit
is not periodic. Panel (a) of Fig. 13 presents a non-periodic temporally
almost synchronized orbit and its 𝛽𝜀 pattern matrix for 𝜀 = 0.05 on
plot (c). Panel (d) shows a 3D plot of the 𝑥 variables. The plot lies on
the plane 𝑥1 = 𝑥3 (in light blue). The 3D plot (e) shows how the orbit
(mainly) lies on the line 𝑦1 = 𝑦2 = 𝑦3. The last 3D plot (f) shows a
projection of the orbit onto the (𝑥1, 𝑥2, 𝑦1) space similar to the ones in
the 2-CBS (again we show the plane 𝑥1 = 𝑥2 in light blue). To address
the periodicity of the orbit, we compute the FFT of each time series.
The results are in the panel (b) of Fig. 13. As we can see, the diagram
does not present clear peaks, a clear indication of non-periodicity. In
fact, the system presents chaotic dynamics; moreover, in this situation
the system exhibits chaotic almost synchronization.

To analyze the evolution of the patterns, we perform a sweep [3]
on four parametric lines with 𝜆1 ∈ {1, 1.1, 1.2, 1.3} in the plane of
Fig. 11(b1): for 200 different values of 𝐵 on each line we integrate,
as above, 200 different initial conditions for each set of parameters se-
lected through Halton sequences with 𝑥𝑖 ∈ [0.01, 10] and 𝑦𝑖 ∈ [0.01, 20],
𝑖 = 1, 2, 3. To compare the massive amount of data, we lexicographically
order the patterns, keeping the variables of the same Brusselator in the
same relative position (that is, reducing it by the 𝛴3-symmetry the 3-
CBS presents). Hence, the largest 𝛽𝑖𝑗0.05 values appear in the upper left
of the 𝛽𝜀 pattern matrix. In all analyzed orbits, the 𝛽𝑖𝑗0.05 values with
|𝑖 − 𝑗| ≥ 3 are zero, i.e. there is no almost synchronization between 𝑥
and 𝑦 coordinates (cf. Fig. 12).
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Fig. 14 contains all the relevant information of the evolution of
these patterns. The first column presents the almost synchronization
among the 𝑥 variables. Namely, red dots corresponds to the values of
𝛽120.05, describing the almost synchronization of 𝑥1 and 𝑥2, while blue
dots are the values of 𝛽130.05, which describes the almost synchronization
between 𝑥1 and 𝑥3. The second column shows the results for 𝑦 variables:
𝛽450.05 for 𝑦1 and 𝑦2, and 𝛽460.05 for 𝑦1 and 𝑦3. Almost synchronizations
between 𝑥2 and 𝑥3, and between 𝑦2 and 𝑦3, are omitted due to the ex-
isting fully synchronization between the two first Brusselators causing
𝛽130.05 = 𝛽230.05 and 𝛽460.05 = 𝛽560.05. Panels in each row of the figure show the
evolution of the patterns along the selected lines: as before, the results
are computed after the integration of 200 orbits for each chosen value
of 𝐵 in the interval [5, 6]. Since we have reordered the Brusselators for
better comparison, coordinates 𝑥1 and 𝑥2, as well as 𝑦1 and 𝑦2, are
fully synchronized for any 𝜆1 ∈ {1, 1.1, 1.2, 1.3} (red dots in each of
the scatter plots). For reference, below each panel, the results of the
spike-counting presented in Fig. 11 are shown in a strip of the indicated
values of 𝜆1; the maximum value of 𝜆1 on each strip corresponds to the
results of the panel above it.

In all cases shown in Fig. 14, for 𝐵 = 5 the system exhibits
chimeras [50,51], as the two first Brusselators are fully synchronized,
while the third is not (see Fig. 12(c)). This chimera behavior remains
almost the same, with 𝛽460.05 slowly increasing, until 𝐵 reaches the spike-
adding region, where abrupt increases on 𝛽130.05 and 𝛽460.05 happen. In this
region, characterized by chaotic behavior, different patterns arise for
the same value of 𝐵. In the non-chaotic regions we see that this noisy
behavior disappears. This can be seen in panels on the first column for
𝜆1 = 1.1 and 1.2. Finally, increasing 𝐵 and leaving the chaotic region
we see full synchronization like Fig. 12(b).

In order to understand the periodicity of the orbits analyzed in
Fig. 14, we have computed the FFT for the time series normalized
to values in [0, 1]. Then, for each variable, we compute the ratio of
frequencies which have amplitude at least 10% of the main frequency
(maximal amplitude), and we assign the maximum of these values
to the orbit. Near-zero values indicate periodicity, while other values
suggest that the orbits are not periodic. This information is included, as
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Fig. 14. Temporal almost synchronization and full synchronization of the variables of the 3-CBS for different values of 𝐵 and 𝜆1 (𝜆1 = 1, 1.1, 1.2 and 1.3). Panels shown temporal
almost synchronization between 𝑥 variables and between 𝑦 variables as indicated, represented by 𝛽𝑖𝑗0.05 as defined in (35). Colored stripes reproduce the spike-counting results
already shown in Fig. 11, with the larger 𝜆1 value in each strip corresponding to the panel above it. Aperiodicity of orbits, related to large numbers of spikes and chaotic behavior,
is also shown. Panels show the evolution of the temporal almost synchronization between different variables: temporal almost synchronization occurs when any 𝛽𝑖𝑗0.05 ≠ 0, full
almost synchronization is achieved if all 𝛽𝑖𝑗0.05 = 1, and chimeras are found when only some 𝛽𝑖𝑗0.05 = 1. Each 𝛽𝑖𝑗0.05 is computed from the integration of 200 orbits with different initial
conditions, as described in the text. Parameters for the simulations are 𝐴 = 2 and 𝜆2 = 80.
green dots, in Fig. 14. As we can see there, the non-periodicity appears,
as expected, on the chaotic areas. Moreover, the aperiodicity is related
to the modification of the patterns, as the almost synchronization
increases for larger values of 𝐵 in all panels.

A detailed analysis of the results for 𝜆1 = 1.1 are presented in
Fig. 15. The left panel shows the temporal almost synchronization
between 𝑥 and 𝑥 (𝛽13 , in blue), and 𝑦 and 𝑦 (𝛽46 , in red), already
1 3 0.05 1 3 0.05

15 
shown in Fig. 14; other 𝛽𝑖𝑗0.05 values are omitted due to the existing full
synchronization between 𝑥1 and 𝑥2, and between 𝑦1 and 𝑦2. For selected
values of 𝐵, namely, 5.1, 5.315, 5.375, 5.615, 5.755 and 5.95, and fixed
initial conditions in all cases, right panels show the time series of all the
coordinates for the orbits. These time series clearly show the described
behavior of the system, from temporal almost synchronization for lower
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Fig. 15. Detailed analysis of six different orbits from Fig. 14, 𝜆1 = 1.1 case. All orbits are computed with identical initial conditions, with 𝐴 = 2, 𝜆1 = 1.1, 𝜆2 = 80, and (a) 𝐵 = 5.1,
(b) 𝐵 = 5.315, (c) 𝐵 = 5.375, (d) 𝐵 = 5.615, (e) 𝐵 = 5.755, (f) 𝐵 = 5.95. On the left panel, almost synchronization between coordinates 𝑥1 and 𝑥3, and between 𝑦1 and 𝑦3, is
represented by 𝛽130.05 and 𝛽460.05, respectively; below it, a strip of Fig. 11 shows the results of the spike-counting sweeping. Right panels show the time series of all the variables
for the chosen orbits. The different almost synchronization phenomena can be clearly seen. Orbits from (a) to (e) show increasing levels of almost synchronization and chimera
behavior, with coordinates 𝑥3 and 𝑦3 approaching synchronization with the other variables when the system enters the chaotic region. Orbit (f), outside of the chaotic region,
shows full synchronization among all three Brusselators.
values of 𝐵 to full synchronization among 𝑥 and among 𝑦 variables for
𝐵 = 5.95.

6. Conclusions

In this paper, we have characterized some synchronization proper-
ties of coupled Brusselator systems (CBS). While it is clear from the
equations of the model that full synchronization of the Brusselators is
possible and, indeed, stable under the coupled dynamics, a detailed nu-
merical analysis of the system shows the emergence of temporal almost
synchronization, a state in which the Brusselators are approximately
synchronized only in a fraction of the total orbit of the CBS.

Our study focuses on some characterizations of the temporal almost
synchronization phenomena in the 2-CBS. Based on a detailed study
of codimension-two Hopf–pitchfork bifurcations appearing in the 2-
CBS, we have determined the appropriate parameter regions on which
they may occur. A numerical analysis shows the existence of dome-
like periodic orbits exhibiting temporal almost synchronization, as the
Brusselators are almost synchronized for up to 70% of the period of
the orbit. The existence of these orbits is predicted theoretically from
an analysis of stable and unstable manifolds of the equilibria and limit
cycles of the system, and computed numerically.

Temporal almost synchronizations are also shown to appear in a
fast–slow regime. Theoretical results and computations of critical man-
ifolds of CBS characterize trajectories lying close to the synchronization
plane for large times. Numerical computations of 𝛽𝜖 in this regime show
large values close to the full synchronization state.
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The above results motivate the analysis of almost synchronization
in the 3-CBS. This system presents more complex behavior, as not only
almost synchronization occurs, but also only part of the full system
achieves synchronization. Thus, we prove numerically the existence of
chimeras in the 3-CBS, as state of the system where only 2 out of 3
Brusselators are synchronized. A detailed analysis shows how variations
in the parameters allow the system to change from chimera states
and partial synchronization to collective synchronization among all 3
Brusselators.

Moreover, we have introduced some techniques based on the con-
cept of temporal almost synchronization, the 𝛽𝜀 pattern matrix, that
may help in the study of small coupled systems.
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Appendix A. Hopf–pitchfork bifurcations

Let 𝑋𝜇 be a 𝐶∞ family of 3-dimensional vector fields, with 𝜇 =
(𝜇1, 𝜇2) ∈ R2, such that 𝑋𝜇(0) = 0 for all 𝜇, and 𝐷𝑋0(0) has eigenvalues
{±𝜔𝑖, 0}, with 𝜔 > 0. Assuming that the family is invariant under a
reflection (𝑥, 𝑦, 𝑧) → (𝑥, 𝑦,−𝑧), we say that 𝑋𝜇 is an unfolding of an HP
singularity. It follows from Refs. [24,55,56] that 𝑋𝜇 can be written in
the following normal form:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥′ = 𝜇1𝑥 − 𝜔𝑦 + 𝑥𝐹𝜇
(

𝑥2 + 𝑦2, 𝑧2
)

− 𝑦𝐹𝜇
(

𝑥2 + 𝑦2, 𝑧2
)

+ 𝜙1(𝑥, 𝑦, 𝑧, 𝜇1, 𝜇2),

𝑦′ = 𝜔𝑥 + 𝜇1𝑦 + 𝑥𝐹𝜇
(

𝑥2 + 𝑦2, 𝑧2
)

+ 𝑦𝐹𝜇
(

𝑥2 + 𝑦2, 𝑧2
)

+ 𝜙2(𝑥, 𝑦, 𝑧, 𝜇1, 𝜇2),

𝑧′ = 𝜇2𝑧 + 𝑧𝐺𝜇
(

𝑥2 + 𝑦2, 𝑧2
)

+ 𝜙3(𝑥, 𝑦, 𝑧, 𝜇1, 𝜇2),

(A.1)

where 𝐹𝜇 , 𝐹𝜇 and 𝐺𝜇 are polynomial functions in two variables of
degree 𝑑 ≤ 𝑁 (value 𝑁 can be arbitrarily large) vanishing at (0, 0), and
𝜙𝑖 = 𝑂(|(𝑥, 𝑦, 𝑧)|2𝑁+2) for 𝑖 = 1, 2, 3. It should be noticed that the Z2-
symmetry is preserved under reduction to normal form. By truncation
at order 2𝑁 + 1, we get a family which is invariant under rotations
around the 𝑧-axis.

The first step to study the system (A.1) is to consider the truncated
normal form and to introduce cylindrical coordinates (𝑟, 𝑧, 𝜃), which
gives as a result the following system of equations:

⎧

⎪

⎨

⎪

⎩

𝑟′ = 𝑟
(

𝜇1 + 𝐹𝜇
(

𝑟2, 𝑧2
))

,

𝑧′ = 𝑧
(

𝜇2 + 𝐺𝜇
(

𝑟2, 𝑧2
))

,

𝜃′ = 𝜔 + 𝐹𝜇(𝑟2, 𝑧2).

(A.2)

Since 𝜃′ > 0 in a neighborhood of the origin, time can be rescaled to
get 𝜃′ = 1. Hence, the study of the truncated normal form reduces to
the case of a family of planar vector fields in coordinates (𝑟, 𝑧)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟′ = 𝑟
(

𝜇1 + 𝐴11
𝜇 𝑟

2 + 𝐴12
𝜇 𝑧

2 + 𝐵11
𝜇 𝑟

4

+ 𝐵12
𝜇 𝑟

2𝑧2 + 𝐵13
𝜇 𝑧

4 + 𝑂(|(𝑟2, 𝑧2)|3)
)

,

𝑧′ = 𝑧
(

𝜇2 + 𝐴21
𝜇 𝑟

2 + 𝐴22
𝜇 𝑧

2 + 𝐵21
𝜇 𝑟

4

+ 𝐵22
𝜇 𝑟

2𝑧2 + 𝐵23
𝜇 𝑧

4 + 𝑂(|(𝑟2, 𝑧2)|3)
)

,

(A.3)

where 𝐹𝜇 and 𝐺𝜇 have been expanded up to order two. Codimension-
two HP bifurcations are characterized by the conditions

𝐴11
0 𝐴

12
0 𝐴

21
0 𝐴

22
0 ≠ 0, 𝐴11

0 𝐴
22
0 − 𝐴12

0 𝐴
21
0 ≠ 0. (A.4)

Up to time reversal, we can assume that 𝐴11
0 is either positive or

negative and, following Ref. [40], we assume that 𝐴11
0 < 0. Coefficients

11 22 11 22
𝐴𝜇 and 𝐴𝜇 can be normalized to get 𝐴𝜇 = −1 and 𝐴𝜇 = ±1. Finally,
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a hypernormal form can be obtained that allows to simplify fifth-order
terms to get:

⎧

⎪

⎨

⎪

⎩

𝑟′ = 𝑟
(

𝜇1 − 𝑟2 + 𝐴12
𝜇 𝑧

2 + 𝑂(|(𝑟2, 𝑧2)|3)
)

,

𝑧′ = 𝑧
(

𝜇2 + 𝐴21
𝜇 𝑟

2 + 𝐴22
𝜇 𝑧

2 + 𝐵23
𝜇 𝑧

4 + 𝑂(|(𝑟2, 𝑧2)|3)
)

,
(A.5)

where we have preserved notation for variables, parameters and coef-
ficients.

There are twelve different HP singularities, as classified by Guck-
enheimer and Holmes [24]. Classification depends on the signs of 𝐴12

0 ,
𝐴21
0 , 𝐴22

0 and 𝛥 = 𝐴22
0 − 𝐴12

0 𝐴
21
0 (see Ref. [24, Table 7.5.2] or Ref. [40,

Table 1]). Most of the bifurcation diagrams are determined only by
the terms up to order three, but there are some cases for which the
additional generic condition 𝐵23

0 ≠ 0 is required. In this paper we are
only interested in Case VIa which is characterized by the conditions:

𝐴12
0 < 0, 𝐴21

0 > 0, 1 + 𝐴12
0 𝐴

21
0 < 0, 𝐵23

0 < 0. (A.6)

The bifurcation diagram for the truncated normal form (A.5) is
shown in Fig. A.16. The list of codimension-one bifurcations is the
following:

𝙿−1 Pitchfork bifurcation. Moving from Region 1 to Region 2, an at-
tractor emerges on the 𝑟-axis and the origin changes into a saddle
node. For family (A.2), 𝙿−1 corresponds to a Hopf bifurcation on
𝑧 = 0.

𝙿3 Pitchfork bifurcation (transverse to 𝑟-axis). Moving from Region
2 to Region 3, an attractor (red point) emerges in the interior
of the first quadrant whereas the equilibrium point on the 𝑟-axis
changes into a saddle node. For family (A.2), 𝙿3 is a curve of
branch points of periodic orbits, and an attracting periodic orbit
emerges on the region 𝑧 > 0.

𝙷 Hopf bifurcation. Moving from Region 3 to Region 4, an at-
tracting limit cycle emerges whereas the equilibrium point in
the interior of the first quadrant changes into a repeller. For
family (A.2), 𝙷 corresponds to a Neimark–Sacker bifurcation, and
an attracting 2-torus emerges on the region 𝑧 > 0.

𝙷𝙲 Heteroclinic cycle. Moving from Region 4 to Region 5, the
periodic orbit disappears through a heteroclinic cycle (magenta
color in the phase-portrait for 𝙷𝙲). For parameter values on
Region 5, one of the branches of the unstable manifold of the
saddle node on the 𝑟-axis is contained in the basin of attraction
of the limit cycle. For parameter values on Region 6, one of the
branches of the stable manifold of the saddle node on the 𝑧-axis
is contained in the basin of repulsion of the equilibrium point in
the first quadrant. The corresponding bifurcation in family (A.2)
is described below.

𝙿4 Pitchfork bifurcation (transverse to 𝑧-axis). Moving from Region
5 to Region 6, the repelling equilibrium point contained in the
first quadrant collapses with the saddle node on the 𝑧-axis which
changes into a repeller. For family (A.2), 𝙿4 corresponds to a
Hopf bifurcation (transverse to the 𝑧-axis).

𝙿+2 Pitchfork bifurcation. Moving from Region 6 to Region 7, the
repelling equilibrium on the 𝑧-axis collapses with the origin
which changes into a saddle node. For family (A.2), 𝙿+2 also
corresponds to a pitchfork bifurcation.

𝙿+1 Pitchfork bifurcation. Moving from Region 7 to Region 8, a
saddle node on the 𝑟-axis collapses with the repeller at the origin
that changes into a saddle node. For family (A.2), 𝙿+1 corresponds
to a Hopf bifurcation on 𝑧 = 0.

𝙿−2 Pitchfork bifurcation. Moving from Region 8 to Region 1, a
saddle node emerges on the 𝑧-axis and the origin changes into
an attractor. For family (A.2), 𝙿−2 also corresponds to a pitchfork
bifurcation.

For parameter values on 𝙷𝙲, family (A.2) exhibits an heteroclinic

cycle configuration consisting of:
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Fig. A.16. Bifurcation diagram corresponding to Case VIa in the classification by Guckenheimer and Holmes provided in Ref. [24]. Bifurcation curves 𝙿
±
1 , 𝙿

±
2 , 𝙿3, 𝙿4, 𝙷 and 𝙷𝙲

plit the parameter space in eight regions; a representative phase-portrait is provided for each one of them. Moreover, a phase-portrait is given to illustrate the bifurcation that
appens along the line 𝙷𝙲, the creation of a heteroclinic cycle.
c
𝙷

o

1. a saddle-focus equilibrium point at the origin,
2. a saddle-focus equilibrium point on the 𝑧-axis,
3. a saddle-type limit cycle contained on the invariant plane 𝑧 = 0,
4. a connection along the 1-dimensional invariant manifolds of the

equilibrium points, contained in the 𝑧-axis,
5. the (2-dimensional) unstable manifold of the origin which is

contained in the (2-dimensional) stable manifold of the limit
cycle (these manifolds are contained in the plane 𝑧 = 0),
 o

18 
6. the (2-dimensional) unstable manifold of the limit cycle which
is coincident with the (2-dimensional) stable manifold of the
saddle-focus equilibrium point on the 𝑧-axis.

According to Refs. [24,57], the full family (A.1) will exhibit all the
odimension-one bifurcation curves that family (A.2) displays, except
𝙲. Indeed, the connection along the 1-dimensional invariant manifolds
f the equilibrium points contained in the 𝑧-axis will disappear if higher
rder terms are added. The 2-dimensional unstable manifold of the
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limit cycle contained in the invariant plane 𝑧 = 0 and the 2-dimensional
stable manifold of the equilibrium point outside the invariant plane
are no longer coincident. Instead, these two manifolds will intersect
transversely. Hence, adding higher order terms there is a chance for
the appearance of Shilnikov homoclinic orbits and chaotic behaviors.
On the other hand, the dynamics on the torus in the full system will be
different from that in the truncated system.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.physd.2024.134457.

Data availability

Data will be made available on request.
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