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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that mainly affects the elderly
population. It is characterized by cognitive impairment and dementia due to abnormal levels of
amyloid beta peptide (Aβ) and axonal Tau protein in the brain. However, the complex underlying
mechanisms affecting this disease are not yet known, and there is a lack of standardized biomarkers
and therapeutic targets. Therefore, in this study, by means of bioinformatics analysis, AD-affected
brain tissue was analyzed using the GSE138260 dataset, identifying 612 differentially expressed genes
(DEGs). Functional analysis revealed 388 upregulated DEGs associated with sensory perception and
224 downregulated DEGs linked to the regulation and modulation of synaptic processes. Protein–
protein interaction network analysis identified 20 hub genes. Furthermore, miRNA target gene
networks revealed 1767 miRNAs linked to hub genes, among which hsa-mir-106a-5p, hsa-mir-17-5p,
hsa-mir-26a-5p, hsa-mir-27a-3p and hsa-mir-34a-5p were the most relevant. This study presents
novel biomarkers and therapeutic targets for AD by analyzing the information obtained with a
comprehensive literature review, providing new potential targets to study their role in AD.

Keywords: bioinformatics; omics; neurodegenerative diseases (NDDs); extracellular/circulating
biomarkers; microRNA; Alzheimer

1. Introduction

Alzheimer’s disease (AD), initially characterized by Alois Alzheimer in 1907 [1], is
pathologically marked by two defined events: the deposition of amyloid beta peptide (Aβ)
in the intercellular space and the formation of intraneuronal tangles due to hyperphos-
phorylation of the axonal Tau protein [2]. The deposition of Aβ arises from the aberrant
metabolism of amyloid precursor protein (APP), a transmembrane protein. In AD, dys-
regulation of APP cleavage leads to excessive accumulation of Aβ peptides. On the other
hand, the tau protein, a microtubule-associated protein normally involved in maintain-
ing neuronal stability, undergoes abnormal hyperphosphorylation in AD, promoting its
aggregation into neurofibrillary tangles (NFTs). Key contributing mechanisms include
aberrant phosphorylation and alterations in tau splicing, which disrupt its normal structure
and enhance its pathological accumulation [3]. These pathological processes contribute to
synaptic dysfunction and neuronal damage and ultimately lead to progressive neuronal
death, which underlies the cognitive decline and neurodegeneration characteristic of AD.
However, the first link that promotes these neurodegenerative processes remains unknown.

At present, AD is classified into familial or early-onset Alzheimer’s disease (EOAD),
occurring before the age of 65, marked by mutations in genes transmitted in an autosomal
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dominant manner, and late-onset Alzheimer’s disease (LOAD), typically sporadic and
occurring after the age of 65 [4]. EOAD represents less than 5% of all AD cases, with the
majority attributed to LOAD. AD patients may present symptoms such as memory loss,
language dysfunction, impaired visuospatial function, agnosia, and apraxia. Additionally,
some individuals may experience anxiety and depression, among other neuropsychiatric
symptoms [5,6]. In addition, environmental factors play a critical role in AD pathogenesis,
such as aging, traumatic brain injuries, lifestyle habits, and chronic conditions like diabetes
and hypertension significantly contribute to AD risk, hindering an earlier diagnosis and
prognosis of the disease [3].

AD can be considered the predominant cause of dementia in older individuals, with
prevalence doubling every six years of age, reaching 104.8 per 1000 person-years at 90 years
or older [7]. This increasing concern establishes AD as the fifth leading cause of death in
the world [2]. It is also suggested that up to 13.8 million AD patients may be diagnosed
worldwide by 2050 [8], highlighting the need for research into effective diagnostic, preven-
tive, and treatment strategies. Currently, AD diagnosis has traditionally been considered
definitive only post-mortem. The clinical diagnosis consists of a detailed symptom history,
neuropsychological assessment, and assessment of the impact of cognitive impairment on
social, occupational, or other instrumental functions. As there are many underlying causes
for dementia, the importance of accurate diagnostic biomarkers is underscored [7]. An ideal
AD biomarker should identify key neuropathological features, demonstrating a diagnostic
sensitivity and specificity exceeding 80% [8]. Existing biomarkers, such as Aβ 1-42 and
tau protein levels in cerebrospinal fluid, 18F-FDG (18F-labeled fluorodeoxyglucose) in the
cortex, are invasive or expensive and cause patient discomfort [5].

Advancements in whole genome sequencing, genomics, transcriptomics, proteomics,
and bioinformatics provide substantial data for disease studies, such as finding new pos-
sibilities for potential diagnostic and prognostic targets in diseases or finding related
genes and pathways between two or more different diseases, among others [6,9,10]. Bioin-
formatics methods provide applications in disease pathogenesis, molecular diagnostics,
therapeutic drug targeting, and prognostic prediction. Relevant studies identified related
genes in different AD stages [11] and therapeutic targets in AD brains through large-scale
proteomic analysis [12]. Considering the complexity of this disease, these tools can enable
the direct management of a high amount of data from diverse cohorts of AD patients
and other neurodegenerative diseases, potentially aiding in the identification of specific
biomarkers for AD. In this study, we analyzed the Gene Expression Omnibus (GEO) dataset
GSE138260. The original authors of this database conducted a study to analyze significant
evolutionary changes at the transcriptomic level. They also conducted expression studies,
heatmap analyses, and systematic analyses at conserved sites to assess the evolution of
the RNA profile [13]. The aim of this study is to introduce a novel approach utilizing the
GSE138260 dataset to obtain new information relevant to late-onset Alzheimer’s disease
(LOAD). The dataset exclusively represents LOAD samples, the most common form of
AD. Firstly, differentially expressed genes (DEGs) were identified in AD samples versus
healthy controls. Subsequent Gene Ontology (GO) and pathway enrichment analyses were
performed to determine the functions and pathways affected by these DEGs. Further-
more, protein–protein interaction (PPI) networks were constructed to identify relevant
subnetworks and hub genes. To make a step forward in this study, the potential role of
micro RNAs (miRNAs) in AD was also investigated. miRNAs have emerged as critical
regulators in the context of AD. Their ability to modulate multiple genes and their accessi-
bility through non-invasive sampling, such as blood, position them as promising targets
in complex diseases. Recent studies underscore their significance in AD by highlighting
their influence on key pathogenic pathways. For instance, the dysregulation of miR-149
reduces BACE1 levels and serum Aβ accumulation, while the overexpression of miR-146a
in microglia mitigates cognitive deficits, attenuates neuroinflammation, reduces Aβ levels,
and prevents neuronal loss [3]. Accordingly, as a final step and novel contribution to this
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study, regulatory networks of miRNA target genes were constructed based on identified
hub genes.

2. Materials and Methods
2.1. Dataset Selection

The Gene Expression Omnibus (GEO) was the selected database for this investigation.
GEO is a globally accessible public repository established in 2000 for the investigation of
gene expression datasets [14]. The search strategy used a combination of specific keywords:
“Alzheimer disease” [MeSH Terms] OR Alzheimer [All Fields]. Rigorous cutoff criteria
were implemented; the data search was confined to datasets exclusively associated with
Homo sapiens and categorized under the study type of expression profiling by matrix.
From the identified datasets, the GSE138260 dataset [13] was chosen for analysis. This
dataset, hosted on the Agilent-034879 ADchip_1.0 platform, comprises a total of 36 samples
(19 control samples and 17 AD samples). The target sample is brain tissue, specifically from
the temporal cortex, a region prominently affected by Alzheimer’s disease [15]. Detailed
information on these samples is available in Supplementary Table S1 (Table S1).

2.2. Study of Differentially Expressed Genes (DEGs)

The gene expression data were analyzed using RStudio version 4.4.1 environment
and specific Bioconductor packages [16]: affy (v1.78.2) [17], oligo (v1.64.1) [18], GEOquery
(v2.68.0) [19], limma (v3.56.2) [20], and ggplot2 (v3.4.3) [21]. Initial procedures included
data correction and normalization using the Robust Multi-array Average (RMA) method
implemented in the affy package. The RMA method applies background correction, quan-
tile normalization, and probe summarization to ensure consistency and comparability of
expression values across samples. Subsequently, the limma package’s moderated t-test,
based on the empirical parametric Bayes method, facilitated the identification of differ-
entially expressed genes (DEG) between Alzheimer’s disease (AD) patient and control
samples. The criteria used for defining DEGs comprised |logFC| > 0.5 (1.4-fold change)
for upregulated genes, |logFC| < −0.5 (0.7-fold change) for downregulated genes, and a
p-value < 0.05. This cut-off criterion has been used in previous studies such as Cao et al. [22]
and Yang et al. [23]. The discerned results were effectively visualized using a volcano plot
generated with the ggplot2 package.

2.3. Functional and Enrichment Analysis of DEG Pathways

ClusterProfiler (v4.8.2) was the Bioconductor R package used for the functional en-
richment analysis of up- and downregulated genes [24]. This package is a popular one
renowned for its ability to perform comprehensive functional and pathway enrichment
analyses, allowing for the analysis and visualization of enrichment across numerous or-
ganisms. The analysis specifically focused on Gene Ontology (GO) terms, categorizing
them into (1) biological processes, (2) molecular functions, and (3) cellular components.
Significance was determined with a stringent criterion: GO scores with a p-value < 0.05
were considered statistically significant. In this study, the functional enrichment analysis of
up- and downregulated was analyzed with the predetermined statistical thresholds and
the organism set to “org.Hs.eg.db”.

2.4. Constructing Networks of Protein–Protein Interactions (PPI) and Identifying Subnetworks

The STRING online database (https://string-db.org/) facilitated the prediction and
analysis of protein–protein interactions up- and downregulated genes [25]. Cytoscape
software (v3.9.1) was then used to visually represent these interactions, allowing for net-
work modification and visualization [26]. Densely connected clusters within the net-
works were identified using the MCODE (Molecular Complex Detection) add-on of Cy-
toscape [27], applying specific criteria (degree limit = 2, node score limit = 0.2, kernel K = 2,
max. depth = 100). The highest-scoring sub-networks for both positively and negatively
regulated genes were subsequently selected. For further analysis and enrichment, Metas-

https://string-db.org/
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cape (https://metascape.org) was used. Metascape is an intuitive online bioinformatics
portal known for its user-friendly interface and robust functional enrichment and inter-
actome analysis capabilities [28]. This ensured an accurate investigation of the studied
biological processes.

2.5. Analyzing Hub Genes and Protein–Protein Interaction Networks

The Cytoscape add-on, cytoHubba, possesses the capability to conduct topological
analysis through 11 methods, with the most frequently utilized being the degree, MCC
(maximum clique centrality), and betweenness [29]. In our study, this add-on was employed
to identify the top ten hub genes exhibiting the highest value of MCC within the protein–
protein interaction (PPI) networks of both up- and downregulated genes.

2.6. Predicting Mirnas Through Hub Genes as Targets

The multiMiR R package (v2.4.0) (http://multimir.ucdenver.edu/) played a pivotal
role as a bioinformatics tool for predicting target genes and miRNA pairs [30,31]. This
robust package integrates a collection of microRNAs/targets from 15 distinct miRNA
databases, including TarBase, miRTarBase, miRecords, DIANA-microT, ElMMo, Micro-
Cosm, miRanda, miRDB, PicTar, PITA, TargetScan, TAM 2.0, miR2Disease, Pharmaco-miR
VerSe and PhenomiR. In our study, this comprehensive resource was used to predict miR-
NAs specific to both up- and downregulated hub genes. The target gene-miRNA regulatory
network identified was delineated and visually represented by using the R igraph (v2.1.1)
and ggraph (v2.2.1) packages [32,33].

3. Results
3.1. Study of Differentially Expressed Genes (DEGs)

The GSE138260 dataset contained a total of 22,564 genes, of which a total of 1876 differ-
entially expressed genes (DEGs) were identified. Among these DEGs, there were 388 upreg-
ulated genes and 224 downregulated genes. The representation of these genes is illustrated
in the volcano plot in Figure 1.

Figure 1. Volcano plot of differentially expressed genes (DEG) of GSE138260 dataset (LOAD’s and
healthy control samples). Red dots represent upregulated genes according to p-value < 0.05 and
|logFC| > 0. Blue dots represent downregulated genes according to p-values < 0.05 and |logFC| < 0.

https://metascape.org
http://multimir.ucdenver.edu/
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3.2. Functional and Enrichment Analysis of DEG Pathways

GO analysis consists of three parts: (1) biological processes (BP), (2) cellular component
(CC), and (3) molecular function (MF). In this study, a functional analysis of upregulated
DEGs and downregulated DEGs was performed (Figure S1).

The analysis revealed that upregulated DEGs were involved in biological processes
such as sensory perception of chemical stimulus, detection of chemical stimulus, and
detection of stimulus involved in sensory perception, among others. In terms of CC, DEGs
were mainly enriched in intermediate filament, cornified envelope, intermediate filament
cytoskeleton, and cell–cell junction. The molecular functions associated with these DEGs
were those mainly related to olfactory receptor activity, odorant binding, and DNA-binding
transcription activator activity.

On the other hand, downregulated DEGs were mainly involved in biological processes
of modulation of chemical synaptic transmission, regulation of trans-synaptic signaling, and
synaptic vesicle membrane organization. The most enriched CC terms for these DEGs are
glutamatergic synapse, collagen-containing extracellular matrix, and external encapsulating
structure. The molecular functions associated with these DEGs were glutamate receptor
binding, polypeptide N-acetylgalactosaminyltransferase activity, and GTPase activity.

3.3. Analyzing Protein–Protein Interaction Networks

The construction of two protein–protein interaction networks was undertaken using
STRING: one network for upregulated DEGs and another one for downregulated DEGs.
The generated files were visualized through Cytoscape, and potential subnetworks were
scrutinized using MCODE to explore the molecular networks in which these dysregulated
genes might be implicated. A total of five subnetworks were identified for up- and down-
regulated DEGs. Among these sets, the subnetwork with the highest MCODE score was
selected.

The main subnetwork of the upregulated DEGs consisted of six genes: S100A2, CDSN,
S100A7, SPRR2G, DSP, and SERPINB13 (Figure 2a). On the other hand, the main subnet-
work of the downregulated DEGs consisted of five genes: EGR1, NR4A3, JUN, MEF2D, and
BTG2 (Figure 2b).

  
(a) (b) 

Figure 2. Analysis of differentially expressed gene (DEG) networks. (a) MCODE-clustered subnet-
work of upregulated DEGs. (b) MCODE-clustered subnetwork of downregulated DEGs.

Lastly, these identified subnetworks underwent enrichment analysis using Metascape.
Serving as a user-friendly online bioinformatics portal, Metascape expedites the accurate
acquisition of functional enrichment, and interactome analysis results from a specified list of
genes of interest. The upregulated DEGs subnetwork exhibited the most enriched pathways
in positive regulation of vascular-associated smooth muscle cell proliferation, spinal cord
injury, and VEGFA VEGFR2 signaling (Figure 3). In contrast, the downregulated DEGs
subnetwork demonstrated the most enriched pathways in keratinocyte differentiation,
mitotic cell cycle process, and hemostasis (Figure 4).
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Figure 3. Enrichment analysis of MCODE-clustered subnetwork of upregulated DEGs by Metascape.

Figure 4. Enrichment analysis of MCODE-clustered subnetwork of downregulated DEGs by Metascape.

3.4. Analyzing Hub Genes

The 10 hub genes of the protein–protein interaction (PPI) network of upregulated
DEGs with the highest MCC (maximum clique centrality) hub according to the cytoHubba
complement were: CD2, CDC25A, CKS2, ESPL1, KIF20A, LCK, PRKACG, S100A7, SPRR2G,
and SPRR3 (Figure 5a). Conversely, the 10 hub genes in the PPI network of downregulated
DEGs with the highest MCC hub were PTPRZ1, NRXN2, NR4A3, NCAM1, MEF2D, JUN,
ERBB4, EGR1, CNTN1, and BCAN (Figure 5b).

  
(a) (b) 

Figure 5. Hub genes identified by cytoHubba. (a) Hub genes of the PPI network of upregulated
DEGs. (b) Hub genes of the PPI network of downregulated DEGs. The descending color from red to
yellow represents decreasing interaction intensity between genes.

The integration of information from 20 hub genes identified in the network analysis,
along with subnetwork identification using MCODE, revealed a match in two genes (S100A7
and SPRR2G) for upregulated DEGs and in four genes (NR4A3, JUN, MEF2D, and EGR1)
for downregulated DEGs. This observation suggested that these hub genes might serve as
promising biomarkers, potentially unveiling novel targets for Alzheimer therapeutics.

A literature review was conducted to determine whether research has been performed
on each of these AD-related genes. Numerous studies have associated all hub genes iden-
tified from downregulated DEGs with Alzheimer’s disease (AD) and other neurological
conditions like dementia and Parkinson’s disease, e.g., NR4A3, which is involved in the reg-
ulation of the immune system or MEF2D, which has a neuroprotective role [34–42]. On the
other hand, NRXN2 is considered a potential PD biomarker [43]. Conversely, for hub genes
identified from upregulated DEGs, Alzheimer’s disease has been linked to CD2, CDC25A,
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CKS2, LCK, PRKACG, and S100A7 [44–49]. In the case of SPRR2G, the gene is also con-
nected to other neurological disorders such as dementia and Parkinson’s [50,51]. However,
there is no available AD-related information for the ESPL1, KIF20A, SPRR2G, and SPRR3
genes, which instead have associations with various cancers, including adenocarcinoma,
medulloblastoma, tongue cancer, and pancreatic cancer, respectively [52–55].

3.5. Predicting Mirnas Through Hub Genes as Targets

A comprehensive analysis utilizing the multiMiR package, which integrates over
15 miRNA databases, revealed a total of 1767 microRNAs (miRNAs) associated with the
hub genes. Specifically, 801 miRNAs were detected from hub genes of upregulated DEGs,
while 966 miRNAs were detected from hub genes of downregulated DEGs. The detailed
results are presented in Supplementary Tables S2 and S3 (Tables S2 and S3).

Given the extensive number of predicted miRNAs, a filtering process was imple-
mented to select those targeting 10 or more hub genes and common to both upregulated
and downregulated miRNAs. Subsequently, a miRNA-mRNA network centered on hub
genes was constructed, and centrality measures (degree, betweenness, and closeness) were
calculated to identify the top 5% of miRNAs occupying strategic positions in the network,
potentially playing critical roles in Alzheimer’s disease (Figure 6). The miRNAs identified
were hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-26a-5p, hsa-miR-27a-3p, and hsa-miR-34a-5p.
Lastly, an exhaustive bibliographic review was conducted to analyze the potential role of
these miRNAs with Alzheimer’s disease, as in the case of has-miR-106a-5p [56].

Figure 6. High centrality filtered network of miRNAs predicted from hub genes (mRNA). The blue
diamond represents the miRNAs, and the red circle represents the mRNA. The dashed lines represent
the relationships between them.

4. Discussion

In the last few years, our understanding of the pathogenesis and development of
Alzheimer’s disease (AD) has been improved. An increasing number of AD-related path-
ways and molecules are being identified, suggesting that multiple factors are involved in the
onset and development of AD [57]. Although biomarkers based on tau or amyloid protein
levels are currently available, many limitations still remain, making it necessary to search
for new biomarkers [58]. Currently, many high-throughput computational approaches and
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high-throughput multi-omics technologies have been used for the identification of genes
and pathways associated with Alzheimer’s disease. Interestingly, the study of multi-omics
data (transcriptomics, proteomics, and metabolomics) aims to investigate new biomarkers
and potential therapeutic targets for the study of the disease [59].

In this study, we provide a novel approach through new analyses additional to those
conducted by the original authors of the GSE138260 database. We obtained 388 upregulated
genes and 224 downregulated genes in differential gene expression analysis. The most
significant pathways identified were related to the sensory perception of the upregulated
genes and to the regulation and modulation of the synaptic process for the downregulated
genes. This dysfunction has been shown to cause synaptic dysfunction, neuronal loss,
and neurodegeneration. In particular, synapse loss is the anatomical factor best associated
with cognitive deficits in AD patients [60,61]. In addition, several studies have linked
impairment of sensory perception and hearing impairment with neurodegeneration and
cognitive impairment [62,63]. These pathways align with the main symptom of Alzheimer’s
disease, which is cognitive dysfunction [59].

For both up- and downregulated genes, hub genes with high biomarker potential were
identified. The relevant upregulated hub genes were CD2, CDC25A, CKS2, ESPL1, KIF20A,
LCK, PRKACG, S100A7, SPRR2G and SPRR3. No AD-related information is available for
the ESPL1, KIF20A, SPRR2G, and SPRR3 genes; however, they are associated with different
types of cancer [52–55]. CD2 is linked to CD2-associated protein (CD2AP), which is in-
volved in the pathogenesis of sporadic AD. Polymorphisms in the CD2AP gene may induce
its loss of function, correlating with increased Aβ deposition and tau pathology [44,64].
CDC25A has been identified as a critical factor in AD neurodegeneration. Specifically,
it has been described that the inhibition of CDC25A exerted neuronal protection against
nerve growth factor (NGF) deficiency and Aβ-induced cytotoxicity [45]. CKS2, part of
the protein kinase family involved in cell cycle regulation, is linked to cell survival. Tran-
scriptional modulation of CKS2 may influence neuronal cell cycles, potentially mediating
Aβ-dependent pathology in AD [46]. LCK is crucial in T-cell development and activation.
It aids in phosphorylating ZAP70, a vital protein in T-cell pathways. Reduced ZAP70 levels
result in immunodeficiency, a condition often impaired in AD [47]. PRKACG controls or-
ganelle dynamics by interacting with the anchoring protein A-kinase. Deletion of PRKACG
results in a significant rise in Aβ secretion and may inhibit Gap junction channels, com-
promising the blood–brain barrier and leading to brain damage [48,65]. Lastly, S100A7, a
calcium-binding protein, regulates processes associated with AD [49]. Its increased mRNA
expression in the brain correlates with AD dementia and amyloid neuropathology. S100A7
is thought to promote α-secretase activity, which prevents the generation of amyloidogenic
peptides in AD [66].

Conversely, the relevant downregulated hub genes were PTPRZ1, NRXN2, NR4A3,
NCAM1, MEF2D, JUN, ERBB4, EGR1, CNTN1 and BCAN. PTPRZ1, linked to receptor-type
tyrosine phosphatase zeta, is a potential susceptibility gene for schizophrenia and may
affect working memory in mice [34,67]. It is involved in axonogenesis, myelination, and
neuroinflammatory responses [67]. Thus, PTPRZ1 may regulate cognitive and neuronal
pathways, potentially influencing AD development [59]. NRXN2, involved in neuronal and
synaptic functioning, is predominantly expressed in the substantia nigra, a region affected
in Parkinson’s disease (PD), and is considered a potential PD biomarker [43]. Despite the
distinct clinical and pathological characteristics of PD and AD, these diseases can share
molecular mechanisms, and PD patients could also present an increased risk of developing
AD dementia [68]. Hence, investigating NRXN2 could reveal its role in AD. NR4A3, part
of the NR4A gene family (which includes NR4A1, NR4A2, and NR4A3), is involved in
CNS development and immune regulation, while NR4A1 expression is notably decreased
in AD patients. NR4A3’s role in long-term memory formation suggests it could be a
therapeutic target for restoring cognitive function in AD using HDAC inhibitors and CRTC1
transcription regulation [35,69]. NCAM1 (neuronal cell adhesion molecule 1) demonstrates
the capability to decrease amyloid concentrations, consequently reducing its cytotoxic
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effects and ameliorating neuroinflammation associated with AD [36]. MEFD2, associated
with autophagy [70], has been implicated in providing neuroprotection against various
neurotoxins in neurological conditions like Alzheimer’s and Parkinson’s disease [37]. In
this study, as well as in certain bioinformatic analyses related to dementia [50], JUN (also
known as c-JUN), a proto-oncogene primarily associated with breast cancer, has been
identified [71]. In the context of AD, this molecule has been implicated in promoting
cell apoptosis and neurodegeneration in patients’ brains, suggesting its potential as a
biomarker candidate [38]. The function of ERBB4 in humans remains poorly understood
to date. A recent study suggests that reduced ERBB4 expression promotes heightened
proliferation of human astrocytes, crucial for maintaining brain homeostasis and supporting
neurons, particularly in AD [39]. EGR1 plays a key role in memory formation and has been
described to regulate the expression of genes involved in clathrin-mediated endocytosis,
vesicular transport, and synaptic transmission, pathways that may be critical for AD
pathogenesis [40,72]. CNTN1 plays an important role in the neuroinflammatory process
in AD. Overexpression of CNTN1 in the hippocampus leads to adverse effects such as
neuroinflammation, microglia activation, and cognitive dysfunction [41]. Finally, BCAN is
a CNS-specific proteoglycan expressed in both astrocytes and neurons. Its potential nature
as a biomarker in Alzheimer’s disease (AD) has been suggested and investigated, revealing
notable differences in cerebrospinal fluid (CSF) samples [73].

Currently, miRNAs present new opportunities for disease investigation due to their
regulatory functions and greater accessibility. One objective of this study is to link hub
genes involved in AD pathology to more accessible epigenetic molecules, such as miRNAs.
Using this novel approach, we conducted a comprehensive computational and bioinfor-
matics analysis, identifying a network of 1767 miRNAs targeting these hub genes. After
filtering and selecting the top 5% based on centrality measures, the most significant miR-
NAs were identified as hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-26a-5p, hsa-miR-27a-3p,
and hsa-miR-34a-5p. Downregulation of hsa-miR-106a-5p has been associated with a pro-
tective role in Alzheimer’s disease. It has been observed that overexpression of this miRNA
reduces the levels of VEGFA, a factor known for its protective effects against cognitive
decline in patients with AD [56,74]. Furthermore, other studies have identified this miRNA
as a target of genes involved in fundamental processes such as axon guidance, immune
responses, and actin cytoskeleton regulation, including p21-activated kinases. Axon guid-
ance is a critical process for the formation of neural networks, and it has been demonstrated
to be altered in conditions such as ALS and Parkinson’s disease [56,75]. Therefore, it is
plausible that altered hsa-miR-106a-5p plays a crucial role in the pathophysiology of AD.
Hsa-miR-17-5p appears to play a critical role in the pathogenesis of Alzheimer’s disease.
Elevated levels of this miRNA in microglia surrounding Aβ deposits in the brains of AD
patients suggest that it may mediate inflammatory responses in these environments [76].
Additionally, it has been shown to regulate essential genes, such as F3 and MKNK2, possi-
bly through competitive interactions with the lncRNAs LINC00365 and FBXL19-AS1 [77].
Hsa-miR-17-5p also targets TNF-α, a proinflammatory cytokine involved in the chronic
neuroinflammation characteristic of AD, underscoring its significance in disease progres-
sion [78]. Its involvement in pathways associated with oxidative stress and metal-induced
toxicity further highlights its relevance in neurodegenerative processes [79]. Therefore,
hsa-miR-17-5p presents substantial potential as a target for novel therapeutic strategies
in AD. Hsa-miR-26a-5p appears to play a significant role in cognitive impairment and
the pathogenesis of AD by regulating the Wnt/β-catenin signaling pathway. Sadlon and
coworkers reported that this miRNA targets a substantial proportion of brain-expressed
genes (48.58%) and that its downregulation in individuals with cognitive deficits is as-
sociated with decreased activity in the Wnt/β-catenin pathway [80]. Reduced levels of
Wnt/β-catenin have been specifically linked to increased Aβ deposition and cognitive de-
cline in AD models, suggesting that the loss of hsa-miR-26a-5p may exacerbate these effects
by impairing pathway activity [80,81]. Furthermore, this pathway is a known target of
statins, a class of drugs with potential protective effects in AD [80,82]. Therefore, hsa-miR-
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26a-5p can be a promising target for future therapeutic interventions, warranting further
investigation into the relationship between has-miR-26a-5p and the Wnt/β-catenin system
in AD. Hsa-miR-27a-3p appears to play a complex role in AD, particularly in patients with
comorbid depression, where its expression is further elevated. This miRNA may influence
AD pathology by reducing Aβ clearance through the downregulation of FGF2 [83] and by
interacting with critical genes associated with neurodegeneration and protein aggregation,
including BACE1, GSK3β, MAPT, and PSEN1. Interestingly, lower levels of hsa-miR-27a-3p
have been correlated with higher concentrations of tau biomarkers (T-tau and P-tau) in
cerebrospinal fluid, suggesting a possible inverse relationship with tau pathology [84].
These findings indicate that precise regulation of hsa-miR-27a-3p could be essential for
maintaining a balance between Aβ and tau accumulation. Further studies are warranted to
determine whether targeted modulation of miR-27a-3p might provide therapeutic benefits
in AD. Lastly, overexpression of hsa-miR-34a-5p has been shown to have negative effects on
synaptic plasticity and neuronal survival. This miRNA inhibits genes critical for synaptic
plasticity and neuronal metabolism, such as mitochondrial oxidative phosphorylation
and the pentose phosphate pathway, both of which are essential for long-term neuronal
survival [85,86]. Furthermore, the upregulation of hsa-miR-34a-5p in AD patients and its
influence on apoptotic pathways underscore its role in neurodegenerative processes [87].
Additionally, hsa-miR-34a-5p has been observed to interact significantly with mixtures of B
vitamins (B1, B2, B3, and B9), which are associated with improved cognitive performance.
This suggests that these vitamins may modulate has-miR-34a-5p levels and counteract its
detrimental effects in AD [86]. Collectively, these findings imply that this miRNA may play
a key role in the pathogenesis of AD and thus could be proposed and further studied as a
potential biomarker or therapeutic target.

Overall, all this information suggests that these targets may have a direct or indirect
role related to neuroinflammation and other critical AD pathways, making them interesting
as potential diagnostic and/or therapeutic biomarkers.

This study represents an initial evaluation through bioinformatics analysis, using a
single gene expression profile comprising 36 brain samples from Alzheimer’s patients. Our
findings provide valuable information on potential key molecular targets and pathways
involved in Alzheimer’s disease. Some of these targets have already been shown and exper-
imentally validated to play a key role in the disease, while others are promising candidates
for future studies to further investigate their role in the mechanisms of Alzheimer’s disease.
These validations will provide a better understanding of the progression and pathology of
Alzheimer’s disease.

5. Conclusions

This study provides an opportunity to conduct an exploratory investigation using a
significant number of brain samples to identify potential hub genes and miRNAs relevant
to Alzheimer’s disease and analyze their roles using bioinformatics tools. The proposed
candidate genes and miRNAs, which may serve as biomarkers and/or therapeutic tar-
gets, are mainly related to neuroinflammation, and they could play a critical role in the
progression of Alzheimer’s disease. Taken together, these findings could enable a better
understanding of the underlying mechanisms of the disease, and they might pave the way
to innovative therapeutic strategies, offering new perspectives for the effective treatment
and diagnosis of Alzheimer’s disease.
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