000147904 001__ 147904
000147904 005__ 20250109162738.0
000147904 0247_ $$2doi$$a10.1021/acs.jpcc.4c07265
000147904 0248_ $$2sideral$$a141300
000147904 037__ $$aART-2024-141300
000147904 041__ $$aeng
000147904 100__ $$0(orcid)0000-0002-6184-3920$$aGimeno, Ignacio
000147904 245__ $$aLocalized nanoscale formation of vanadyl porphyrin 2D MOF nanosheets and their optimal coupling to lumped element superconducting resonators
000147904 260__ $$c2024
000147904 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147904 5203_ $$aA strategy toward the realization of a quantum spin processor involves the coupling of spin qubits and qudits to photons within superconducting resonators. To enable the realization of such hybrid architecture, here we first explore the design of a chip with multiple lumped-element LC superconducting resonators optimized for their coupling to distinct transitions of a vanadyl porphyrin electronuclear qudit. The controlled integration of the vanadyl qudit onto the superconducting device, both in terms of number and orientation, is then attained using the in situ formation of nanosheets of a 2D framework built on the vanadyl qudit as a node. Low-temperature transmission experiments demonstrate the coupling of photons in resonators with different frequencies to the targeted electronuclear transitions of the vanadyl qudit, also confirming the control over the vanadyl qudit node orientation. The derived collective spin-photon couplings in the 0.3–1.6 MHz range then allow to estimate enhanced, optimal, single spin photon couplings up to 4 Hz.
000147904 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-118329RB-I00$$9info:eu-repo/grantAgreement/ES/AEI/AEI PID2022-140923NB-C21$$9info:eu-repo/grantAgreement/ES/CSIC/PTI-001$$9info:eu-repo/grantAgreement/ES/DGA/E09-23R$$9info:eu-repo/grantAgreement/ES/DGA/E31-23R$$9info:eu-repo/grantAgreement/EC/H2020/862893/EU/Molecular spin qudits offering new hope for quantum computing/FATMOLS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 862893-FATMOLS$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C22
000147904 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000147904 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147904 700__ $$0(orcid)0000-0001-6284-0521$$aLuis, Fernando
000147904 700__ $$0(orcid)0000-0003-3459-8605$$aMarcuello, Carlos
000147904 700__ $$aPallarés, Maria Carmen
000147904 700__ $$0(orcid)0000-0001-7460-5916$$aLostao, Anabel
000147904 700__ $$aCalero de Ory, Marina
000147904 700__ $$aGomez, Alicia
000147904 700__ $$aGranados, Daniel
000147904 700__ $$0(orcid)0000-0002-8267-9306$$aTejedor, Inés$$uUniversidad de Zaragoza
000147904 700__ $$0(orcid)0000-0003-2553-0633$$aNatividad, Eva$$uUniversidad de Zaragoza
000147904 700__ $$0(orcid)0000-0002-8424-9780$$aUrtizberea, Ainhoa$$uUniversidad de Zaragoza
000147904 700__ $$0(orcid)0000-0003-2095-5843$$aRoubeau, Olivier
000147904 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000147904 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000147904 773__ $$g(2024), [10 pp.]$$pJ. phys. chem., C$$tJournal of physical chemistry. C.$$x1932-7447
000147904 8564_ $$s6984893$$uhttps://zaguan.unizar.es/record/147904/files/texto_completo.pdf$$yVersión publicada
000147904 8564_ $$s2868185$$uhttps://zaguan.unizar.es/record/147904/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147904 909CO $$ooai:zaguan.unizar.es:147904$$particulos$$pdriver
000147904 951__ $$a2025-01-09-14:41:34
000147904 980__ $$aARTICLE