000147786 001__ 147786 000147786 005__ 20250103153614.0 000147786 0247_ $$2doi$$a10.1063/5.0137905 000147786 0248_ $$2sideral$$a141224 000147786 037__ $$aART-2023-141224 000147786 041__ $$aeng 000147786 100__ $$aPatel, M 000147786 245__ $$aHeat transfer to proximal cylinders in hypersonic flow 000147786 260__ $$c2023 000147786 5060_ $$aAccess copy available to the general public$$fUnrestricted 000147786 5203_ $$aUncontrolled atmospheric entry of meteors, satellites, and spacecraft components often leads to their partial or complete demise. In this destructive process, driven by hypersonic ablation, reentry objects fragment, interact, and alter each other's aerothermal environment. The effect of these interactions on the heat transfer to the fragments has not been investigated, despite the heat transfer's importance in hypersonic ablation and reentry demise. This study focuses on the numerical investigation of heat transfer to proximal circular cylinders in a thermochemically frozen flow and in two dimensions. First, binary body configurations at Mach numbers 2, 4, and 8 revealed that the heat load and peak heat transfer can be augmented for either or both proximal bodies by +20% to −90% of an isolated body. Second, different clusters of five proximal bodies showed that the heat load to any given body can range from +40% to −90% of an isolated body. Moreover, the average heat load in a cluster is found to vary between +20% and −60% of an isolated body. Intuitively, clusters which are thin in the direction perpendicular to free-stream velocity and long in the direction parallel to the free-stream velocity have their cluster-averaged heat load reduced. In contrast, thick and thin clusters, in directions perpendicular and parallel to the free-stream velocity, are subject to an increased cluster-averaged heat load. 000147786 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000147786 590__ $$a4.1$$b2023 000147786 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b2 / 40 = 0.05$$c2023$$dQ1$$eT1 000147786 591__ $$aMECHANICS$$b29 / 170 = 0.171$$c2023$$dQ1$$eT1 000147786 592__ $$a1.05$$b2023 000147786 593__ $$aComputational Mechanics$$c2023$$dQ1 000147786 593__ $$aCondensed Matter Physics$$c2023$$dQ1 000147786 593__ $$aMechanics of Materials$$c2023$$dQ1 000147786 593__ $$aMechanical Engineering$$c2023$$dQ1 000147786 593__ $$aFluid Flow and Transfer Processes$$c2023$$dQ1 000147786 594__ $$a6.5$$b2023 000147786 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000147786 700__ $$0(orcid)0000-0001-8342-6573$$aNavarro-Martinez, S 000147786 773__ $$g35, 3 (2023), 0137905 [20 pp.]$$pPhys. fluids$$tPhysics of Fluids$$x1070-6631 000147786 8564_ $$s10479335$$uhttps://zaguan.unizar.es/record/147786/files/texto_completo.pdf$$yVersión publicada 000147786 8564_ $$s912049$$uhttps://zaguan.unizar.es/record/147786/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000147786 909CO $$ooai:zaguan.unizar.es:147786$$particulos$$pdriver 000147786 951__ $$a2025-01-03-13:21:30 000147786 980__ $$aARTICLE