000147761 001__ 147761
000147761 005__ 20250103153613.0
000147761 0247_ $$2doi$$a10.1090/proc/15265
000147761 0248_ $$2sideral$$a121283
000147761 037__ $$aART-2021-121283
000147761 041__ $$aeng
000147761 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso Gutiérrez, David$$uUniversidad de Zaragoza
000147761 245__ $$aReverse Loomis-Whitney inequalities via isotropicity
000147761 260__ $$c2021
000147761 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147761 5203_ $$aGiven a centered convex body $ K\subseteq \mathbb{R}^n$, we study the optimal value of the constant $ \tilde {\Lambda }(K)$ such that there exists an orthonormal basis $ \{w_i\}_{i=1}^n$ for which the following reverse dual Loomis-Whitney inequality holds:
$\displaystyle \vert K\vert^{n-1}\leqslant \tilde {\Lambda }(K)\prod _{i=1}^n\vert K\cap w_i^\perp \vert.$
We prove that $ \tilde {\Lambda }(K)\leqslant (CL_K)^n$ for some absolute $ C>1$ and that this estimate in terms of $ L_K$, the isotropic constant of $ K$, is asymptotically sharp in the sense that there exist another absolute constant $ c>1$ and a convex body $ K$ such that $ (cL_K)^n\leqslant \tilde {\Lambda }(K)\leqslant (CL_K)^n$. We also prove more general reverse dual Loomis-Whitney inequalities as well as reverse restricted versions of Loomis-Whitney and dual Loomis-Whitney inequalities.
000147761 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000147761 590__ $$a0.971$$b2021
000147761 591__ $$aMATHEMATICS$$b166 / 333 = 0.498$$c2021$$dQ2$$eT2
000147761 591__ $$aMATHEMATICS, APPLIED$$b207 / 267 = 0.775$$c2021$$dQ4$$eT3
000147761 592__ $$a0.891$$b2021
000147761 593__ $$aMathematics (miscellaneous)$$c2021$$dQ1
000147761 593__ $$aApplied Mathematics$$c2021$$dQ1
000147761 594__ $$a1.7$$b2021
000147761 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000147761 700__ $$aBrazitikos, Silouanos
000147761 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000147761 773__ $$g149, 2 (2021), 833 - 844$$pProc. Am. Math. Soc.$$tPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY$$x0002-9939
000147761 8564_ $$s353555$$uhttps://zaguan.unizar.es/record/147761/files/texto_completo.pdf$$yPostprint
000147761 8564_ $$s1181020$$uhttps://zaguan.unizar.es/record/147761/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000147761 909CO $$ooai:zaguan.unizar.es:147761$$particulos$$pdriver
000147761 951__ $$a2025-01-03-13:20:59
000147761 980__ $$aARTICLE