000147733 001__ 147733
000147733 005__ 20241220131257.0
000147733 0247_ $$2doi$$a10.1002/adfm.202413398
000147733 0248_ $$2sideral$$a141169
000147733 037__ $$aART-2024-141169
000147733 041__ $$aeng
000147733 100__ $$0(orcid)0000-0001-6584-6603$$aLancelot, Alexandre
000147733 245__ $$aAdhesion of Catechol-Functionalized Linear-Dendritic Block Copolymers: dendritic effect, self-assembly, and bioadhesion
000147733 260__ $$c2024
000147733 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147733 5203_ $$aInspired by mussels protein adhesives, two series of catechol‐functionalized Linear‐Dendritic Block Copolymer (LDBC) adhesives are synthesized. They show lap shear adhesion strength as high as 7 MPa on aluminum substrates and adhesion up to 3 kPa on porcine skin. These water‐soluble LDBCs are composed of i) either poly(ethylene glycol) (PEG) or poly(ethylene glycol)‐poly(propylene glycol)‐poly(ethylene glycol) triblock copolymer (Pluronic F‐127) as linear polymers, ii) Bis‐MPA dendrons of generation 0, 1, and 2 as dendritic parts, and iii) 2, 4, or 8 terminal catechol moieties. A LDBCs generation comparative test on aluminum reveals a clear dendritic effect: the LDBCs of second generation display higher adhesion than the LDBCs of first generation that also display higher adhesion than the LDBCs of generation 0 for both series, assessing thus a positive dendritic effect in adhesion. Second, a comparative study is carried out between the LDBCs based on PEG and the ones based on Pluronic. The ability of the Pluronic LDBCs to self‐assemble in water appears to reduce adhesion when applied on aluminum whereas it is essential to obtain adhesion on porcine skin, thanks to the formation of hydrogels, as observed by the vial inversion technique and electron microscopy.
000147733 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/EC/H2020/101062504/EU/info:eu-repo/grantAgreement/EC/H2020/101062504/EU//DAHAD/DAHAD$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101062504-DAHAD$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-126132NB-I00
000147733 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000147733 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147733 700__ $$aMeger, Mitchell E.
000147733 700__ $$aGuerreiro Gómez, Enrique$$uUniversidad de Zaragoza
000147733 700__ $$0(orcid)0000-0001-7091-077X$$aSierra, Teresa
000147733 700__ $$aWilker, Jonathan J.
000147733 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000147733 773__ $$g(2024), 2413398 [15 pp.]$$pAdv. funct. mater.$$tAdvanced Functional Materials$$x1616-301X
000147733 8564_ $$s3603493$$uhttps://zaguan.unizar.es/record/147733/files/texto_completo.pdf$$yVersión publicada
000147733 8564_ $$s2535667$$uhttps://zaguan.unizar.es/record/147733/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147733 909CO $$ooai:zaguan.unizar.es:147733$$particulos$$pdriver
000147733 951__ $$a2024-12-20-12:02:43
000147733 980__ $$aARTICLE