000147748 001__ 147748
000147748 005__ 20250103153613.0
000147748 0247_ $$2doi$$a10.1007/s12220-018-9991-8
000147748 0248_ $$2sideral$$a104434
000147748 037__ $$aART-2019-104434
000147748 041__ $$aeng
000147748 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso Gutiérrez, David$$uUniversidad de Zaragoza
000147748 245__ $$aA reverse Rogers-Shephard inequality for log-concave functions
000147748 260__ $$c2019
000147748 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147748 5203_ $$aWe will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of \ell _p-diferences of convex bodies under the condition that their polar bodies have opposite barycenters.
000147748 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000147748 590__ $$a0.924$$b2019
000147748 591__ $$aMATHEMATICS$$b130 / 323 = 0.402$$c2019$$dQ2$$eT2
000147748 592__ $$a1.662$$b2019
000147748 593__ $$aGeometry and Topology$$c2019$$dQ1
000147748 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000147748 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000147748 773__ $$g29, 1 (2019), 299-315$$pJ. geom. anal.$$tJOURNAL OF GEOMETRIC ANALYSIS$$x1050-6926
000147748 8564_ $$s346823$$uhttps://zaguan.unizar.es/record/147748/files/texto_completo.pdf$$yPostprint
000147748 8564_ $$s1141919$$uhttps://zaguan.unizar.es/record/147748/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000147748 909CO $$ooai:zaguan.unizar.es:147748$$particulos$$pdriver
000147748 951__ $$a2025-01-03-13:20:36
000147748 980__ $$aARTICLE