000147782 001__ 147782
000147782 005__ 20250103153614.0
000147782 0247_ $$2doi$$a10.1002/anie.202421162
000147782 0248_ $$2sideral$$a141268
000147782 037__ $$aART-2024-141268
000147782 041__ $$aeng
000147782 100__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000147782 245__ $$a4D Printing of Liquid Crystal Emulsions for Smart Structures with Multiple Functionalities
000147782 260__ $$c2024
000147782 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147782 5203_ $$a3D printing, and more recently 4D printing, has emerged as a transformative technology for fabricating structures with complex geometries and responsive properties. However, employing functional colloidal solutions as inks for printing remains unexplored. In this work, we present a novel and versatile 4D printing approach for fabricating functional and complex‐shaped objects using polymerizable liquid crystal (LC) emulsion droplets. Leveraging a digital light processing (DLP) 3D printing technique, we achieve rapid production of intricate 3D geometries with high resolution. The printed structures retain the LC ordering from the precursor droplets, imparting the final objects with shape memory properties, including shape fixation and recovery upon heating or light exposure. Light‐responsive behavior is introduced post‐printing by embedding an azo dye into the 3D structures. Additionally, we explore the potential to create intrinsically porous 3D structures by selectively removing non‐reactive components from the printed geometries, adding an extra level of functionality to the printed objects. Furthermore, we incorporate chiral nematic LCs into the emulsion droplets, producing 3D objects with tunable reflective properties. To our knowledge, this is the first example of DLP 3D printing with emulsions, offering an effective and versatile pathway for developing 4D‐printed materials with potential applications in optics, robotics, microfluidics, and biomedicine.
000147782 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-146811NA-I00$$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031154-I$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2023-CIE-04
000147782 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000147782 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147782 700__ $$aMainik, Philipp
000147782 700__ $$aVazquez-Martel, Clara
000147782 700__ $$aÁlvarez-Solana, Cristina
000147782 700__ $$aBlasco, Eva
000147782 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000147782 773__ $$g(2024), [9 pp.]$$pAngew. Chem. (Int. ed.)$$tAngewandte Chemie (International ed.)$$x1433-7851
000147782 8564_ $$s1345565$$uhttps://zaguan.unizar.es/record/147782/files/texto_completo.pdf$$yVersión publicada
000147782 8564_ $$s2835769$$uhttps://zaguan.unizar.es/record/147782/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147782 909CO $$ooai:zaguan.unizar.es:147782$$particulos$$pdriver
000147782 951__ $$a2025-01-03-13:21:25
000147782 980__ $$aARTICLE