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Abstract. Given a centered convex body K ⊆ Rn, we study the optimal value

of the constant Λ̃(K) such that there exists an orthonormal basis {wi}ni=1 for
which the following reverse dual Loomis-Whitney inequality holds:

|K|n−1 6 Λ̃(K)

n∏
i=1

|K ∩ w⊥i |.

We prove that Λ̃(K) 6 (CLK)n for some absolute C > 1 and that this estimate

in terms of LK , the isotropic constant of K, is asymptotically sharp in the sense

that there exists another absolute constant c > 1 and a convex body K such
that (cLK)n 6 Λ̃(K) 6 (CLK)n. We also prove more general reverse dual

Loomis-Whitney inequalities as well as reverse restricted versions of Loomis-

Whitney and dual Loomis-Whitney inequalities.

1. Introduction and notation

The classical Loomis-Whitney inequality [11] states that given a fixed orthonor-
mal basis {ei}ni=1, for any open set K ⊆ Rn we have that

(1.1) |K| 6
n∏
i=1

|Pe⊥i K|
1

n−1 ,

where | · | denotes the volume (i.e., the Lebesgue measure) in the corresponding
subspace and, for any k-dimensional linear subspace H ∈ Gn,k, PH denotes the
orthogonal projection onto H. As a consequence, one has the same inequality
whenever K ⊆ Rn is a convex body. A Convex body is a compact convex set with
non-empty interior and the set of all convex bodies K ⊆ Rn will be denoted by Kn.
The barycentre of a convex body K ∈ Rn is the vector

bar(K) =
1

|K|

∫
K

x dx.

We call K centered if bar(K) = 0 and the set of all centered convex bodies will be
denoted by Knc . Finally, the set of all centrally symmetric convex bodies will be
denoted by Kn0 .

In [12], Meyer proved the following dual inequality: For any convex body K ⊆ Rn

(1.2) |K| > (n!)
1

n−1

n
n
n−1

n∏
i=1

|K ∩ e⊥i |
1

n−1 .
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In [5], Campi, Gritzmann and Gronchi considered the following problem. Given
any convex body K ⊆ Rn, find the largest constant Λ(K) such that there exists an
orthonormal basis {wi}ni=1 for which the following inequality, reverse to the classical
Loomis-Whitney inequality (1.1), holds:

(1.3) |K|n−1 > Λ(K)

n∏
i=1

|Pw⊥i K|.

In the aforementioned paper the authors were interested in finding the value of
Λ(n) := infK∈Kn Λ(K). They found the exact value of this constant in the planar
case and gave a lower bound for its value in any dimension. Subsequently, in [10],
Koldobsky, Saroglou and Zvavitch gave the right asymptotic estimate for the value
of the constant, of the order Λ(n)

1
n ' n− 1

2 . Here, and through the whole text, the
notation a ' b is used to denote the existence of two absolute constants c1, c2 > 0
such that c1b 6 a 6 c2b.

In [6], Feng, Huang and Li considered the dual problem. Given any centered

convex body K ⊆ Rn, find the best constant Λ̃(K) such that there exists an or-
thonormal basis {wi}ni=1 for which the following inequality, reverse to the dual
Loomis-Whitney inequality (1.2) holds:

(1.4) |K|n−1 6 Λ̃(K)

n∏
i=1

|K ∩ w⊥i |.

They proved that if K is a centrally symmetric convex body in Rn then Λ̃(K) 6
((n−1)!)n. In other words, given a centered convex body K ⊆ Rn, we are interested
in the value of

(1.5) Λ̃(K) = min
|K|n−1∏n

i=1 |K ∩ w⊥i |
,

where the minimum is taken over all the orthogonal bases {wi}ni=1 of Rn. Moreover,
we define

Λ̃(n) = sup
K∈Knc

Λ̃(K) and Λ̃0(n) = sup
K∈Kn0

Λ̃(K),

where the supremum is taken over all centered convex bodies K in Rn and over all
centrally symmetric convex bodies respectively.

In this note, we describe the exact asymptotic behavior of Λ̃(n) given by the
following theorem. The precise definition of LK , the isotropic constant of K, will
be given in Section 2.

Theorem 1.1. For every centered convex body K ∈ Knc , we have that

Λ̃(K) 6
(

2
√

3LK

)n
.

Furthermore, (√
2Ln

)n
6 Λ̃(n) 6

(
2
√

3Ln

)n
,

where Ln = maxK∈Kn LK , is the maximal isotropic constant.

Remark. Notice that the best known general upper bound for the isotropic constant
(see section 2) gives an estimate Λ̃(n) 6 (Cn

1
4 )n, improving the estimate Λ̃(n) 6

((n − 1)!)n. Moreover, if we assume that the hyperplane conjecture (or slicing

problem, see [4]) is true, we have that Λ̃(n)
1
n ' 1.
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As a consequence we obtain that for every centrally symmetric planar convex
body K ∈ K2

0, we have that Λ̃(K) ≤ 1. This inequality was proved in [6], where
the equality cases were claimed to be characterized. Unfortunately, such character-
ization is not correct and, while it is true that Λ̃0(2) = 1, the equality cannot be
attained for any convex body (see Section 4).

Moreover, we prove the following general reverse inequality for sections of ar-
bitrary dimension. Before stating the theorem, we need a more general definition
for Λ̃(K) and Λ̃(n). Let m > 1 and let S = (S1, . . . , Sm) be a uniform cover of
[n] := {1, . . . , n} with weights (p1, . . . , pm), that is Sj ⊆ [n] for every 1 6 j 6 m
and for every 1 6 i 6 n

m∑
j=1

pjχSj (i) = 1.

For any basis {wi}ni=1 of Rn, let Hj = span{wk : k ∈ Sj}, dj = dimHj = |Sj |, and
p =

∑m
j=1 pj .

For every S, we are interested in the value of

Λ̃S(K) = min
|K|p−1∏n

j=1 |K ∩H⊥j |pj ,

where the minimum is taken over all the orthogonal bases {wi}ni=1 of Rn. Moreover,
let

Λ̃S(n) = sup
K∈Knc

Λ̃S(K),

where the supremum is taken over all centered convex bodies K in Rn. Then, we
have the following

Theorem 1.2. There exists an absolute constant C > 0, such that for every cen-
tered convex body K ∈ Knc for any uniform cover S = (S1, . . . , Sm) of [n] with
weights (p1, . . . , pm), we have that

Λ̃S(K) 6 (CLK)n.

Furthermore, there exist absolute constants c, C such that

(cLn)n∏m
j=1 L

pjdj
dj

6 Λ̃S(n) 6 (CLn)n,

where Ld = maxK∈Kd LK is the maximal isotropic constant in Rd.

Remark. Notice that Theorem 1.1 is the particular case of Theorem 1.2 (in which
the value of the absolute constants is explicitly given) which corresponds to the
choice m = n and Sj = {j} for 1 6 j 6 n.

Remark. Again, if we assume that the hyperplane conjecture is true we have
Λ̃S(n)

1
n ' 1.

In [3], the following restricted Loomis-Whitney inequality was obtained; if T ⊆
[n] has cardinality |T | = d and (S1, . . . , Sm) form a uniform cover of T with the
same weights ( 1

k , . . . ,
1
k ), where m > k, then for every convex body K ⊆ Rn and

any orthogonal basis {ei}ni=1

|PH⊥K||K|
m
k −1 6

(n− kdm
n−d

)mk(
n
d

)m
k −1

m∏
j=1

|PH⊥j K|
1
k .
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where Hj = span{ek : k ∈ Sj} and H = span{ek : k ∈ T}. In particular, for every
convex body K ⊆ Rn and any d-dimensional subspace H ∈ Gn,d, we have that for
any orthogonal basis {ei}di=1 of H

(1.6) |PH⊥K||K|d−1 6

(
n−1
n−d
)d(

n
d

)d−1

d∏
j=1

|Pe⊥j K|.

Dual restricted inequalities were also proved in [3]. We will also consider the prob-
lem of finding reverse restricted Loomis-Whitney inequalities and restricted dual
Loomis-Whitney inequalities. We will prove the following two results:

Theorem 1.3. Let K ∈ Kn be a convex body and let 2 6 d 6 n − 1. For any
H ∈ Gn,d there exists an orthonormal basis {wj}dj=1 of H such that if we denote
H = span{w1, . . . , wd} then we have that

|PH⊥K||K|d−1 >

(
n+d
n

)
(2n)d

d∏
i=1

|Pw⊥i K|.

Remark. Notice that if d = 2 then the constant in Theorem 1.3 and the constant
in equation (1.6) are of the same order.

Theorem 1.4. There exists an absolute constant C such that for every centered
convex body K ∈ Knc and every H ∈ Gn,d there exists an orthonormal basis {wj}dj=1

of H such that

|K||K ∩H⊥|d−1 ≤ Cd(d−1)d
d
2

d∏
j=1

|K ∩ (H⊥ ⊕ 〈wj〉)|.

The paper is organized as follows: In Section 2 we provide the preliminary
definitions and results that we use in order to prove our results. In Section 3
we prove the reverse dual Loomis-Whitney inequalities given by Theorem 1.1 and
Theorem 1.2. In Section 4 we study the situation in the centrally symmetric planar
case. Finally, in Section 5 we prove the restricted versions provided in Theorems
1.3 and 1.4.

2. Preliminaries

A convex body K ∈ Kn is called isotropic if |K| = 1, K is centered, and for
every θ ∈ Sn−1 ∫

K

〈x, θ〉2dx = L2
K ,

where LK is a constant depending on K, but not on θ, which is called the isotropic
constant of K. Given any convex body K ⊆ Rn there exists an affine map a + T ,
with a ∈ Rn and T ∈ GL(n) (unique up to orthogonal transformations), such that
a + TK is isotropic. The isotropic constant of K is then defined as the isotropic
constant of any of its isotropic images. Such an affine map is the solution of a
minimization problem, which allows to alternatively define LK in the following way

nL2
K = min

{
1

|K|1+ 2
n

∫
a+TK

|x|2dx : a ∈ Rn, T ∈ GL(n)

}
.

It is well known that the Euclidean ball Bn2 is the n-dimensional convex body
with the smallest isotropic constant and, as a consequence, there exists an absolute
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constant c > 0 such that LK > c for every convex body K ⊆ Rn and any n ∈ N (see,
for instance, [4, Proposition 3.3.1]. However, it is still a major open problem (known
as the slicing problem) whether there exists an absolute constant C > 0 such that
Ln := maxK∈Kn LK 6 C. This question was posed by Bourgain, who proved the

upper bound Ln 6 Cn
1
4 log n in [2]. This was improved to Ln 6 Cn

1
4 by Klartag

in [9] and it is the currently best known bound. In the planar case, it is known (see
[4, Theorem 3.5.7] and the results in [15]) that L2 = L∆2 = 1√

6 4√3
. If we restrict

ourselves to centrally symmetric convex bodies and denote Ln,0 := maxK∈Kn0 LK ,

then L2,0 = LB2
∞

= 1√
12

. Here ∆n denotes the n-dimensional regular simplex and

Bn∞ denotes the n-dimensional cube. These (and their affine images) are the only
convex bodies on which the maximums in Kn (and in Kn0 ) are attained.

Given a centered convex body K ∈ Knc with |K| = 1 and p > 1, its Lp-centroid
body Zp(K) is defined by

hZp(K)(y) =

(∫
K

|〈x, y〉|pdx
) 1
p

, y ∈ Rn,

where for any convex body L ∈ Kn, hL(y) = max{〈x, y〉 : x ∈ L} is the support
function of L. Notice that, by Hölder’s inequality, if 1 6 p 6 q then Zp(K) ⊆
Zq(K). Moreover, for any linear map T ∈ SL(n), with |detT | = 1, Zp(TK) =
TZp(K), and that K is isotropic if and only if Z2(K) = LKB

n
2 . If K is not isotropic

and |K| = 1 then Z2(K) is an ellipsoid whose volume is |Z2(K)| = LnK |Bn2 | (see, for
instance [4, Proposition 3.1.7]). In [8], Hensley proved that there exist two absolute
constants c1, c2 such that for every centered convex body K ∈ Knc with |K| = 1
and every θ ∈ Sn−1

(2.1)
c1

|K ∩ θ⊥|
6 hZ2(K)(θ) 6

c2
|K ∩ θ⊥|

.

The value of these two constants are known to be (see [13, Corollaries 2.5 and 2.7]
and [7, Theorem 3]) c1 = 1

2
√

3
and c2(n) = n√

2(n+1)(n+2)
≤ 1√

2
. Furthermore, there

is equality in the left-hand side inequality if and only if K is cylindrical in the
direction θ (i.e., K = K ∩ θ⊥ + [−x, x] for some x ∈ Rn) and there is equality in
the right hand-side inequality if and only if K is a double cone in the direction θ.

The latter equation shows that for any isotropic convex body and any θ ∈ Sn−1

|K ∩ θ⊥| ' 1

LK
.

More generally, in [13, Proposition 3.11] (see also [4, Proposition 5.1.15]) it was
proved that for any isotropic convex body K and any d-dimensional linear subspace
H ∈ Gn,d, there exists a d-dimensional convex body B(K,H) such that

(2.2) |K ∩H⊥| 1d '
LB(K,H)

LK
.

It was proved by Paouris (see [4, Theorem 5.1.14]) that there exist two absolute
constants c1, c2 such that for every centered convex body K ∈ Kn with |K| = 1
and every d-dimensional linear subspace H ∈ Gn,d

(2.3) c1 6 |K ∩H⊥|
1
d |PHZd(K)| 1d 6 c2.
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Given a convex body K ∈ Kn, its polar projection body Π∗K is the closed unit
ball of the norm given by

‖x‖Π∗K = |x||Px⊥K|,
which is a centrally symmetric convex body. Equivalently, its radial function is
given by ρΠ∗K(θ) = 1

|P
θ⊥K|

, where for every convex body L ∈ Kn containing the

origin in its interior, its radial function is defined for every θ ∈ Sn−1 by ρL(θ) =
max{λ > 0 : λθ ∈ L}. It is well known that for any convex body K ∈ Kn, the
affinely invariant quantity |K|n−1|Π∗K| is maximized when K is an ellipsoid and
minimized whenK is a simplex, as proved by Petty [14] and Zhang [16], respectively.
Thus, for every convex body K ⊆ Rn(

2n
n

)
nn
≤ |K|n−1|Π∗K| ≤

(
|Bn2 |
|Bn−1

2 |

)n
.

In [1, Proposition 5.2], it was proved that for any convex body K ∈ Kn and any
d-dimensional linear subspace H ∈ Gn,d

(2.4) |K|d−1|Π∗K ∩H| >
(
n+d
n

)
nd|PH⊥K|

.

3. Proof of the reverse dual Loomis Whitney inequality

We begin this section by proving Theorem 1.1

Proof of Theorem 1.1. Let K be a centered convex body. We can assume without
loss of generality that |K| = 1. Let us considered the ellipsoid Z2(K) ⊆ Rn, which
has volume |Z2(K)| = LnK |Bn2 |. Taking {wi}ni=1 the orthonormal basis given by the
principal axes of the ellipsoid Z2(K) we have, by (2.1), that there exists an absolute
constant c1 = 1

2
√

3
such that

n∏
i=1

|K ∩ w⊥i | >
cn1∏n

i=1 hZ2(K)(wi)
=

cn1 |Bn2 |
|Z2(K)|

=
cn1
LnK

,

which proves that
Λ̃(K) ≤ (CLK)n

with C = 1
c1

= 2
√

3. To conclude the proof of Theorem 1.1 we first notice that
from the above

Λ̃(n) 6 (2
√

3Ln)n.

On the other hand, if we consider an isotropic convex body with isotropic constant
LK = Ln we have that for every orthonormal basis {wi} of Rn

cn1
LnK
6

n∏
i=1

|K ∩ w⊥i | 6
cn2
LnK

,

where c2 = 1√
2

and, since LK = Ln,

Λ̃(n) > (cLn)n,

with c = 1
c2

=
√

2. This concludes the proof. �

Remark. The latter proof shows that for every isotropic convex body, Λ̃(K)
1
n ' LK .

We now move to the general case.
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Proof of Theorem 1.2. Let m > 1 and let S = (S1, . . . , Sm) be a uniform cover of
[n] with weights (p1, . . . , pm). Let K be a centered convex body. We can assume
without loss of generality that |K| = 1. Let {wi}ni=1 be the orthonormal basis given
by the principal axes of the ellipsoid Z2(K). Let T ∈ GL(n) be the diagonal map
with respect to the orthonormal basis {wi}ni=1 given by T (wi) = λiwi such that
TK is isotropic. By (2.2), there exists an absolute constant c1 such that for any
1 6 j 6 m there exists a dj-dimensional convex body B(K,Hj), depending on K
and Hj = span{wk : k ∈ Sj}, verifying

|K ∩H⊥j | = |T−1T (K ∩H⊥j )| =
∏
k 6∈Sj

1

λk
|TK ∩H⊥j |

>

(
c1LB(K,Hj)

LK

)dj ∏
k 6∈Sj

1

λk
.

Note that

m∑
j=1

pjdj = n, if we call Scj = [n] \ Sj for every 1 6 j 6 m and p =

n∑
i=1

pi

then the m-tuple (Sc1, . . . , S
c
m) forms a uniform cover of [n] with weights (p′1, . . . , p

′
m),

where p′i = pi
p−1 , and

∏n
i=1 λi = |T | = 1 since |K| = |TK| = 1. Combining the

above we get
m∏
j=1

|K ∩H⊥j |pj >
(
c1
LK

)n m∏
j=1

(
LB(K,Hj)

)pjdj 1∏
k 6∈Sj λ

pj
k

=

(
c1
LK

)n ∏m
j=1

(
LB(K,Hj)

)pjdj∏n
i=1 λ

∑m
j=1 pjχScj (i)

i

=

(
c1
LK

)n ∏m
j=1

(
LB(K,Hj)

)pjdj∏n
i=1 λ

p−1
i

=
cn1
∏m
j=1

(
LB(K,Hj)

)pjdj
LnK

.

This means that

Λ̃S(K) 6
(LK)n

cn1
∏m
j=1(LB(K,Hj))

pjdj
.

Taking now the supremum over all orthonormal bases, and taking into account that
there exists a universal constant c̃ > 0 bounding from below the isotropic constant
of any convex body in any dimension, we get that

Λ̃S(K) 6 max
(LK)n

cn1
∏m
j=1(LB(K,Hj))

pjdj
6 (CLK)n,

with C = 1
c̃c1

.

If K is isotropic then, by (2.2), there exists a universal constant c2 such that for
any orthonormal basis {wi}ni=1 and any uniform cover S = (S1, . . . , Sm) of [n] with
weights (p1, . . . , pm), we have that for every 1 6 j 6 m the dj-dimensional convex
bodies B(K,Hj) associated to K and Hj = span{wk : k ∈ Sj} verifies

|K ∩H⊥j | 6
(
c2LB(K,Hj)

LK

)dj
,
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and then for any orthonormal basis {wi}ni=1 and any uniform cover S = (S1, . . . , Sm)
of [n] with weights (p1, . . . , pm)

1 = |K|p−1 >
(LK)n

cn2
∏m
j=1(LB(K,Hj))

pjdj

m∏
j=1

|K ∩H⊥j |pj .

Therefore, taking c = 1
c2

Λ̃S(K) > min
(cLK)n∏m

j=1(LB(K,Hj))
pjdj

>
(cLK)n∏m
j=1 L

pjdj
dj

,

where the minimum is taken over all the orthogonal basis {wi}ni=1 in Rn. Taking
the convex body with maximal isotropic constant in Rn, we get the reverse bound
for Λ̃S(n). �

Remark. Notice that if K is isotropic then one has that for any orthonormal basis
{wi}ni=1

(cLK)n∏m
j=1(LB(K,Hj))

pjdj
6

|K|p−1∏m
j=1 |K ∩H⊥j |pj

6
(CLK)n∏m

j=1(LB(K,Hj))
pjdj

,

where c, C are absolute constants and so

Λ̃S(K)
1
n ' min

LK∏m
j=1(LB(K,Hj))

pjdj
n

,

where the minimum is taken over all orthonormal bases {wi}ni=1 in Rn.

4. The centrally symmetric planar case

In this section we will study the centrally symmetric planar case and prove the
following:

Proposition 4.1. The value of Λ̃0(2) is

Λ̃0(2) = 1.

However, there exists no centrally symmetric planar convex body K ∈ K2
0 such that

Λ̃(K) = 1.

In order to prove the proposition we will make use of the following lemma, which
shows that when K is a centrally symmetric planar box, one of the two orthogonal
vectors for which we obtain the minimum defining Λ̃(K) has to be the direction of
one of the diagonals.

Lemma 4.1. Let K ∈ K2
0 be a centrally symmetric rectangle whose sides have

lengths l1 ≤ l2. Then

Λ̃(K) =
|K|

|K ∩ w⊥1 ||K ∩ w⊥2 |
=

l22
l21 + l22

< 1,

where w1 is the direction of a diagonal of K and w2 is orthogonal to w1 and l ≥ 1.

Remark. If we assume |K| = 1, then Λ̃(K) = l4

l4+1 , where l is is the length of the
largest side of K.
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Proof. We can assume without loss of generality that |K| = 1 and that the sides of
K are parallel to the coordinate axes. Let l denote the length of the vertical side
of the box, which we can assume to be the longest one. Then l > 1 and

K = conv

{(
1

2l
,
l

2

)
,

(
− 1

2l
,
l

2

)
,

(
1

2l
,− l

2

)
,

(
− 1

2l
,− l

2

)}
.

Let us take w⊥2 = {(x, y) ∈ R2 : y = ax, a ∈ R} a generic straight line through the
origin and w1 an orthogonal vector to w2. Thus, w⊥1 =

{
(x, y) ∈ R2 : y = − 1

ax
}

.

Notice that if a ∈
[
l2,∞

)
then w⊥2 intersects with the boundary of K, ∂K, in the

horizontal sides at the points P1 =
(
l

2a ,
l
2

)
and −P1 and w⊥1 in the vertical sides

at the points P2 =
(

1
2l ,−

1
2al

)
and −P2, while if a ∈

[
1
l2 , l

2
]

both w⊥1 , w
⊥
2 intersect

∂K in the vertical sides, being w⊥2 ∩ ∂K the points P ′1 =
(

1
2l ,

a
2l

)
and −P ′1, and

w⊥1 ∩ ∂K the points P ′2 =
(

1
2l ,−

1
2al

)
and −P ′2.

Therefore, if a ∈
[
l2,∞

)
, we have that

|K ∩ w⊥1 ||K ∩ w⊥2 | = 1 +
1

a2

and if a ∈
[

1
l2 , l

2
]

|K ∩ w⊥1 ||K ∩ w⊥2 | =
1

l2

(
a+

1

a

)
we have that |K ∩ w⊥1 ||K ∩ w⊥2 | is maximized in a ∈

[
1
l2 ,∞

)
for the values a = l2

and a = 1
l2 , which correspond to the cases in which either w⊥2 or w⊥1 passes through

one of the vertices of the box. If this is the case,

|K ∩ w⊥1 ||K ∩ w⊥2 | =
l4 + 1

l4
.

Since K is symmetric with respect to the coordinate axes, we have that for any
a ∈

(
−∞, 1

l2

)
there exists another pair of orthogonal lines w̃⊥1 , w̃

⊥
2 described as

before by a parameter a1 ∈
[

1
l2 ,∞

)
for which

|K ∩ w⊥1 ||K ∩ w⊥2 | = |K ∩ w̃⊥1 ||K ∩ w̃⊥2 |.
Since in the case where w1, w2 are the coordinate vectors we have |K∩w⊥1 ||K∩w⊥2 | =
1, it follows that

max |K ∩ w⊥1 ||K ∩ w⊥2 | =
l4 + 1

l4
,

where the maximum is taken over all the pairs of orthogonal vectors in R2, and it
is attained when one of the two vectors is the direction of the diagonal of K. �

Let us now prove Proposition 4.1:

Proof of Proposition 4.1. We argue like in the proof of Theorem 1.1. For any K ∈
K2

0 with |K| = 1, if w1, w2 are the principal axes of the inertia ellipsoid Z2(K) of
K, and taking into account that L2,0 = 1√

12
, we have

(4.1) Λ̃(K) 6
|K|

|K ∩ w⊥1 ||K ∩ w⊥2 |
6 12L2

K 6 1.

Besides, by Lemma 4.1, we have that

Λ̃0(2) > lim
l→∞

l4

l4 + 1
= 1.
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Therefore, Λ̃0(2) = 1. If there exists a convex body K (we can assume that |K| = 1)

such that Λ̃(K) = 1 then for such K all the inequalities in (4.1) are equalities.
In particular, if we have equality in the second inequality, K is cylindrical both
with respect to w1 and w2, which means that there exist x1, x2 ∈ Rn such that
K = K ∪ w⊥1 + [−x1, x1] = K ∪ w⊥2 + [−x2, x2]. This one implies that K is a

rectangle. But in this case, the Lemma 4.1 gives Λ̃(K) < 1. �

Remark. In [6], the authors claimed that if K ∈ K2
0, then Λ̃(K) = 1 if and only

if K is a parallelogram with one of its diagonals perpendicular to the edges. The
following example shows that such characterization was not correct. Let

K = conv

{(
0,

1

2

)
,

(
1,

1

2

)
,

(
0,−1

2

)
,

(
−1,−1

2

)}
,

which is a symmetric parallelogram with the diagonal from
(
0, 1

2

)
to
(
0,− 1

2

)
per-

pendicular to the edge from
(
0, 1

2

)
to
(
1, 1

2

)
. Notice that |K| = 1 and if we take w1

in the direction of the diagonal from
(
1, 1

2

)
to
(
−1,− 1

2

)
, we have that w⊥1 inter-

sects the boundary of K at the points P =
(
− 1

6 ,
1
3

)
and −P and then, taking w2

orthogonal to w1 we have that

|K|
|K ∩ w⊥1 ||K ∩ w⊥2 |

=
3

5
< 1.

Thus, it is not true that Λ̃(K) = 1.

5. Restricted Versions

In this section we will prove reverse versions of restricted Loomis-Whitney and
restricted dual Loomis-Whitney inequalities. We start proving Theorem 1.3.

Proof of Theorem 1.3. Let K ∈ Kn, H ∈ Gn,d and let Π∗K be the polar projection
body of K. Since Π∗K is a centrally symmetric convex body, Π∗K∩H is a centrally
symmetric convex body in H, using [5, Lemma 5.5], there exists a rectangular cross-
polytope C contained in Π∗K ∩H such that

|Π∗K ∩H| 6 d!|C|.

That is, there exist d orthogonal vectors {wi}di=1 ∈ Sn−1 ∩H such that

C = conv{±ρΠ∗K(wi)wi}di=1 ⊆ Π∗K ∩H

and

|Π∗K ∩H| 6 d!|C| =
d∏
i=1

2ρΠ∗K(wi) =
2d∏d

i=1 |Pw⊥i K|
.

Since, by (2.4), we have

|Π∗K ∩H| >
(
n+d
n

)
nd|K|d−1|PH⊥K|

,

we obtain

|PH⊥K||K|d−1 >

(
n+d
n

)
(2n)d

d∏
i=1

|Pw⊥i K|.

�
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Let us now prove the restricted dual Loomis-Whitney inequality given in Theo-
rem 1.4.

Proof of Theorem 1.4. Let K ∈ Knc be a centered convex body. We can assume,
without loss of generality, that |K| = 1. If H ∈ Gn,d, by the reverse Loomis-
Whitney inequality (1.3) applied to the convex body PH(Zd(K)), with the value of
the constant estimated in [10], there exists an absolute constant c and an orthonor-
mal basis {wj}dj=1 of H such that

|PH(Zd(K))|d−1 >
1

(cd)
d
2

d∏
j=1

|PH∩w⊥j Zd(K)|.

Using (2.3), we get that there exist two absolute constants c1, c2 such that

cd1 6 |K ∩H⊥||PHZd(K)| 6 cd2.

Therefore, for every 1 6 j 6 d

cd−1
1 6 |K ∩ (H⊥ ⊕ 〈wj〉)||PH∩w⊥j Zd−1(K)| 6 cd−1

2 .

Combining the above with the fact that Zd−1(K) ⊆ Zd(K), it follows that

c
d(d−1)
2

|K ∩H⊥|d−1
>
c
d(d−1)
1

(cd)
d
2

1∏d
j=1 |K ∩ (H⊥ ⊕ 〈wj〉)|

,

which gives the result. �
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