Spatio-temporal modeling for record-breaking temperature events in Spain

Castillo-Mateo, Jorge (Universidad de Zaragoza) ; Gelfand, Alan E. ; Gracia-Tabuenca, Zeus (Universidad de Zaragoza) ; Asín, Jesús (Universidad de Zaragoza) ; Cebrián, Ana C. (Universidad de Zaragoza)
Spatio-temporal modeling for record-breaking temperature events in Spain
Resumen: Record-breaking temperature events are now very frequently in the news, viewed as evidence of climate change. With this as motivation, we undertake the first substantial spatial modeling investigation of temperature record-breaking across years for any given day within the year. We work with a dataset consisting of over 60 years (1960–2021) of daily maximum temperatures across peninsular Spain. Formal statistical analysis of record-breaking events is an area that has received attention primarily within the probability community, dominated by results for the stationary record-breaking setting with some additional work addressing trends. Such effort is inadequate for analyzing actual record-breaking data. Resulting from novel and detailed exploratory data analysis, we propose rich hierarchical conditional modeling of the indicator events which define record-breaking sequences. After suitable model selection, we discover explicit trend behavior, necessary autoregression, significance of distance to the coast, useful interactions, helpful spatial random effects, and very strong daily random effects. Illustratively, the model estimates that global warming trends have increased the number of records expected in the past decade almost 2-fold, 1.93 (1.89,1.98), but also estimates highly differentiated climate warming rates in space and by season. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Idioma: Inglés
DOI: 10.1080/01621459.2024.2427430
Año: 2024
Publicado en: JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION (2024), [13 pp.]
ISSN: 0162-1459

Financiación: info:eu-repo/grantAgreement/ES/DGA-CUS/1668-2022
Financiación: info:eu-repo/grantAgreement/ES/DGA-CUS/581-2020
Financiación: info:eu-repo/grantAgreement/ES/DGA/E46-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-116873GB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2023-150234NB-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130702B-I00
Financiación: info:eu-repo/grantAgreement/ES/MIU/UNI 551-2021
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-01-09-14:41:12)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Estadística e Investigación Operativa



 Registro creado el 2025-01-09, última modificación el 2025-01-09


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)