

1 **CINNABAR FOR ROMAN EPHESUS: MATERIAL QUALITY,**
2 **PROCESSING AND PROVENANCE**

3
4 Alexandra RODLER-RØRBO,^{1,2,3,4*} Anthony J. BARAGONA,⁵ Eliah J. VERBEELEN,¹ Lasse Vilien
5 SØRENSEN,⁶ Berk ÇAKMAKOĞLU,⁷ Cahit HELVACI,⁷ Eduardo BOLEA-FERNANDEZ,^{8,9} Ana
6 RUA-IBARZ,^{8,9} Frank VANHAECKE,⁸ Hilary BECKER,¹⁰ Gilberto ARTIOLI,¹¹ Lilli ZABRANA,³
7 Vinciane DEBAILLE,² Nadine MATTIELLI,² Steven GODERIS,¹ Philippe CLAEYS¹

8
9 ¹ Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, VUB, Pleinlaan
10 2, 1050 Brussels, Belgium

11 ² Laboratoire G-time, Department of Geosciences, Environment and Society, Université Libre de
12 Bruxelles, ULB, Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium

13 ³ Austrian Archaeological Institute of the Austrian Academy of Sciences, Dominikanerbastei 16, 1010
14 Vienna, Austria

15 ⁴ Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Austria

16 ⁵ Freelance, Associated with the University of Applied Arts, Vienna, Salzgries 14, 1090 Vienna, Austria

17 ⁶ National Museum of Denmark, Frederiksholms Kanal 12, 1220 Copenhagen, Denmark

18 ⁷ Department of Geology Engineering, Dokuz Eylül University, Tınaztepe Yerleşkesi, İzmir, Turkey

19 ⁸ Atomic and Mass Spectrometry – A&MS research unit, Department of Chemistry, Ghent University,
20 Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium

21 ⁹ Aragón Institute of Engineering Research (I3A), Department of Analytical Chemistry, University of
22 Zaragoza, Zaragoza, Spain

23 ¹⁰ Department of Middle Eastern and Ancient Mediterranean Studies, Binghamton University. State
24 University of New York Binghamton, USA

25 ¹¹ Department of Geosciences, University of Padua, Via Gradenigo 6, I-35131 Padua, Italy

26 * Corresponding author: alexandra.rodler-rorbo@oeaw.ac.at; Current address: Austrian Archaeological
27 Institute of the Austrian Academy of Sciences, Dominikanerbastei 16, 1010 Vienna, Austria

28

29

30 **ABSTRACT**

31 Ephesus was an important harbor city that flourished during the Roman period and ancient texts mention
32 Almadén in Spain and the Cilbian fields of Ephesus as important cinnabar sources in antiquity. This work
33 investigates whether imported cinnabar was used and whether this could be related to changes in painting
34 activities over time. Microscopic analysis indicates a consistent preparation of cinnabar, hinting at a
35 uniform source material quality or processing technique. However, the use of cinnabar varies among the
36 architectural structures studied, indicating a plurality of painting techniques. A few of the analyzed cinnabar
37 samples overlap with Turkish- and Balkan reference Pb isotope ratios; three samples from tabernas,
38 however, deviate from this. The Hg isotope ratios reveal that cinnabar from carbonate-hosted deposits was
39 likely used, and that processing of cinnabar included heating as suggested by ancient texts. Most notably,
40 a correlation exists between the geochemical data and the painting technique – shifts in sourcing and
41 cinnabar usage are potentially assignable to building chronology and/or usage. Through the lens of material
42 provenance and processing, Ephesian cinnabar brings the organization of pigment trade into focus.

43

44 **Keywords:** Microscopic analysis, Pb isotope ratios, Hg isotope ratios, wall paintings, pigment trade

45

46

47 **1. INTRODUCTION**

48 Various types of mineral pigments were used in Roman art – some of these materials might have been
49 readily accessible, while others were most likely traded. Among the rarest and most highly valued materials
50 used as pigment in antiquity was cinnabar (α -HgS), which was known as *μίνιον* in Greek and *minium* in
51 Latin (inter al. Theophrastus *De Lap.* 58; Vitruvius *De Arch.* 7.8.1-7.9.6; Pliny *HN* 33.37-40; Dioscorides
52 *MM* 5.94 in Beck 2005, 374; Becker, 2022). These terms should not be confused with Indian cinnabar (or
53 dragon's blood (*Indica cinnabaris*) and *minium secundarium* (or red lead, which was also known as *cerussa
54 usta*). Despite the widespread use of pigments throughout history (e.g., Hunt-Ortiz et al., 2011; Cooke et
55 al., 2013; Emslie et al., 2015) and the particularly high demand for various colorants during the Roman
56 period, as evidenced by the rich wall paintings found in both private and public buildings (e.g., Esposito,
57 2017; Slavdori and Sbrolli, 2021), there is limited knowledge about the organization of pigment
58 production/processing and trade. This is puzzling, considering that ancient authors such as Theophrastus
59 (c. 371–287 BCE) in *De Lapidibus* (*De Lap.*), Vitruvius (c. 80/70–15 BCE) in *De Architectura* (*De arch.*),
60 Pliny the Elder (23/24–79 CE) in *Historia Naturalis* (*HN*), and Dioscorides (c. 40–90 CE) in *De Materia
61 Medica* (*MM*), highlight the significance of provenance for the value of ancient pigments. The Cilbian fields
62 of Ephesus and the Almadén mines in Spain were mentioned as the most important cinnabar sources during
63 the Roman period (Gliozzo, 2021); whether Monte Amiata in Grosseto (Italy) or Idrija in Slovenia have
64 been exploited during the Roman period is not certain (Spangenberg et al., 2010). Furthermore, several
65 surveys have already investigated the geology and geochemistry of larger relevant ore bodies in Turkey
66 (e.g., Yıldız and Bailey, 1978; Gemici, 2008; Sayre et al., 2001) and mention for example the Tmolus Mt.
67 near Sardis (Foss and Hanfmann, 1975) or cinnabar outcrops near Selçuk (Schmiesser, 1906). Cinnabar can

68 occur as a vein mineral, in strata-bound deposits such as in Almadén, Spain, or as secondary mineral in
69 gossans such as in Las Cruces, Spain (e.g., Higuera et al., 2005; Palero-Fernández et al., 2015; Yesares et
70 al., 2017). While ancient texts provide highly valuable clues for evaluating cinnabar provenance,
71 archaeometric analysis – drawing on geological, mineralogical-petrographic and geochemical data – can
72 provide crucial information on material provenance; together these approaches have the potential of
73 providing a way forward for understanding the organization of pigment trade and production networks. The
74 city of Ephesus (present-day Selçuk, south of İzmir, Turkey) developed near the mouth of the Küçük
75 Menderes River on the west coast of Anatolia (for a geochemical discussion of the Ephesian harbor, see
76 Delile et al., 2015). During the Hellenistic and Roman periods, Ephesus emerged as an important trading
77 hub of Asia Minor and the Aegean area. In 188 BCE, Ephesus became part of the Pergamene Empire,
78 leading to significant investments in the reorganization of the harbor and urbanization of Ephesus, which
79 were the foundations for its emergence as an exceptionally important and influential commercial center of
80 the ancient Mediterranean world and its success during the Roman period (Ladstätter, 2016). In 133 BCE,
81 Ephesus became part of the Roman Republic and the capital of the province Asia Minor. Already during
82 the 2nd c. BCE, local artisans began to produce ceramics such as table ware and lamps for exportation
83 (Ladstätter, 2016; Fragnoli et al., 2022). However, despite the significance of Ephesus in the production of
84 ceramic lamps during the Hellenistic period, pottery workshops from this period have not been found so far
85 (Fragnoli et al., 2022). Ephesus was a thriving trade center and a pigment consumer, which raises the
86 question whether this site only imported pigments, or whether processing also occurred here. Currently
87 there is no evidence of pigment production or processing workshops in or near Ephesus, however, this does
88 not necessarily mean that no (local) raw materials were processed for use as painting material. Only a few
89 pigment workshops are currently known for the Hellenistic and Roman periods and their trade networks
90 are still not fully understood. These include sites in the Bay of Naples, Italy (1st c. BCE; e.g., Lazzarini and
91 Verità, 2015), in Memphis, Egypt (1st c. BCE; e.g., Nicholson, 2003), and the late Hellenistic multi-crafting
92 workshop of Kos, Greece (Kostomitsopoulou Marketou, 2019).

93 Identifying the material quality, processing and provenance of cinnabar can therefore enhance our
94 understanding of ancient pigment workshop practices and the reconstruction of trade routes (e.g., Hunt-
95 Ortiz et al., 2011; Prieto et al., 2015; Rodríguez et al., 2020; Minami et al., 2021). For example, recently,
96 the provenance of cinnabar used in wall paintings in the Roman city of Averticum (Avenches, Vaud,
97 Switzerland) has been investigated suggesting that cinnabar was possibly from the Almadén mining district
98 in Spain (Spangenberg et al., 2010). The analysis of pigment raw materials applies
99 mineralogical/petrographic and geochemical approaches to evaluate possible raw material sources (e.g.,
100 Spangenberg et al., 2010; Hunt-Ortiz et al., 2011; Rodler et al., 2017). Geochemical approaches have
101 included lead (Pb) and/or sulphur (S) isotopic analysis as well as mercury (Hg) isotopic analysis (recently
102 reviewed by Gliozzo, 2021). The latter has been used for evaluating which cinnabar deposits were exploited
103 during Andean prehistory (Cooke et al., 2013). Pb is a trace element in sulphur-bearing minerals such as
104 cinnabar, and Pb isotopic analysis has long been used for the provenance study of various inorganic artifacts
105 (e.g., Stos-Gale and Gale, 2009; Artioli et al., 2016). Lead isotopic analysis makes use of the four isotopes
106 of lead ^{204}Pb , ^{206}Pb , ^{207}Pb and ^{208}Pb that have a natural relative abundance of ca. 1.4 %, 24.1 %, 22.1 % and
107 52.4 %, respectively (Faure and Mensing, 2005). Of these, only ^{204}Pb is not radiogenic and its absolute
108 abundance has been stable since the formation of the Earth, while the other three (^{206}Pb , ^{207}Pb and ^{208}Pb)
109 are formed as end products of radioactive decay from three nuclides, ^{238}U , ^{235}U and ^{232}Th , respectively. The
110 three ratios of each radiogenic isotope to ^{204}Pb significantly aid in determining the geochronological age of

111 ore minerals from different deposits. Mercury (Hg) has seven stable isotopes (196–204 amu), which can be
112 affected by both mass-dependent fractionation (MDF, expressed as $\delta^{202}\text{Hg}$) and mass-independent
113 fractionation (MIF; expressed as $\Delta^{199}\text{Hg}$ and $\Delta^{201}\text{Hg}$). The MDF of Hg is known to occur during
114 reduction–oxidation reactions, biological cycling, and volatilization of Hg (Blum and Bergquist, 2007).
115 When Hg isotopes undergo MIF, even- and odd-mass-numbered isotopes fractionate from each other; this
116 is most pronounced during UV-induced photochemical reactions (Bergquist and Blum, 2007). Recent
117 research explored the sources of pre-Inca and colonial archaeological cinnabar, as well as the Hg pollution
118 preserved in lake sediment cores in Peru and the Galápagos Islands (Cooke et al., 2013). This research
119 suggested that cinnabar ores from the largest cinnabar-bearing district in Central and Southern America
120 (Huancavelica, Peru) were used. In contrast, cinnabar for Inca artifacts originated from a distinctly different
121 source. Such evaluations can complement the provenance analysis of ores used to manufacture
122 archaeological artifacts.

123 The aim of this study was to analyze the origin and use of cinnabar in Roman wall paintings found in both
124 private and public houses at Ephesus of the mid-1st to the early 3rd century CE through mineralogical-
125 petrographic and geochemical analyses. This aimed to shed light on changes in material supply and
126 processing, and with this, painting activities organization across different architectural units (likely in a
127 diachronic approach). The evaluation of the origin of the cinnabar used will be aided by making
128 comparisons to available reference data and newly acquired information on cinnabar deposits from the west
129 coast of Turkey, specifically from the Karaburun Peninsula. Overall, this work contributes to the discussion
130 of the organization of pigment trade and processing practices in antiquity.

131

132

133 **2. MATERIALS AND METHODS**

134 **2.1. Geological materials**

135 The Karaburun cinnabar mining district consists of three closely associated deposits: Kalecik, Dikencik and
136 Karareis (Fig. 1). These deposits are in the northern part of the Karaburun Peninsula, which is west of İzmir
137 and north of Ephesus. This study includes six samples from these deposits: four from Kalecik and two from
138 Dikencik (examples can be seen in Fig. 2).

139 Mercury deposits occur in a large variety of rock types, often associated with structural discontinuities. This
140 is also the case for the Karaburun deposits, which can be observed in various geological formations. The
141 oldest rock units in the northern part of the Karaburun Peninsula are represented by relatively autochthonous
142 successions (~495–292 Ma) that consist of clastic sedimentary rocks (Küçükbağçe and Dikendağı
143 Formations) at the western side and various tectonostratigraphic allochthonous units (~245–65 Ma)
144 consisting mainly of carbonates (Gerence, Camibogağı, Güvercinlik Formations) and flysch deposits (İzmir
145 flysch and Yeniliman serpentinite) at the eastern side (Çakmakoglu and Bilgin, 2006). These units are
146 unconformably covered by younger rock units of Neogene and Quaternary age (~24 Ma–present) and
147 include volcanic and sedimentary successions (Helvacı et al., 2009; Çakmakoglu et al., 2013). The ore
148 deposits are epithermal and primarily contain mercury sulphide and quartz crystallized by rising

149 hydrothermal solutions. The main ore mineral is cinnabar, which occurs as veinlets and fracture fillings in
150 silicified wall rocks (Yıldız and Bailey, 1978). The origin of the cinnabar occurrences is likely related to
151 Neogene volcanism (Yıldız et al., 1967; Helvacı et al., 2009), which introduced mercury-rich solutions into
152 the structural discontinuities of the various formations in the Karaburun Peninsula.

153 The Kalecik deposit is situated along a channelway through which the rising solutions flowed, following
154 the major northwest-trending fault cutting through the İzmir flysch rocks. The İzmir flysch rocks consist of
155 a sandstone-mudstone dominated matrix and radiolarites, basic volcanic rocks, ultrabasic rocks, and
156 limestone blocks. The ore was likely deposited just beneath the basalt flow unit (Yıldız and Bailey, 1978;
157 Helvacı et al., 2009). In the Dikencik deposit, cinnabar is observed in quartz veins along a fault that silicified
158 the Dikendağı Formation, which includes sand-, silt- and mudstones with black cherts (lydite). The ore zone
159 is approximately 0.7 m wide and 75 m long and is unique in Turkey as it contains a considerable amount
160 of native mercury (Yıldız and Bailey, 1978). The Karareis deposit is very close to the Dikencik mine and
161 is present in the clastic sediments of the Dikendağı Formation. Due to the close proximity to the Dikencik
162 mine and due to cost considerations, no samples from the Karareis deposit were included in this study. The
163 geological materials were collected during fieldwork in 2013 (Fig. 1 and 2). Subsamples of these ore
164 samples were processed for isotopic analysis at Vrije Universiteit Brussel, Université Libre de Bruxelles,
165 and Ghent University, Belgium.

166

167 **2.2. Archaeological materials**

168 The samples drawn from upper painted layers of plasters (as well as cross-sections) were collected from
169 wall painting fragments stored in various boxes at the Ephesus Excavation House of the Austrian
170 Archaeological Institute of the Austrian Academy of Sciences, in Turkey. According to excavation notes,
171 these fragments belong to the southern portal of the Tetragonos Agora (referred to as Agora), as well as to
172 Terrace House 1 and Terrace House 2 (Fig. 3). Some excavation notes also attribute the fragments to
173 specific living units and rooms. However, precise contextualization and dating are challenging. This work
174 uses the excavation notes, descriptions of living units/rooms, and available information about building
175 periods, to provide all the available information about the samples. The samples were collected from wall
176 painting fragments from Terrace House 1 (Taberna IV), various living units and rooms of Terrace House 2
177 (including a taberna adjacent to Living Unit 7), and wall painting fragments from the Agora. However, the
178 samples were not collected from walls still *in situ* in various Roman houses introducing an uncertainty
179 regarding building structure and periods. These samples more generally represent cinnabar pigments from
180 Roman Ephesus.

181 The top layer of wall painting fragments (e.g., Fig. 2) was first analyzed using the handheld energy-
182 dispersive X-ray fluorescence (HH-EDXRF) spectrometer Olympus InnovX Delta Premium 6000 (Rh
183 anode, 8-40 keV, Si-drift detector, 4W X-ray tube, current range of 5-200 µA). Based on this semi-
184 quantitative *in situ* analysis of major and trace elements, wall painting fragments were selected on-site for
185 sample collection and further analysis.

186 The insula houses Terrace House 1 and Terrace House 2 were excavated amidst the remains of Ephesus.
187 Terrace House 1 covers an area of ~3,000 m² and consists of several living units, each containing multiple

188 rooms. Terrace House 2 covers an area of ~4,000 m²; it consists of seven living units. Both insula houses
189 were built in the first century CE and subsequently destroyed during an earthquake in 262/263 CE (Thür
190 and Rathmayr, 2014; Delile et al., 2015). The samples from Terrace House 1 pertain to Taberna IV.
191 Renovation works were undertaken in Terrace House 1 following an earthquake (2nd period, ~17–140 CE;
192 Lang-Auinger and Outschar, 1996). The samples are likely pertaining to this renovation period. The
193 samples from the Tetragonos Agora are from the Southern portal. The samples from Terrace House 2
194 pertain to the Taberna adjacent to Living Unit 7 (Room 45), as well as to Room 36 of Living Unit 6, Room
195 12 of Living Unit 3, and Room 21 of Living Unit 4. Wall paintings with cinnabar were discovered in Room
196 36 and 31b, leading to the proposal that these would represent an early painting phase (Thür and Rathmayr,
197 2014). The building phases in Terrace House 2 are categorized into four groups spanning from the mid-1st
198 c. CE to the early 3rd c. CE (Zimmermann, 2005).

199 Stratigraphic wall painting cross-sections, and scrapings of the top pigment layer, were collected with a
200 saw and scalpel, respectively. Of the wall painting fragments collected, ten (four from Terrace House 2,
201 two from Terrace House 1, and four from the Agora) were processed into polished petrographic cross-
202 sections to study plaster and paint layer stratigraphy. All samples were obtained from large sections of
203 monochrome red wall paintings, although occasionally other hues were visible (e.g., EPHCIN-20 and -26;
204 Fig. 2). The pigment powders were processed at Vrije Universiteit Brussel, Université Libre de Bruxelles,
205 and Ghent University for isotopic analysis.

206

207 **2.3. Cross-sections: optical microscopy and SEM-BSE/EDX**

208 To study the morphology of cinnabar pigment and its application on painted surfaces, the plaster fragments
209 processed as cross-sections were examined using both light microscopy and SEM-BSE/EDX. This
210 examination was conducted on unprocessed fragments as well as on those prepared as stratigraphic polished
211 cross-sections. For incident light microscopy, a Nikon SMZ 1500 stereomicroscope was used. In addition
212 to optical microscopy, SEM analysis was performed under high vacuum conditions, using an accelerating
213 voltage of 15–25 kV in back-scattered electron (BSE) detection mode on the cross-sections to provide a
214 clearer view of cinnabar morphology and its distribution within the samples. Cinnabar appears brighter in
215 SEM-BSE images relative to red and/or yellow ochre owing to the higher atomic mass; this was exploited
216 to create images in which only the cinnabar grains are visible by radically adjusting the brightness/exposure
217 until the ochre grains no longer are visible. This can be verified since there are corresponding light
218 microscopy images showing the location of both cinnabar and ochre pigment grains concentrated in
219 separate paint layers in the same samples; once the known ochre layers disappear from the image, it is
220 assumed that only cinnabar remains in the BSE image. This allows the exclusive study of cinnabar,
221 including quantitative grain size and distribution image analysis with Image-J freeware (which was also
222 performed on SEM-BSE images of the surface of painting fragments before processing into cross sections).
223 Semi-quantitative EDX analysis of 20 grains of cinnabar per sample, thus isolated, was performed in
224 support of the more precise and specific chemical analyses described below. The SEM-BSE/EDX analysis
225 was performed at the University of Applied Arts Vienna using a Quanta FEG 250 (FEI, U.S.A.) scanning
226 electron microscope coupled to the Octane Elect Plus EDX detector (Ametek/EDAX, U.S.A.) and equipped
227 with Genesis EDX Quant software.

229 **2.4. Isotopic analysis**

230 Subsamples (a few mg) of the collected top pigment layers (consisting of cinnabar and red clays, see 3.1)
 231 and the geological samples from the Karaburun deposits were fully digested in *aqua regia* under a 100-
 232 class flow hood at the G-Time laboratories at Université Libre de Bruxelles. Lead was chromatographically
 233 isolated from the digested geological and archaeological samples using the anion exchange Biorad™ AG1-
 234 X8 resin (mesh size of 100-200 μm). Lead was separated from the matrix elements using a standard protocol
 235 based on the use of HBr-HCl (Vanderstraeten et al., 2020). After the purified Pb eluent fractions were
 236 obtained and evaporated to dryness, they were dissolved in 100 μl of concentrated HNO_3 , evaporated and
 237 finally dissolved in 0.05% HNO_3 , for subsequent isotopic analysis using a Nu Plasma II (Nu II) high-
 238 resolution multi-collector inductively-coupled-plasma mass-spectrometry (HR-MC-ICP-MS) instrument
 239 from Nu Instruments at the Laboratoire G-time, Université Libre de Bruxelles.

240 A thallium standard solution (Alpha ICP standard) used as a dopant - with a known $^{205}\text{Tl}/^{203}\text{Tl}$ isotope ratio
 241 of 2.3871 - was added to all sample and standard solutions. Solutions were prepared to obtain a Pb-Tl ratio
 242 of 4 or 5, and a minimum signal of 100 mV in the axial collector for ^{204}Pb (*i.e.*, the concentrations were
 243 controlled to get 200 ppb of Pb and 50 ppb of Tl). A combination of internal correction based on the
 244 monitoring of the Tl isotope ratio and external correction with the standard measured in a sample-standard
 245 bracketing (SSB) approach was applied to correct for the bias induced by instrumental mass discrimination
 246 for the measured Pb isotope ratios. Isobaric interference on mass 204 due to potentially present ^{204}Hg was
 247 monitored during acquisition by measuring the signal intensity at an $\text{m/z} = 202$ (Weis et al., 2006;
 248 Vanderstraeten et al., 2020). While the Pb total beam was at ~ 8 V, the ^{202}Hg beam intensity remained below
 249 3 mV. The corrected Pb isotope ratios are reported using the recommended values of Abouchami et al.
 250 (2000) for the Pb isotopic reference material NIST SRM 981.

251 A solution of the isotopic reference material NIST SRM 981 Pb standard solution was routinely analyzed
 252 before starting a sample batch, as well as between every two samples to assess precision and reproducibility;
 253 repeated analyses of NIST SRM 981 provided mean values of 16.941 ± 0.004 , 15.501 ± 0.005 and 36.716
 254 ± 0.015 (2SD, $n=26$) for $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$, respectively. These results are in line with
 255 the long-term repeatability of NIST SRM 981 values at the Laboratoire G-time of 16.9407 ± 0.0036 ,
 256 15.4968 ± 0.0047 and 36.7163 ± 0.0121 (2SD, $n=167$; Vanderstraeten et al., 2020) for $^{206}\text{Pb}/^{204}\text{Pb}$,
 257 $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$, respectively, and with the data reported by (Weis et al., 2005). Six samples were
 258 analyzed in duplicate (EPHCIN-17, -19, -20, -27; EPHCINO-04 and -05), and the data repeatability was
 259 within two standard deviations (2SD) for all samples. The procedural blank contained a Pb amount of 5 ng
 260 ($n=1$), which is significantly lower (<5%) than the sample Pb contents and thus not expected to affect the
 261 Pb isotope ratio results. The blank contribution to individual samples was <0.1%.

262 The isotopic analysis of Hg was carried out using a Neptune MC-ICP-MS unit from Thermo Fisher
 263 Scientific at Ghent University. Hg was introduced as Hg(0) generated *via* the selective reduction of Hg^{2+}
 264 with 3% $\text{SnCl}_2 \cdot 2\text{H}_2\text{O}$ in 1.2 M HCl in an HGX-200 cold vapor and hydride generation unit (Teledyne Cetac
 265 Technologies, USA). The Hg(0)-loaded carrier gas coming from the cold-vapor generation (CVG) unit was
 266 admixed in a 'T' piece with a wet aerosol of Tl generated by using a $100 \mu\text{L min}^{-1}$ concentric nebulizer

267 mounted onto a dual (cyclonic and Scott-type) spray chamber (this setup is described in detail elsewhere:
268 Rua-Ibarz et al., 2016a,b, 2019; Bolea-Fernandez et al., 2019).

269 For instrumental mass discrimination correction, like for Pb isotopic analysis, a combination of internal
270 correction using Tl as admixed internal standard (NIST SRM 997 - Tl) in a “Baxter approach” and external
271 correction (NIST SRM 3133 - Hg) with the SSB-approach was used (Baxter et al., 2006). An in-house
272 standard solution of Hg previously characterized for its isotopic composition was measured in-between the
273 samples for Quality Assurance and Quality Control (QA/QC). Using NIST SRM 3233 (Hg), the external
274 precision was calculated to be $\leq 0.12\text{‰}$ (2SD; over a period of 18 months, n=250; Rua-Ibarz et al., 2016a).
275 This precision is sufficient for studying the natural isotope ratio variation of Hg. To obtain accurate results,
276 the Hg concentration and acid content of all samples and standards were matched within $\pm 10\text{‰}$. Blank
277 subtraction was not applied because the effect of the blank was demonstrated to be negligible within the
278 experimental precision.

279 Hg isotope ratios are reported as delta (δ^{xxxHg}) values. To separate the effect of MIF on the Hg isotope ratio
280 from that of MDF, the contribution caused by MDF is subtracted from the experimentally determined
281 δ^{xxxHg} values using the equations below. Both delta and capital delta values are reported in per mil (‰)
282 (Blum and Bergquist, 2007).

$$\delta^{\text{xxxHg}} (\text{‰}) = \left(\frac{(\text{xxxHg}/\text{Hg})_{\text{sample}}}{(\text{xxxHg}/\text{Hg})_{\text{NIST SRM 3133}}} - 1 \right) * 1000$$

283 where xxx = 199, 200, 201 or 202 and NIST SRM 3133 is the Hg isotopic reference material.
284

$$\Delta^{199}\text{Hg} = \delta^{199}\text{Hg} - (\delta^{202}\text{Hg} * 0.2520)$$
$$\Delta^{201}\text{Hg} = \delta^{201}\text{Hg} - (\delta^{202}\text{Hg} * 0.7520)$$

289

290

291 3. RESULTS

292 3.1. Material processing, pigment layers and painting techniques

293 Visual examination of the wall painting fragments from Ephesus and optical microscopy (OM) shows a
294 similar appearance. However, a closer examination beneath the surface of the 10 cross-section samples
295 reveals technical details not immediately evident through visual inspection or non-invasive analysis. Figure
296 4 shows four examples of these cross-sections as examined by OM, along with SEM/EDX micrographs of
297 pigment layers with the exposure adjusted to highlight the cinnabar grains only. These images display four
298 different painting applications / cinnabar usage described below; each of the 10 cross sections fit into this
299 typology. They are:

300 *Technique 1* (Agora) (samples EPHCIN-26, -28): Figure 4A shows a sample taken from the Tetragonos
301 Agora, where a thin ($\pm 25\text{ }\mu\text{m}$) layer of cinnabar was applied over an ochre layer applied *a secco* - ochre

302 paint has seeped into drying cracks. The granulometry of this sample also indicates the use of a coarser
303 pigment (average particle size 8.5 μm , site average of 5.8 μm ; Tab. 1).

304 *Technique 2* (TH1) (samples EPHCIN-20, -24): Figure 4B, representing a sample from Terrace House 1,
305 displays a pigment layer over 100 μm thick, consisting of 2 layers of ochre, one yellow and one red, topped
306 by a thin layer of cinnabar.

307 *Technique 3* (TH2A) (samples EPHCIN-05, -06, -14, -18): Figure 4C shows a sample from Terrace House
308 2, exhibits a clearly distinct technique from that of Terrace House 1; it shows a two-layer system of cinnabar
309 mixed with ochre over an ochre underpainting around 100 μm thick.

310 *Technique 4* (TH2B (samples EPHCIN-21, -25): Figure 4D shows a second technique from Terrace House
311 2; it displays a thick ($\pm 75 \mu\text{m}$) layer containing cinnabar pigment only, over an ochre-tinted intonaco layer.
312 Additionally, the sample in Figure 4D contains an ochre-tinted intonaco layer roughly 5 mm below the
313 finished surface.

314 Despite the difference in ochre underpainting between *Techniques 2* and *4*, there are also some similarities.
315 The visual resemblance is apparent in both techniques (Fig. 4B, D), which use a significant amount of
316 cinnabar, but digital image analysis reveals that the grain size distribution of the cinnabar is quite similar.
317 In contrast, *Technique 3* (Fig. 4C) shows that not only was less cinnabar used, which is visually apparent
318 as well as supported by an average particle spatial distribution of 7 μm , but it also tended to be a finer grade
319 of pigment (Tab. 1).

320

321 **3.2. Element and isotope ratio data**

322 EDX analysis on a representative number of cinnabar grains in all 10 cross-sectioned samples, provided
323 semi-quantitative elemental characterization. The stoichiometry of the cinnabar used at the site appears
324 relatively similar, with any differences in the mercury-to-sulphur balance attributed to other elemental
325 “impurities” affecting this balance. Trace amounts of As and Se are present in the cinnabar grains of the
326 samples analyzed, at slightly different levels from sample to sample. Broadly speaking, in samples of
327 painting *Technique 3* the signal for As and Se was at or below the margin of error for the detection limit,
328 i.e., they could not be determined to be present. Samples from *Technique 4* had the highest levels of these
329 elements detected, equivalent to about a ratio of 200:1 S:As, 400:1 S:Se – too low for definite quantification,
330 but far enough above the background signal to be determined to be present. The cinnabar grains of the other
331 two techniques (*1 and 2*) had average levels of As and Se roughly half that of *Technique 4*. An important
332 caveat to this is that some grains had no As or Se detectable, while others had levels as high as *Technique*
333 *4*, which may indicate pigment mixing. However, due to the low levels detected and limitations of the
334 method, it is generally advisable to defer to the results of geochemical testing described that follows.
335 Despite the possibility for contamination in these samples and others, it is expected that the Pb and Hg
336 contents (and their respective isotope ratios) accurately reflect the visually identified cinnabar.

337 The Pb isotope ratios of the Karaburun ores (n=8) fall within the range 18.96 - 19.46 (± 0.01 , 2SD) for
338 $^{206}\text{Pb}/^{204}\text{Pb}$, 15.70 - 15.72 (± 0.01 , 2SD) for $^{207}\text{Pb}/^{204}\text{Pb}$, and 38.62 - 38.99 (± 0.02 , 2SD) for $^{208}\text{Pb}/^{204}\text{Pb}$
339 (Tab. 2). The Pb isotope ratios of the Ephesian pigment samples (n=18) vary between 18.24 and 18.82 (\pm
340 0.01, 2SD) for $^{206}\text{Pb}/^{204}\text{Pb}$, 15.63 and 15.69 (± 0.01 , 2SD) for $^{207}\text{Pb}/^{204}\text{Pb}$, and between 38.27 and 38.96 (\pm

341 0.02, 2SD) for $^{208}\text{Pb}/^{204}\text{Pb}$ (Tab. 2). Among the fourteen cinnabar samples analyzed, eleven exhibit similar
342 Pb isotope ratios, while the remaining three samples show distinctly lower values across all three Pb isotope
343 ratios. These three pigment samples originate from wall painting fragments found in Terrace House 1
344 (EPHCIN-23, -24) and Room 45 of Terrace House 2 (EPHCIN-25); the $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{208}\text{Pb}/^{206}\text{Pb}$ ratios
345 of these samples are between 0.8451 ± 0.0001 and 0.8569 ± 0.0003 ($\pm 2\text{SD}$), and between 2.0813 ± 0.0004
346 and 2.0973 ± 0.0006 ($\pm 2\text{SD}$), respectively (Tab. 2). These results of cinnabar pigment samples from
347 Ephesus were first compared to previously reported cinnabar pigment and ore samples by Mazzocchin et
348 al. (2008), Hunt-Ortiz et al. (2011), and Rodríguez et al. (2020), and plotted with the available Pb isotope
349 ratio data (Fig. 5). This was followed by a statistical compilation of the dataset based on calculation of the
350 Euclidean distances between pigment and cinnabar ore samples compared to reference Pb isotope ratio data
351 using the AAcP Pb isotope ratio database (Artioli et al., 2016) for evaluating potential cinnabar source areas
352 (Fig. 6). This was focused on comparing to ore deposits with known cinnabar mineralization. Pb isotope
353 ratio data of cinnabar pigment samples should be first and foremost compared to Pb isotope ratio data of
354 cinnabar ore deposits as this is more appropriate than comparing to lead-bearing minerals (Higueras et al.,
355 2005; Minami et al., 2021). However, reference Pb isotope ratio data for potentially relevant cinnabar ore
356 deposits, such as those of Chios (Greece) or at the Black Sea Coast (e.g., Georgia) are currently not available
357 for comparison.

358 The mercury isotopic composition (i.e., $\delta^{199}\text{Hg}$, $\delta^{202}\text{Hg}$, $\Delta^{199}\text{Hg}$ and $\Delta^{201}\text{Hg}$) of six pigment and three ore
359 samples was characterized. The mercury isotope ratio data for Kalecik ore samples are characterized by
360 $\delta^{202}\text{Hg}$ values of -0.23 and +0.12 ‰ and $\Delta^{199}\text{Hg}$ values of -0.15 and -0.22 ‰ (n=2; Tab. 2), while the ore
361 sample from Dikencik is characterized by a $\delta^{202}\text{Hg}$ value of -0.05 ‰ and a $\Delta^{199}\text{Hg}$ value of -0.05 ‰ (n=1;
362 Tab. 2). Among the pigment samples, three (EPHCIN-13, -24, -27; Tab. 2) cluster closely with $\delta^{202}\text{Hg}$
363 values ranging from +0.62 to +0.79 ‰ and $\Delta^{199}\text{Hg}$ values ranging from -0.09 to -0.13 ‰ (Fig. 7). The
364 remaining three samples (EPHCIN-06, -25, -26) have $\delta^{202}\text{Hg}$ values of +1.13 ‰, +1.07 ‰ and +0.66 ‰
365 and $\Delta^{199}\text{Hg}$ values of -0.13 ‰, -0.40 ‰ and -0.31 ‰, respectively, and the analytical precision is ≤ 0.12 ‰
366 (2SD; n=250; Rua-Ibarz et al., 2016a).

367 A brief description and overview of the sample groupings according to material processing, painting
368 techniques and geochemical results along with the archaeological contexts is listed in Table 3.

369

370

371 4. DISCUSSION

372 Trade in pigments was mentioned in ancient texts, yet little is currently known about the organization of
373 pigment trade and production networks in antiquity (Becker, 2021, *forthcoming*). Several ancient authors
374 mentioned pigment use, provenance, and processing, as discussed in a recent review on cinnabar (Gliozzo,
375 2021). Briefly, Theophrastus wrote that cinnabar was ground in stone- and washed in copper vessels (*De
376 Lap.* 58; c. 315–305 BCE). Similarly, Vitruvius mentioned that cinnabar was prepared by repeatedly being
377 ground and washed to a powder to separate it from mercury (*De Arch.* 7.9.1; 1st c. BCE). According to Pliny
378 (*HN* 33.37; c. 77–79 CE), cinnabar was extracted from red sand found in silver mines. Like Vitruvius, Pliny
379 described repeated grinding and washing to obtain a high-quality cinnabar. However, there are currently no

380 cinnabar pigment production or processing workshops known from the archaeological record. The
381 investigation of pigment processing and its organization therefore rests on the available evidence such as
382 wall paintings and other use contexts. The initial visual examinations of the wall painting fragments from
383 Roman Ephesus prior to making cross-sections suggested a consistent appearance. SEM images generally
384 show similar pigment grain morphology across different samples, and the stoichiometry of the cinnabar
385 used (*i.e.*, here Hg:S ratio) is consistent among the samples analyzed (Tab. 1). This might be indicative of
386 material from similar sources (Maras et al., 2013; Gliozzo, 2021).

387 Photomicrographs of cross-sections from the Agora, Terrace House 1 and 2 (Fig. 4), however, revealed
388 different painting techniques that can be attributed to different painting activities and/or time periods. A
389 similar observation was recently made regarding the use of cinnabar in Roman Noricum (mostly present-
390 day Austria and Slovenia), where different painting techniques were used in roughly contemporaneous
391 sites, likely representing different painting activities, different representations the artists wanted to paint
392 and/or resource levels of the patrons (Baragona et al., 2022). The results of this work suggest at least two
393 painting phases: one involving *Technique 1* and *3*, and another involving *Technique 2* and *4* (Tab. 3). There
394 may also be a *3rd* phase associated with the deeper ochre-tinted intonaco in *Technique 4*, possibly indicating
395 later replastering and repainting. As for other sites, differences in painting techniques can possibly be
396 attributed to processing by different painting activities, which might have implications for the diversity of
397 workshops and/or artists expressions in these periods.

398 A sample taken from the Tetragonos Agora (*Technique 1*) displays a thin layer of relatively large-grained
399 cinnabar pigments mixed with ochre. However, whether this appearance is due to weathering or differences
400 in resource allocation by the artists remains uncertain. Furthermore, *Technique 3* of Terrace House 2 is
401 similar to the example from the Agora (*Technique 1*), but it features thicker pigment layers and a finer-
402 grade cinnabar. While these techniques are similar and might have used comparable raw materials, as
403 suggested by the Pb isotopic analysis (see 4.2; Fig. 6), phase chronology is unclear and the relationship
404 between *Technique 1* and *3* cannot be fully established at this point. However, this might be possible for
405 *Technique 2* and *4*. A similar effect with cinnabar over yellow ochre on top of an ochre-tinted *intonachino*
406 as seen in Taberna IV of Terrace House 1 at Ephesus (*Technique 2*) was also observed in Noricum from a
407 likely mid-2nd century CE structure (Baragona et al., 2022). Furthermore, imagery of the sample from the
408 Taberna adjacent to Terrace House 2 (Room 45, *Technique 4*) displays a thicker cinnabar layer with no red
409 ochre underpainting and shows the final millimeters of intonaco have red ochre added (as opposed to ochre
410 underpainting) and a second ochre-tinted intonaco layer 5 mm below the first, indicating a re-painting
411 campaign. The practice of adding ochre to the final layer of the intonachino has been previously reported
412 at other sites, for example at Ostia Antica, and is associated with wall paintings of the 4th Pompeian style
413 (mid-1st to early 2nd century CE) (Esposito, 2014; Bracci et al., 2021). Cinnabar granulometry, as
414 determined by EDX analysis, as well as Pb isotopic analysis reveals similarities between *Technique 2* and
415 *4*, that hint at similar material processing by the painting activities and/or a painting period. There is
416 increasing evidence that stylistic changes over time were similar empire-wide (Tober, 2021), which might
417 have influenced the organization of painting workshops. The following sections demonstrate how these
418 differences can also be linked to geochemical data and, consequently, to the organization of the trade
419 networks that supplied cinnabar for Ephesus.

420 The advantageous location of Ephesus, on the west coast of Asia Minor, made it a significant cultural and
421 communication center during the Roman period (Delile et al., 2015). The site's location enabled access to

422 natural resources and products, such as control over the trade of certain pigments (e.g., Tezgör, 2022).
423 Theophrastus mentions the use of natural cinnabar found in Iberia and in Colchis at the Black Sea (Gliozzo,
424 2021): cinnabar from a location ‘above’ Ephesus was prepared from sand that shone brightly and resembled
425 scarlet dye (*i.e.*, kermes) (*De Lap.* 58). In agreement with Theophrastus, Vitruvius also mentioned that
426 cinnabar was first discovered in the Cilbian fields near Ephesus (*De Arch.* 7.8.1). Pliny agreed with both
427 Theophrastus and Vitruvius, stating that a hard and sandy kind of cinnabar came from Spain and the region
428 of the Colchi, while the highest-quality cinnabar used for painting could be found in the Cilbian territory
429 beyond Ephesus (*HN* 33.37; 39). Dioscorides mentioned Libya as the place of origin for high-quality and
430 expensive cinnabar, while emphasizing the Cilbian fields of Ephesus and the Almadén mines in Spain as
431 the most important cinnabar mines (*MM* 5.94; c. 50-70 CE; Beck, 2005). Cilbian is the area north and east
432 of the ancient city of Larisa on the Tmolos and extends to present-day Kiraz in the east (Keil and
433 Premerstein 1914; Meriç 2009; Zabrana 2022). A rock inscription from the 3rd c. CE (Keil and Premerstein
434 1914) and near today’s Emirli might identify this area as belonging to the city of Ephesus and might
435 furthermore connect it with the Cilbian territory (Zabrana 2022).

436 From previous works, several cinnabar sources are known in Turkey. For example, the preliminary survey
437 of mineral resources by Foss and Hanfmann lists cinnabar ore deposits in Tmolus Mt., located ~20 km from
438 Sardis. Ancient workings above the village of Ayasuluk (possibly the ancient Nicaea of the Cilbani) in the
439 Cayster Valley were documented there (Foss and Hanfmann, 1975:21). Modern workings were also
440 observed south of the village of Allahdiyen, visible from the mountain road connecting Sardis to Ödemiş.
441 The work by the German geologist Carl Schmeisser had previously mentioned mercury/cinnabar
442 occurrences in Turkey; one crops out in quartz-bearing slate and is located near the village Habibler, ~20
443 km northeast of Selçuk, and the other in clay-rich sedimentary deposits in the Kaystros Valley near the
444 village Halıköy, ~85 km northeast of Selçuk (Schmeisser, 1906). Additionally, cinnabar deposits within the
445 İzmir province are located near Ulubey, Alaşehir and Ödemiş. The geology (Yıldız and Bailey, 1978;
446 Gemici and Oyman, 2003; Gemici, 2008) and geochemistry (Gale and Stos-Gale, 1981; Wagner et al.,
447 1985; Yener et al., 1991; Hirao et al., 1995; Sayre et al., 2001; Hauptmann et al., 2002; Begemann et all.,
448 2003; Willett and Sayre, 2006; Gökce and Bozkaya, 2007) of ore deposits in Turkey have been extensively
449 investigated before, facilitating a comparison with the new data included in this study while the focus was
450 to compare to ore bodies with cinnabar mineralization included in the AAcP database (see 3.2.).

451 While the Pb isotope ratio data of the Ephesian cinnabar samples roughly fall into two groups: (i) two
452 samples from Taberna IV of Terrace House 1 and one sample from Room 45, which is part of the Taberna
453 adjacent to Living Unit 7 of Terrace House 2, and (ii) the remaining samples from Terrace House 2 and the
454 Agora. The Pb isotope ratio data of the Karaburun cinnabar ores do not align with those of the Ephesian
455 cinnabar samples, and thus, cannot be considered as the source of cinnabar to Ephesus; other ore deposits
456 appear to be a better fit. Perhaps (a mixture of) cinnabar from different source areas might have been used,
457 as previously proposed for cinnabar samples from Roman wall paintings (Mazzocchin et al., 2008). The
458 work by Mazzocchin et al. (2008) proposed that cinnabar from various sources – such as Huelva (Rio Tinto)
459 and Almeria, Spain, as well as other mining districts in southern Spain that were exploited by the Romans
460 – might have been mixed at a hitherto unknown production or processing workshop in Rome before the
461 pigments were used at various Roman sites. Interestingly, Vitruvius specifically recorded that cinnabar
462 from Spain was processed in a workshop there (*De Arch.* 7.9.4); in such a workshop environment, cinnabar
463 collected from different sources in Spain could have been intermixed. This might be supported by overlaps

464 of previously published Pb isotope ratio data for cinnabar pigments (Mazzocchin et al., 2008; Hunt-Ortiz
465 et al., 2011; Rodríguez et al., 2020) and Ephesian cinnabar pigments (Fig. 5A).

466 Furthermore, it was suggested that cinnabar from Almadén, Spain, was used for wall paintings in the Roman
467 city of Aventicum (Avenches, CH) on the basis of sulphur isotopic analysis for comparing relevant
468 European mining districts (Spangenberg et al., 2010). In this work, samples from Almadén were the closest
469 match for the cinnabar used in Aventicum. However, it was also noted that cinnabar from various sources
470 might have been brought to Rome and mixed there before being used (Spangenberg et al., 2010). While
471 some Ephesian samples overlap with cinnabar from Almadén, for most of them there is a good match with
472 reference samples from the Taurus Mts in Turkey or from Balkan sources. However, the possibility of
473 mixtures from various sources remains plausible (Mazzocchin et al., 2008; Spangenberg et al., 2010) – for
474 example, the $^{207}\text{Pb}/^{206}\text{Pb}$ ratio of Terrace House 1 samples points in this direction: $^{207}\text{Pb}/^{206}\text{Pb}$ ratios between
475 0.847 and 0.856 correspond to the gap between the Variscan and the precursors of the Alpine orogeny in
476 Europe, when there were only a few ore-forming events; Pb isotope ratios that plot within this gap therefore
477 likely result from mixing (Klein et al., 2004). Furthermore, potential source areas such as Chios (Greece)
478 or the Black Sea Coast of Georgia could not be considered due to the current lack of reference data. As
479 shown for lead and copper ore deposits (Klein et al., 2009) and noted previously (Spangenberg et al., 2010),
480 cinnabar from different Hg-mineralized bodies within mining districts could be characterized by
481 heterogeneous isotope ratios, potentially contributing to a wider range in sample isotope ratios and
482 necessitating careful data interpretation.

483 With regards to the Hg isotope ratio data, it seems likely that cinnabar from sedimentary exhalative deposits
484 was used. While cinnabar sources need to be carefully characterized (Stephens et al., 2021), this provides
485 additional insights for assessing material provenance and for enriching reference databases. Briefly,
486 hydrothermal ore deposits exhibit a wide intra-deposit range in $\delta^{202}\text{Hg}$ values (Yin et al., 2016). The level
487 of MIF as reflected by the $\Delta^{199}\text{Hg}$ values is low (Fig. 7A). The $\Delta^{199}\text{Hg}$ values of the samples analyzed
488 ranged between -0.09 ‰ and -0.13 ‰ for the larger Pb isotope ratio cluster of samples mainly from Terrace
489 House 2. These values closely resemble those observed for sedimentary exhalative deposits ($\Delta^{199}\text{Hg}$: -0.09
490 \pm 0.18 ‰; Yin et al., 2016). The Karaburun deposits are sedimentary exhalative deposits, but similar to the
491 Pb isotope ratio data, there is no overlap between pigment and Karaburun ore Hg isotope ratios. However,
492 while the use of high-temperature conditions does not induce Hg isotope MIF (Chen et al., 2022), MDF
493 may occur during ore roasting processes (Ni et al., 2022) as indicated by recent laboratory roasting of
494 cinnabar ore from Almadén (Gray et al., 2013). This MDF can be the result of several complex geochemical
495 processes involved during roasting which include redox processes, vapor transport, and secondary mineral
496 formation (Smith et al., 2014) and was observed in a small laboratory experiment during retorting (Gray et
497 al., 2013). The $\delta^{202}\text{Hg}$ values obtained for the pigment samples (0.62 ‰ to 1.13 ‰) are higher than those
498 corresponding to the Karaburun ore samples (-0.23 ‰ to 0.12 ‰). If cinnabar from these ores would have
499 been used, then this could be in agreement with the loss of isotopically lighter Hg isotopes under high-
500 temperature conditions. This might apply to cinnabar pigments from Ephesus, where the $\delta^{202}\text{Hg}$ values are
501 not within the range reported for cinnabar from Almadén (-0.92 to 0.15 ‰, n=7; Gray et al. 2013; -1.73 to
502 0.15 ‰, n=18; Pribil et al., 2020). However, the use of Karaburun or Almadén ores (in cinnabar pigment
503 mixtures) cannot be excluded based on the Pb isotopic analysis alone and either might be a possibility based
504 on the Hg isotope ratio data.

505 Cinnabar was a highly valued colorant and several historical sources mention the ore deposits of Almadén
506 and ore deposits near Ephesus as source areas. Recent research used Pb, S and Hg isotope ratio data of
507 cinnabar from archaeological contexts to evaluate cinnabar provenance and potential trade contacts
508 (Mazzocchin et al., 2008; Spangenberg et al., 2010; Hunt-Ortiz et al., 2011; Tsantini et al., 2018; Rodríguez
509 et al., 2020; Minami et al., 2021). This work contributes cinnabar samples from ancient wall paintings from
510 Ephesus and cinnabar ore from nearby deposits and uses Pb as well as Hg isotope ratio data to evaluate
511 material provenance, trade and processing. However, future research would benefit from a more detailed
512 evaluation of mixing with other pigments (Rodríguez et al., 2020) and building on first laboratory
513 experiments (Gray et al., 2013), further research is necessary to characterize the effect of ancient cinnabar
514 processing on the Hg isotopic composition of cinnabar pigments. This is needed in order to better compare
515 archaeological with geological materials and to substantiate a potential MDF due to heat treatment. If
516 cinnabar processing treatments influence trace element partitioning or isotope fractionation, then this would
517 be relevant for such an interpretation. Furthermore, comparing geochemical results of ancient pigments to
518 a wider range of possible source areas would significantly advance pigment provenance studies. This work
519 contributes new cinnabar ore samples and emphasizes that several potential source areas are currently not
520 available for comparison. The lack of cinnabar processing sites in the archaeological record complicates
521 this further. In general, only a few pigment workshops are currently known (e.g., Kostomitsopoulou
522 Marketou & Rodler-Rørbo, 2023). An archaeometric investigation of such workshops (Kostomitsopoulou
523 Marketou, 2019; Kostomitsopoulou Marketou et al., 2020) is helpful for evaluating pigment preparation
524 methods, for example, in comparison to ancient literary evidence, and can aid an interpretation of possible
525 trade routes. Further investigations of Hg paleopollution in sedimentary deposits might be useful in this
526 regard (Cooke et al., 2013); further analysis of cinnabar pigments to add to the already existing data (Fig.
527 5A) and minor cinnabar deposits should be considered and included in future studies (Rodríguez et al.,
528 2020) to expand the currently available data (Fig. 5B).

529

530

531 5. CONCLUSION

532 In conclusion, this work aimed to determine whether raw materials from the Karaburun Peninsula north of
533 Ephesus, from the Spanish Almadén mining district, or from other close or distant cinnabar sources were
534 used at Ephesus. Analysis using optical and scanning electron microscopy of the paint layer stratigraphy,
535 as well as cinnabar grain size distribution, indicated consistent cinnabar pigment preparation. While this
536 could suggest uniform source material quality, it could also indicate a relatively consistent (although likely
537 diachronic) material processing technique. However, variations in paint layer stratigraphy among different
538 architectural structures suggest a diversity of painting techniques over time. A correlation between painting
539 technique and geochemical information was observed, implying changes in cinnabar source and pigment
540 preparation, possibly associated with changes in building chronology and/or usage. Although the Pb isotope
541 ratio data of the majority of the Terrace House 2 and the Agora samples cluster closely together and align
542 well with Balkan or central Turkish ore deposits, a small subset of samples – all from tabernas adjacent to
543 either Terrace House 1 (Taberna IV) or Terrace House 2 (Room 45, adjacent to Living Unit 7) – suggests
544 different sources. However, while Turkish ore deposits are well-represented in reference databases, several
545 potentially relevant cinnabar deposits have not yet been included (e.g., Chios, Greece; Black Sea Coast,

546 Georgia). Additionally, the possibility of cinnabar mixing from various sources remains plausible. The Hg
547 isotope ratio data of Ephesian pigment samples consistently shows the loss of isotopically lighter Hg
548 isotopes. However, additional research is necessary to evaluate whether this could indicate heat treatment
549 during pigment processing as suggested by ancient authors.

550

551

552 ACKNOWLEDGMENTS

553 We thank Pamela Fragnoli and Sabine Ladstätter, Austrian Archaeological Institute of the Austrian
554 Academy of Sciences, for supporting this project and the fieldwork in Ephesus, and to all those that
555 excavated this marvelous site in the past. The Turkish authorities kindly granted the research permits that
556 enabled sample collection and analysis; we are grateful for this. We thank Wendy Debouge and Jeroen De
557 Jong, Université Libre de Bruxelles (BE), for keeping the laboratory in perfect shape and for support with
558 mass spectrometry. We also thank Verena Fugger of the Austrian Archaeological Institute of the Austrian
559 Academy of Sciences, for comments about ancient texts and recent geological surveys. Moreover, A.R.R.
560 thanks the Austrian Archaeological Institute of the Austrian Academy of Sciences for a generous travel
561 fund for fieldwork as well as the Holzhausen Legat of the Austrian Academy of Sciences for supporting
562 finalizing this manuscript. Furthermore, A.R.R., S.G., V.D. and F.V. acknowledge support from the FWO-
563 FNRS EoS program “ET-HoME”. V.D. also thanks the FRS-FNRS for present support. E.B.-F.
564 acknowledges financial support from the Ramón y Cajal programme (RYC2021-031093-I) funded by
565 MCIN/AEI/10.13039/501100011033 and the European Union (NextGenerationEU/PRTR), the grant
566 PID2021-122455NB-I00, funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of
567 making Europe”, and the Aragon Government (DGA, Construyendo Europa desde Aragón, Grupo
568 E43_20R). A.R-I thanks European Union’s Horizon 2020 research and innovation program under the
569 Marie-Sklodowska-Curie grant agreement Nº 101034288. F.V. acknowledges FWO-Vlaanderen for
570 providing the funding for the acquisition of MC-ICP-MS instrumentation (ZW15-02 – G0H6216N). L.V.S.
571 thanks The Carlsberg Foundation (CF14-0280) for their support in financing his postdoctoral research of
572 rare raw materials in the Aegean. Furthermore, we thank four anonymous reviewers for their comments
573 that improved this work.

574

575 **Author contributions:** Conceptualization, A.R.R.; sample collection, A.R.R., L.V.S., B.C., C.H.; formal
576 analysis and data curation, A.R.R., A.J.B. E.J.V., E.B.-F., A.R.-I., G.A.; visualization, A.R.R., A.J.B., G.A.,
577 L.V.S., B.C., C.H.; writing—original draft preparation, A.R.R., A.J.B., E.B.-F., E.J.V.; writing—review
578 and editing, all authors; funding acquisition A.R.R., S.G., V.D., P.C., N.M, F.V.; all authors have read and
579 agreed to the published version of the manuscript.

580 **Competing interests:** The authors declare no conflict of interest. The funders had no role in the design of
581 the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
582 decision to publish the results.

583 **Data and materials availability:** All data used for the study is included in this paper. Materials used in the
584 analysis are available upon request and depending on material availability.

585

586 **REFERENCES**

587 Abouchami, W., Galer, S.J.G., Hofmann, A.W., 2000. High precision lead isotope systematics of lavas
588 from the Hawaiian Scientific Drilling Project. *Chemical Geology* 169, 187–209.
589 [https://doi.org/10.1016/S0009-2541\(00\)00328-4](https://doi.org/10.1016/S0009-2541(00)00328-4)

590 Artioli, G., Angelini, I., Nimis, P., Villa, I.M., 2016. A lead-isotope database of copper ores from the
591 Southeastern Alps: a tool for the investigation of prehistoric copper metallurgy. *Journal of*
592 *Archaeological Science* 75, 27–39. <https://doi.org/10.1016/j.jas.2016.09.005>

593 Baragona, A.J., Rodler, A.S., Bauerová, P., 2022. Imperial Styles, Frontier Solutions: Roman wall
594 painting technology in the province of Noricum. In: *Proceedings of the 6th Historic Mortars*
595 Conference, HMC2022 University of Ljubljana, SL. RILEM Sarl, France

596 Baxter, D.C., Rodushkin, I., Engström, E., Malinovsky, D., 2006. Revised exponential model for mass
597 bias correction using an internal standard for isotope abundance ratio measurements by multi-
598 collector inductively coupled plasma mass spectrometry. *Journal of Analytical Atomic*
599 *Spectrometry*, 21, 427–430. <https://doi.org/10.1039/B517457K>

600 Beck, L.Y., 2005. *De Materia Medica*. Olms-Weidmann: Hildesheim.

601 Becker, H. 2021. Color Technology and Trade. In: Biggam, C. and Wolf, K. and Wharton, D. (eds)
602 *Cultural History of Color*, ed. Bloomsbury Publishing, London, 35-48.

603 Becker, H. 2022. Pigment nomenclature in the ancient Near East, Greece, and Rome. *Journal of*
604 *Archaeological and Anthropological Sciences* 14:20. DOI: 10.1007/s12520-021-01394-1

605 Becker, H. Commerce in color: the mechanics of the Roman pigment trade. *forthcoming*

606 Begemann, F., Schmitt-Strecker, S., Pernicka, E., 2003. On the Composition and Provenance of Metal
607 Finds from Beşiktepe (Troia). In: Wagner, G.A., Pernicka, E., Uerpmann, HP. (eds) *Troia and the*
608 *Troad. Natural Science in Archaeology*. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05308-9_11

610 Bergquist, B. A., Blum, J. D., 2007. Mass-dependent and-independent fractionation of Hg isotopes by
611 photoreduction in aquatic systems. *Science* 318 (5849), 417.

612 Blum, J.D., Bergquist, B.A., 2007. Reporting of variations in the natural isotopic composition of mercury.
613 *Analytical and Bioanalytical Chemistry* 388, 353–359. <https://doi.org/10.1007/s00216-007-1236-9>

614 Bolea-Fernandez, E., Rua-Ibarz, A., Krupp, E.M., Feldmann, J., Vanhaecke, F., 2019. High-precision
615 isotopic analysis sheds new light on mercury metabolism in long-finned pilot whales (*Globicephala*
616 *melas*). *Sci Rep* 9, 7262 (2019). <https://doi.org/10.1038/s41598-019-43825-z>

617 Bracci, S. Cantisiani, E., Falzone, F., Marano, M., Tomassini, P., 2021. Archaeometry and Roman Wall
618 Painting: The Case of pre-Hadrianic Paintings in Ostia Antica. In: Cavalieri and Tomassini (ed.) *Le*
619 *peinture murale antique: méthodes et apports d'une approche technique Actes du colloque*
620 *international*. Louvain la Neuve 21 April 2017 Edizioni Quasar

621 Çakmakoglu, A., Bilgin, Z.R., 2006. Pre-Neogene Stratigraphy of The Karaburun Peninsula (W of İzmir
622 Turkey). *Bulletin of The Mineral Research and Exploration* 132, 33–61.

623 Çakmakoglu, B., Göktaş, F., Demirhan, M., Helvacı, C., 2013. Investigation of Stratigraphy,
624 Sedimentology and Economical Usage of the Clays from the Northern Part of the Karaburun
625 Peninsula. *Geological Bulletin of Turkey* 56(1), 39–58.

626 Chen, D., Ren, D., Deng, C., Tian, Z., Yin, R., 2022. Mercury loss and isotope fractionation during high-
627 pressure and high-temperature processing of sediments: Implications for the behaviors of mercury
628 during metamorphism. *Geochimica et Cosmochimica Acta* 334, 231–240.
629 <https://doi.org/10.1016/j.gca.2022.08.010>

630 Cooke, C.A., Hintelmann, H., Ague, J.J., Burger, R., Biester, H., Sachs, J.P., Engstrom, D.R., 2013. Use
631 and legacy of mercury in the Andes. *Environmental Science & Technology* 47, 4181–4188.
632 <https://doi.org/10.1021/es3048027>

633 Delile, H., Blichert-Toft, J., Goiran, J.P., Stock, F., Arnaud-Godet, F., Bravard, J.P., Brückner, H.,
634 Albarède, F., 2015. Demise of a harbor: A geochemical chronicle from Ephesus. *Journal of*
635 *Archaeological Science* 53, 202-213. <https://doi.org/10.1016/j.jas.2014.10.002>

636 Emslie, S.D., Brasso, R., Patterson, W.P., Valera, A.C., McKenzie, A., Silva, A.M., Gleason, J.D., Blum,
637 J.D., 2015. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from
638 the cultural use of cinnabar. *Scientific Reports* 5, 14679. DOI: 10.1038/srep14679

639 Esposito, D., 2014. La pittura di Ercolano. *Studi della Soprintendenza Archeologica di Pompeii* 33.
640 Rome: “L’Erma” di Bretschneider

641 Esposito, D., 2017. The Economics of Pompeian Painting. In: Flohr, M. and Wilson, A. (eds.), *The*
642 *Economy of Pompeii* (pp. 263-289). Oxford: Oxford University Press.

643 Faure, G., Mensing, T.M., 2005. *Isotopes, Principles and Applications*. 3rd ed. Hoboken Wiley.

644 Foss, C., Hanfmann, G.M.A., 1975. Reginal setting and urban development. In: Hanfmann, G.M.A.,
645 Jacobs, S.W. (eds.), *Achraological Exploraiton of Sardis: A survey of Sardis and the major*
646 *monuments outside the city walls*. Harvard University Press, 17–34.

647 Fragnoli, P., Ugarković, M., Sterba, J.H., Sauer, R., 2022. Looking for Ephesian workshops: an integrated
648 petrographic, geochemical, and chrono-typological approach to Late Hellenistic Ephesos lamps.
649 Archaeological and Anthropological Sciences 14, 19. <https://doi.org/10.1007/s12520-021-01419-9>

650 Gale, N.H., Stos-Gale, Z.A., 1981. Lead and silver in the ancient Aegean. Scientific American 244(6),
651 176–192.

652 Gemici, Ü., 2008. Batı Anadolu'daki eski civa yataklarının çevre jeolojisi açısından değerlendirilmesi. In:
653 Eşref Atabey (ed.) Uluslararası Katılımlı Tibbi Jeoloji Sempozyumu Kitabı. 133–145.

654 Gemici, Ü., Oyman, T., 2003. The influence of the abandoned Kalecik Hg mine on water and stream
655 sediments (Karaburun, Izmir, Turkey). Science of the Total Environment 312, 155–166.
656 doi:10.1016/S0048-9697(03)00008-1

657 Gliozzo, E., 2021. Pigments — Mercury-based red (cinnabar-vermilion) and white (calomel) and their
658 degradation products. Archaeological and Anthropological Sciences 13, 210.
659 <https://doi.org/10.1007/s12520-021-01402-4>

660 Gökce, A., Bozkaya, G., 2007. Lead and sulfur isotopic studies of the barite–galena deposits in the
661 Karalar area (Gazipaşa–Antalya), Southern Turkey. Journal of Asian Earth Sciences 30, 53–62.
662 doi:10.1016/j.jseas.2006.07.007

663 Gray, J.E., Pribil, M.J., Higueras, P.L., 2013. Mercury isotope fractionation during ore retorting in the
664 Almadén mining district, Spain. Chemical Geology 357, 150–157.
665 <https://doi.org/10.1016/j.chemgeo.2013.08.036>

666 Hauptmann, A., Schmitt-Strecker, S., Begemann, F., Palmieri, A.M., 2002. Chemical Composition and
667 Lead Isotopy of Metal Objects from the "Royal" Tomb and Other Related Finds at Arslantepe,
668 Eastern Anatolia. Paléorient 28, 43–69. <http://www.jstor.org/stable/41496946>

669 Helvacı, C. Ersoy, E.Y., Sözbilir, H., Erkül, F., Sümer, Ö., Uzel, B., 2009. Geochemistry and $^{40}\text{Ar}/^{39}\text{Ar}$
670 geochronology of Miocene volcanic rocks from the Karaburun Peninsula: Implications for
671 amphibole-bearing lithospheric mantle source, Western Anatolia. Journal of Volcanology and
672 Geothermal Research 185. 181–202.

673 Higueras, P., Munhá, J., Oyarzun, R., Tassinari, C.C.G., Ruiz, I.R., 2005. First lead isotopic data for
674 cinnabar in the Almadén district (Spain): implications for the genesis of the mercury deposits.
675 Mineralium Deposita 40, 115–122. <https://doi.org/10.1007/s00126-005-0471-2>

676 Hirao, Y., Enomoto, J., Tachikawa, H., 1995. Lead isotope ratios of copper, zinc and lead minerals in
677 Turkey – in relation to the provenance study of artifacts. In: Prince Takahito Mikasa HIH (ed.)
678 Essays on Ancient Anatolia and its surrounding civilisations. Harrassowitz Verlag, Wiesbaden, 89–
679 114.

680 Hunt-Ortiz, M.A., Consuegra-Rodríguez, S., Díaz del Río-Español, P., Hurtado-Pérez, V.M., Montero-
681 Ruiz, I., 2011. Neolithic and Chalcolithic – VI to III Millennia BC – use of cinnabar (HgS) in the

682 Iberian Peninsula: analytical identification and lead isotopic analysis for an early mineral
683 exploitation of the Almadén (Ciudad Real, Spain) mining district. In: J. E. Ortiz, O. Puche, I.
684 Rábano and L. F. Mazadiego (eds.) History of Research in Mineral Resources. Cuadernos del
685 Museo Geominero, 13. Instituto Geológico y Minero de España, Madrid.

686 Keil, J., von Premerstein, A., 1914. Bericht über eine 3. Reise in Lydien und den angrenzenden Gebieten
687 Ioniens, ausgeführt 1911 im Auftrage der Kaiserlichen Akademie der Wissenschaften (Wien 1914).

688 Klein, S., Domergue, C., Lahaye, Y., Brey, G.P., von Kaenel, H.-M., 2009. The lead and copper isotopic
689 composition of copper ores from the Sierra Morena (Spain). *J. Iber. Geol.* 35, 59–68.

690 Klein, S., Lahaye, Y., Brey, G.P., von Kaenel, H.-M., 2004. The early Roman Imperial aes coinage II:
691 tracing the copper sources by analysis of lead and copper isotopes – copper coins of Augustus and
692 Tiberius. *Archaeometry* 46(3), 469–480.

693 Kostomitsopoulou Marketou, A., 2019. The pigment production site of the ancient agora of Kos (Greece):
694 Revisiting the material evidence. *THIASOS: Rivista di archeologia e architettura antica* 8, 61–80.

695 Kostomitsopoulou Marketou, A., Andriulo, F., Steindal, C., Handberg, S., 2020. Egyptian blue pellets
696 from the first century B.C.E workshop of Kos (Greece): Microanalytical investigation by Optical
697 Microscopy, Scanning Electron Microscopy-X-ray Energy Dispersive Spectroscopy and Micro-
698 Raman Spectroscopy. *Minerals* 10, 1063. <https://doi.org/10.3390/min10121063>

699 Kostomitsopoulou Marketou, A., Rodler-Rørbo, A., 2023. The Colourant Mapping Project: approaching
700 the evidence of colourant production in the Aegean during the Hellenistic and Roman Period
701 through Kea, Kos and Rhodes. *Archaeological and Anthropological Sciences* 15, 160.
702 <https://doi.org/10.1007/s12520-023-01849-7>

703 Ladstätter, S., 2016. Hafen und Stadt von Ephesos in hellenistischer Zeit. *Jahreshefte des*
704 *Österreichischen Archäologischen Institutes in Wien* 85, 233–272. ISSN 2309-1207

705 Lang-Auinger, C., 1996. Hanghaus 1 in Ephesos. Der Baubefund. *Jahreshefte des Österreichischen*
706 *Archäologischen Institutes in Wien* VIII/3.

707 Lang-Auinger, C., Outschar, U., 1996. Aspekte zur Chronologie. In: Lang-Auinger, C. (ed.), *Hanghaus 1*
708 in Ephesos. Der Baubefund. *Jahreshefte des Österreichischen Archäologischen Institutes in Wien*
709 VIII/3.

710 Lazzarini, L., Verità, M., 2015. First evidence for 1st century AD production of Egyptian blue frit in
711 Roman Italy. *Journal of Archaeological Science* 53, 578–585.

712 Maras, A., Botticelli, M., Ballirano, P., 2013. Archaeometric investigations on cinnabar provenance and
713 origin by X-ray powder diffraction: preliminary data. *International Journal of Conservation Science*
714 4, 685–692.

715 Mazzocchin, G. A., Baraldi, P., Barbante, C., 2008. Isotopic analysis of lead present in the cinnabar of
716 Roman wall paintings from the Xth Regio “(Venetia et Histria)” by ICP-MS. *Talanta* 74, 690–693.
717 <https://doi.org/10.1016/j.talanta.2007.06.048>

718 Minami, T., Takeuchi, A., Imazu, S., Okuyama, M., Higashikage, Y., Mizuno, T., Okabayashi, K.,
719 Takahashi, K., 2021. Identification of source mine using sulfur, mercury, and lead isotope analyses
720 of vermilion used in three representative tombs from Kofun period in Japan. *Journal of*
721 *Archaeological Science: Reports* 37, 102970. <https://doi.org/10.1016/j.jasrep.2021.102970>

722 Ni, X., Yang, R., Yuan, W., Wang, X., Chen, J., Zhang, G., Li, D., Du, L., Gao, L., Luo, C., Zheng, L.,
723 Xu, H., 2022. New insight into the source of metals in Hg deposits at the southwestern margin of
724 the Yangtze Platform, China: Evidence from mercury stable isotope compositions. *Ore Geology*
725 *Reviews* 149, 105089. <https://doi.org/10.1016/j.oregeorev.2022.105089>

726 Nicholson, P.T., 2003. New excavations at a Ptolemaic-Roman faience factory at Memphis, Egypt.
727 *Annales du 15e Congrès de l'Association Internationale pour l'Histoire du Verre*. AIHV 49–52.

728 Palero-Fernández, F.J., Martin-Izard, A., Prieto, M.Z., Mansilla-Plaza, L., 2015. Geological context and
729 plumbotectonic evolution of the giant Almadén Mercury Deposit. *Ore Geology Reviews* 64, 71–88.
730 <https://doi.org/10.1016/j.oregeorev.2014.06.013>

731 Pribil, M.J., Rimondi, V., Costagliola, P., Lattanzi, P., Rutherford, D.L., 2020. Assessing mercury
732 distribution using isotopic fractionation of mercury processes and sources adjacent and downstream
733 of a legacy mine district in Tuscany, Italy. *Applied Geochemistry* 117, 104600.
734 <https://doi.org/10.1016/j.apgeochem.2020.104600>

735 Prieto, G., Wright, V., Burger, R.L., Cooke, C.A., Zeballos-Velasquez, E.L., Watanave, A., Suchomel,
736 M.R., Suescun, L., 2015. The source, processing and use of red pigment based on hematite and
737 cinnabar at Gramalote, an early Initial Period (1500–1200 cal. B.C.) maritime community, north
738 coast of Peru. *Journal of Archaeological Science: Reports* 5, 45–60.
739 <http://dx.doi.org/10.1016/j.jasrep.2015.10.026>

740 Rodler, A. S., Artioli, G., Klein, S., Petschick, R., Fink-Jensen, P., Brøns, C., 2017. Provenancing ancient
741 pigments: Lead isotope analyses of the copper compound of Egyptian blue pigments from ancient
742 Mediterranean artifacts. *Journal of Archaeological Science: Reports* 16, 1–18. <https://doi.org/10.1016/j.jasrep.2017.09.008>

744 Rodríguez, J., Montero-Ruiz, I., Hunt-Ortiz, M., García-Pavón, E., 2020. Cinnabar provenance of
745 Chalcolithic red pigments in the Iberian Peninsula: A lead isotope study. *Geoarchaeology*, 1–12.
746 <https://doi.org/10.1002/gea.21810>

747 Rua-Ibarz, A., Bolea-Fernandez, E., Maage, A., Frantzen, S., Sanden, M., Vanhaecke, F., 2019. Tracing
748 mercury pollution along the Norwegian Coast via elemental, speciation, and isotopic analysis of
749 liver and muscle tissue of deep-water marine fish (*Brosme brosme*). *Environmental Science &*
750 *Technology* 53, 1776–1785. <https://doi.org/10.1021/acs.est.8b04706>

751 Rua-Ibarz, A., Bolea-Fernandez, E., Maage, A., Frantzen, S., Valdersnes, S., Vanhaecke, F., 2016b.
752 Assessment of Hg pollution released from a WWII submarine wreck (U-864) by Hg isotopic
753 analysis of sediments and *Cancer pagurus* tissues. Environmental Science & Technology 50,
754 10361–10369. DOI: 10.1021/acs.est.6b02128

755 Rua-Ibarz, A., Bolea-Fernandez, E., Vanhaecke, F., 2016a. An in-depth evaluation of accuracy and
756 precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-
757 collector ICP-mass spectrometry. Analytical and Bioanalytical Chemistry, 408, 417–429.
758 DOI:10.1007/s00216-015-9131-2

759 Salvadori, M., Sbrolli, C., 2021. Wall paintings through the ages: the roman period – Republic and early
760 Empire. Archaeological and Anthropological Sciences 13, 187. <https://doi.org/10.1007/s12520-021-01411-3>

762 Sayre, E.V., Joel, E.C., Blackman, M.J., Yener, K.A., Özbal, H., 2001. Stable lead isotope studies of
763 Black Sea Anatolian ore sources and related Bronze age and Phrygian artefacts from nearby
764 archaeological sites. Appendix: new Central Taurus ore data. Archaeometry 43, 77–115.

765 Scherrer, P., Trinkl, E., 2006. Die Tetragonos Agora in Ephesos. Grabungsergebnisse von archaischer bis
766 in byzantinische Zeit – Ein Überblick Befunde und Funde klassischer Zeit. Jahreshefte des
767 Österreichischen Archäologischen Institutes in Wien XIII/2.

768 Schmeisser, C., 1906. Bodenschätzungen und Bergbau Kleinasiens. Zeitschrift für praktische Geologie XIV, 6,
769 186-196.

770 Smith, R.S., Wiederhold, J.G., Jew, A.D., Brown Jr., G.E., Bourdon, B., Kretzschmar, R., 2014. Small-
771 scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures.
772 Geochimica et Cosmochimica Acta 137, 1–17. <https://doi.org/10.1016/j.gca.2014.03.037>

773 Spangenberg, J.E., Lavrič, J.V., Meisser, N., Serneels, V., 2010. Sulfur isotope analysis of cinnabar from
774 Roman wall paintings by elemental analysis/isotope ratio mass spectrometry – tracking the origin
775 of archaeological red pigments and their authenticity. Rapid communications in Mass Spectrometry
776 24(19), 2812-2816. <https://doi.org/10.1002/rcm.4705>

777 Stephens, J.A., Ducea, M.N., Killick, D.J., Ruiz, J., 2021. Use of non-traditional heavy stable isotopes in
778 archaeological research. Journal of Archaeological Science 127, 105334.
779 <https://doi.org/10.1016/j.jas.2021.105334>

780 Stetson, S.J., Gray, J.E., Wanty, R.B., Macalady, D.L., 2009. Isotopic Variability of Mercury in Ore,
781 Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury.
782 Environmental Science and Technology 43, 7331–7336. <https://doi.org/10.1021/es9006993>

783 Stos-Gale, Z.A., Gale, N.H., 2009. Metal provenancing using isotopes and the Oxford archaeological lead
784 isotope database (OXALID). Archaeological and Anthropological Sciences 1, 195–213.
785 <https://doi.org/10.1007/s12520-009-0011-6>

786 Tezgör, D.K., 2022. From the miltos / sinopis of ancient Sinope to the Yoşa of Modern Cappadocia.
787 Adalya 25, 45–69. <http://orcid.org/0000-0002-5736-1822>

788 Thür, H., 2005. Hanghaus 2 in Ephesos – die Wohneinheit 4. Jahreshefte des Österreichischen
789 Archäologischen Institutes in Wien VIII/6.

790 Thür, H., Rathmayr, E., 2014. Hanghaus 2 in Ephesos – die Wohneinheit 6. Jahreshefte des
791 Österreichischen Archäologischen Institutes in Wien VIII/9.

792 Tober, B., 2021. Ephesus – Palmyra – Noricum. Room-decoration as an international Code for living with
793 images under the Roman imperial period. In: Thomas, R. (ed.), Local Styles or Common Pattern
794 Books in Roman Wall Painting and Mosaics (Panel 3.22), Proceedings of the 19th International
795 Congress of Classical Archaeology Cologne/Bonn 22 65-80 Heidelberg 22-26 May 2018

796 Tsantini, E., Minami, T., Takahashi, K., Ontiveros, M.Á.C., 2018. Analysis of sulphur isotopes to identify
797 the origin of cinnabar in the Roman wall paintings from Badalona (Spain). Journal of
798 Archaeological Science: Reports 18, 300-307. <https://doi.org/10.1016/j.jasrep.2018.01.032>

799 Vanderstraeten, A., Bonneville, S., Gili, S., de Jong, J., Debouge, W., Claeys, P., Mattielli, N., 2020. First
800 multi-isotopic (Pb-Nd-Sr-Zn-Cu-Fe) characterisation of dust reference materials (ATD and BCR-
801 723): A multi-column chromatographic method optimised to trace mineral and anthropogenic dust
802 sources. Geostandards and Geoanalytical Research 44, 307–329. doi:10.1111/ggr.12320

803 Wagner, G.A., Pernicka, E., Seeliger, T.C., Öztunali, Ö., Baranyi, I., Begemann, F., Schmitt-Strecker, S.,
804 1985. Geologische Untersuchungen zur frühen Metallurgie in NW-Anatolien. Bulletin of the
805 Mineral Research and Exploration Inst. Turkey 101/102, 45–81.

806 Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G., Hanano, D., Pretorius, W.,
807 Mattielli, N., Scoates, J., Goolaerts, A., Friedman, R., Mahoney, J., 2006. High-precision isotopic
808 characterization of USGS reference materials by TIMS and MC-ICP-MS: Isotopic study of USGS
809 reference materials. Geochemistry, Geophysics, Geosystems, 7(8), Q08006,
810 doi:10.1029/2006GC001283.

811 Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., Barling, J., 2005. High-precision Pb-Sr-Nd-Hf
812 isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochemistry,
813 Geophysics, Geosystems, 6, Q02002, doi:10.1029/2004GC000852.

814 Willett, F., Sayre, E.V., 2006. Lead isotope in West African copper alloys. Journal of African Archaeology
815 4, 55–90.

816 Yener, K.A., Sayre, E.V., Joel, E.C., Özbal, H., Barnes, I.L., Brill, R.H., 1991. Stable lead isotope studies
817 of Central Taurus ore sources and related artifacts from Eastern Mediterranean Chalcolithic and
818 Bronze age sites. Journal of Archaeological Science 18, 541–577.

819 Yesares, L., Sáez, R., De Almodóvar, G.R., Nieto, J.M., Gómez, G., Ovejero, G., 2017. Mineralogical
820 evolution of the Las Cruces gossan cap (Iberian Pyrite Belt): From subaerial to underground
821 conditions. *Ore Geology Reviews* 80, 377–405. <https://doi.org/10.1016/j.oregeorev.2016.05.018>

822 Yin, R., Feng, X., Hurley, J.P., Krabbenhoft, D.P., Lepak, R.F., Hu, R., Zhang, Q., Li, Z., and Bi, X.,
823 2016. Mercury Isotopes as Proxies to Identify Sources and Environmental Impacts of Mercury in
824 Sphalerites. *Scientific Reports* 6, 18686. <https://doi.org/10.1038/srep18686>

825 Yin, R., Feng, X., Wang, J., Li, P., Liu, J., Zhang, Y., Chen, J., Zhen, L., Hu, T., 2013. Mercury
826 speciation and mercury isotope fractionation during ore roasting process and their implication to
827 source identification of downstream sediment in the Wanshan mercury mining area, SW China.
828 *Chemical Geology* 336, 72–79. <https://doi.org/10.1016/j.chemgeo.2012.04.030>

829 Yıldız, M., 1967. Mercury: Maden Tetkik ve Arama Enst. (MTA) Bull, 68.

830 Yıldız, M., Bailey, E.H., 1978. Mercury deposits in Turkey. *Geological Survey Bulletin* 1456, 1–79.

831 Zabrama, L., 2022. Das Artemision von Ephesos als Wirtschaftszentrum in römischer Zeit. Neue
832 archäologische Forschungen des Österreichischen Archäologischen Institutes. In: Alkier, S. (ed)
833 Konstellationen antiker Tempelwirtschaft, Beyond Historicism – New Testament Studies Today
834 Vol. 1.

835 Zimmermann, G.A., 1874. Ephesos im ersten christlichen Jahrhundert (Jena 1874).

836 Zimmermann, N., 2005. Wandmalerei. In: Thür, H. (ed.), Hanghaus 2 in Ephesos – die Wohneinheit 4.
837 Jahreshefte des Österreichischen Archäologischen Institutes in Wien VIII/6.

838 Zimmermann, N., 2014. Wandmalerei. In: Thür, H., Rathmayr, E. (eds.), Hanghaus 2 in Ephesos – die
839 Wohneinheit 6. Jahreshefte des Österreichischen Archäologischen Institutes in Wien VIII/9.

840 Zimmermann, N., 2016a. Wandmalerei. In: Rathmayr, E. (ed.), Hanghaus 2 in Ephesos – die Wohneinheit
841 7. Jahreshefte des Österreichischen Archäologischen Institutes in Wien VIII/10.

842 Zimmermann, N., 2016b. Die Entwicklung der Wandmalerei in Kleinasiien von der griechischen bis zur
843 römischen Zeit am Beispiel von Ephesos. In: Dubois, Y., Niffeler, U. (eds.), *Pictores per provincias*
844 II – Status Quaestionis. Actes du 13e Colloque de l’Association Internationale pour la Peinture
845 Murale Antique (AIPMA), Université de Lausanne, 12–16 septembre 2016.

1 **Table 1.** Cinnabar grain size diameter, average particle size and intergranular spacing for the Ephesian wall painting fragments analyzed

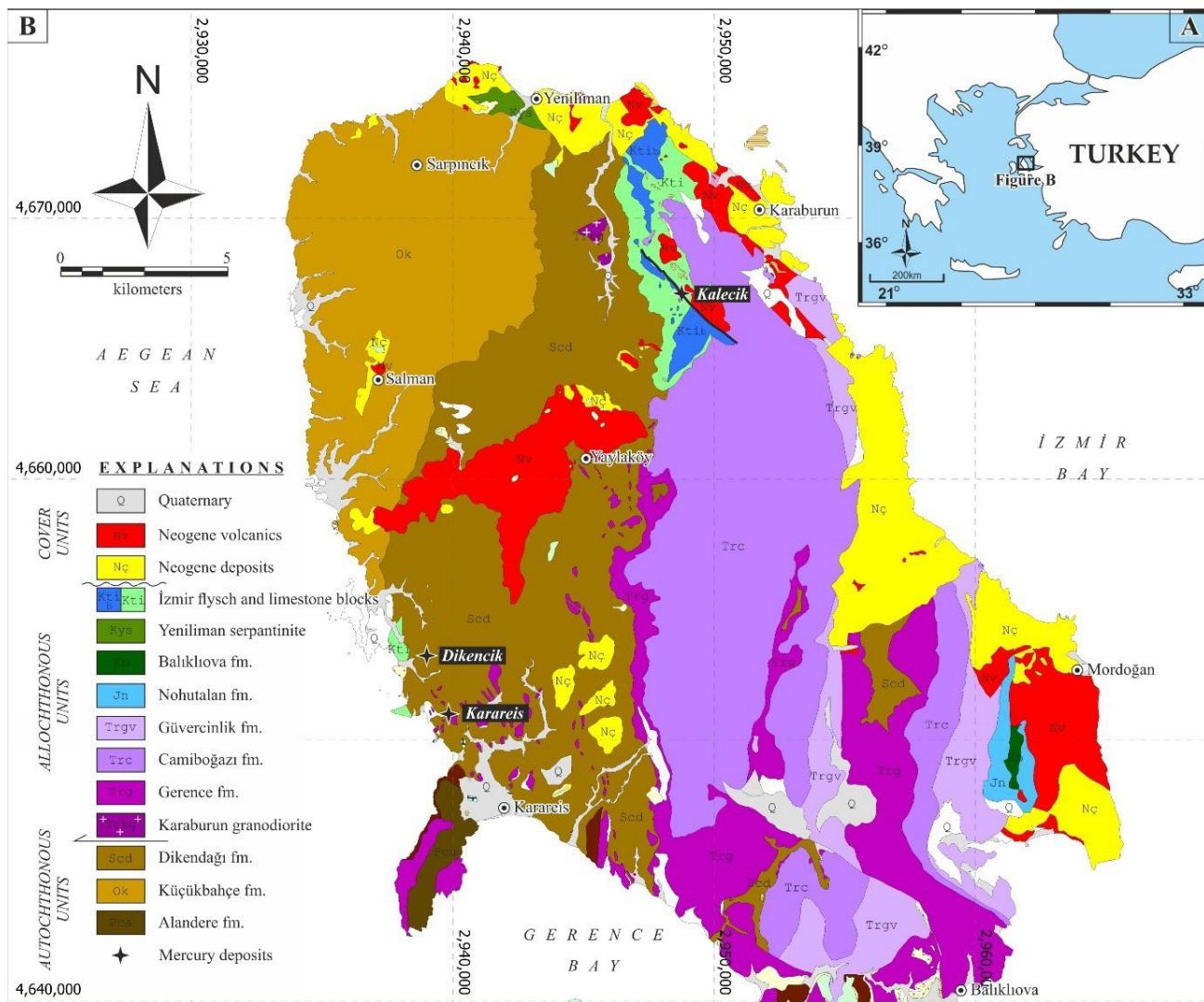
Painting technique	Sample ID	Site	Cinnabar grain size diameter						Average particle size (μm)	Average intergranular space (μm)
			<1 μm (%)	1-2 μm (%)	2-3 μm (%)	3-5 μm (%)	5-10 μm (%)	>10 μm (%)		
1-Agora	EPHCIN-28	Agora	n.d.	n.d.	1.00	23.0	56.0	20.0	8.25	4.50
2-TH1	EPHCIN-24	Terrace House 1	3.00	19.0	14.0	24.0	32.0	8.00	4.70	3.10
3-TH2A	EPHCIN-06	Terrace House 2, Room 36	n.d.	43.0	15.0	20.0	31.0	6.00	3.50	7.00
4-TH2B	EPHCIN-25	Room 45, Taberna adjacent to living unit 7 of Terrace House 2	3.00	9.00	12.0	18.0	44.0	15.0	6.70	5.00
Average across samples			1.50	17.8	10.5	21.3	40.8	12.3	5.79	4.90

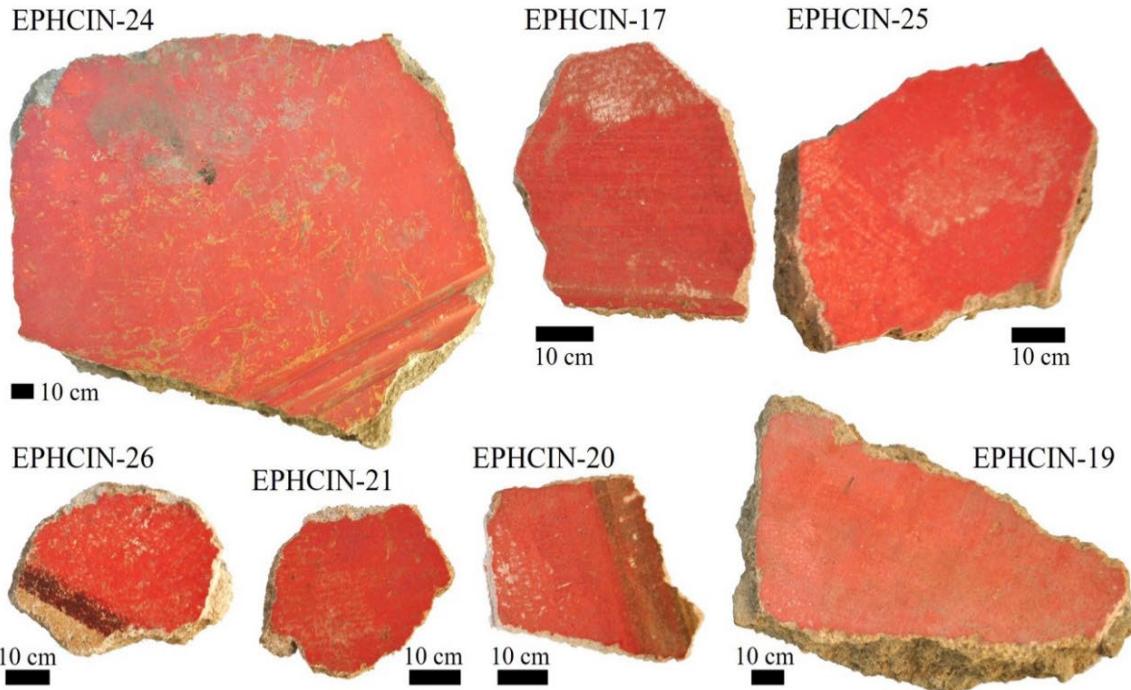
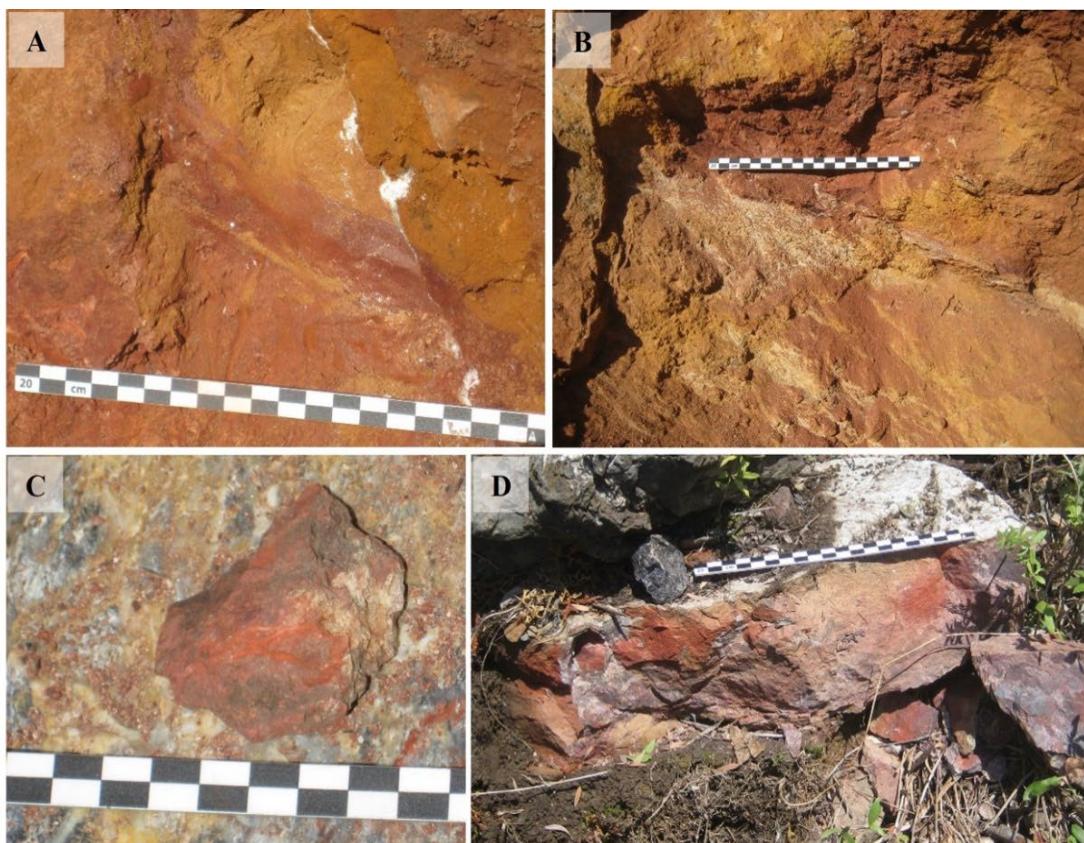
2 **Notes:** Tabular display of the information given in Fig. 1, with the additional information of the average cinnabar intergranular space; this is based on the
3 analysis of all cross-sectioned samples even though only the four shown in Fig. 1 are mentioned here as examples.

4 **Table 2.** Isotope ratio data for cinnabar samples from Ephesian wall painting fragments and cinnabar ore from the Karaburun Peninsula, Turkey

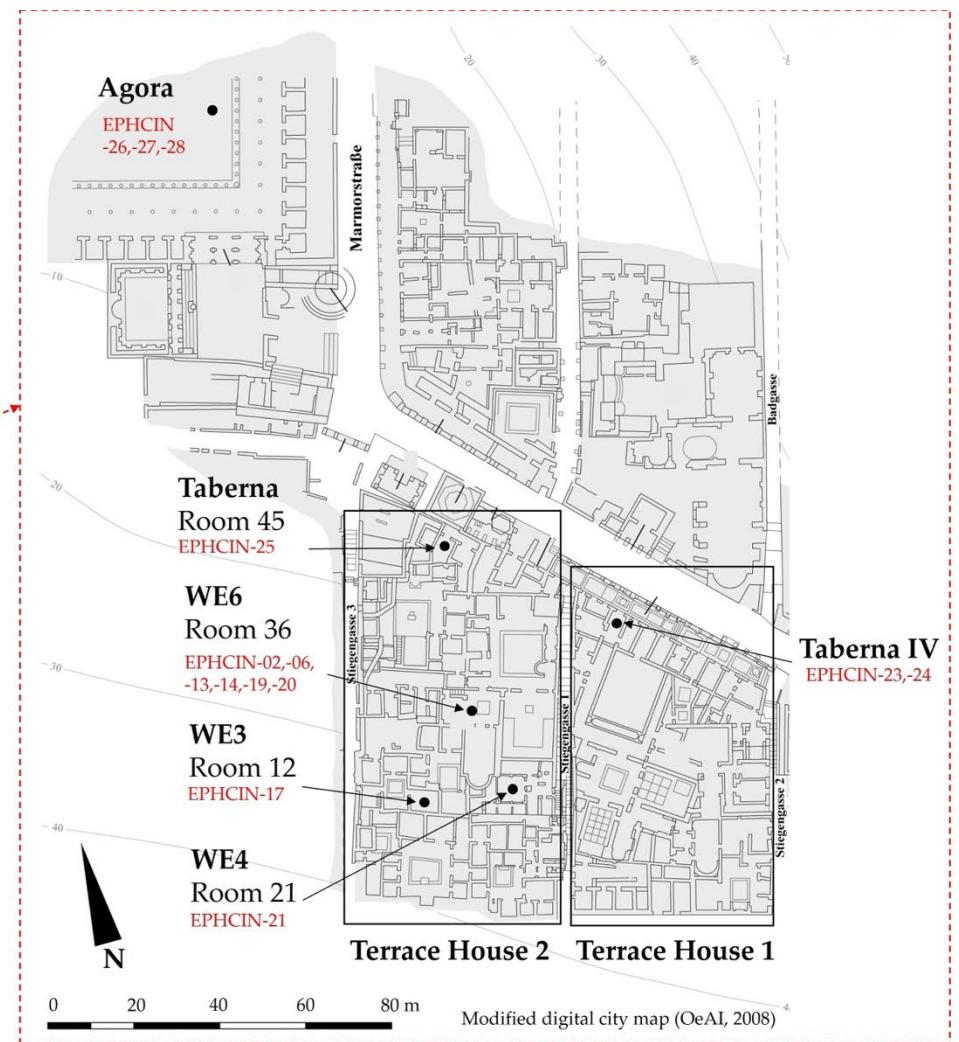
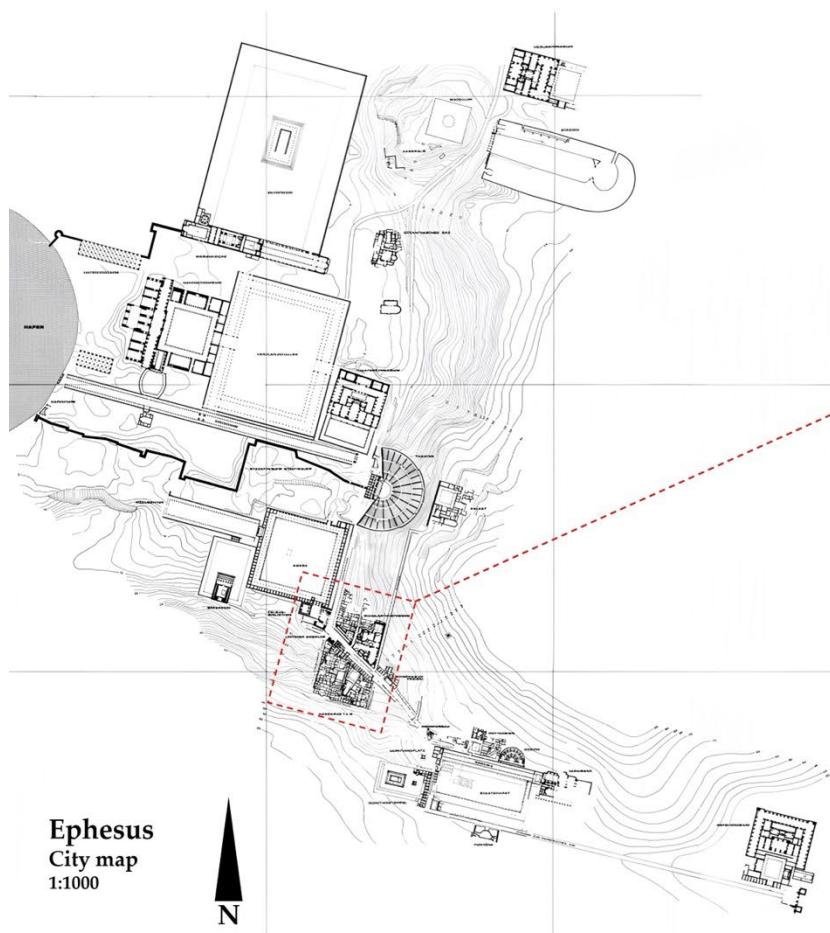
Sample ID	$^{206}\text{Pb}/^{204}\text{Pb}$	$^{207}\text{Pb}/^{204}\text{Pb}$	$^{208}\text{Pb}/^{204}\text{Pb}$	$^{207}\text{Pb}/^{206}\text{Pb}$	$^{208}\text{Pb}/^{206}\text{Pb}$	$\Delta^{199}\text{Hg}$ $\delta^{199}\text{Hg}$	$\Delta^{200}\text{Hg}$ $\delta^{200}\text{Hg}$	$\Delta^{201}\text{Hg}$ $\delta^{201}\text{Hg}$	$\Delta^{202}\text{Hg}$ $\delta^{202}\text{Hg}$
Cinnabar, Ephesian wall painting fragments	EPHCIN-02 ¹	18.711 ± 0.001	15.684 ± 0.001	38.880 ± 0.002	0.83822 ± 0.00001	2.07791 ± 0.00004			
	EPHCIN-06 ¹	18.771 ± 0.001	15.683 ± 0.001	38.819 ± 0.002	0.83549 ± 0.00002	2.06797 ± 0.00004	-0.13 ± 0.04	-0.03 ± 0.06	-0.10 ± 0.05
	EPHCIN-13 ¹	18.686 ± 0.001	15.671 ± 0.001	38.818 ± 0.002	0.83865 ± 0.00001	2.07744 ± 0.00003	0.15 ± 0.05	0.54 ± 0.06	0.75 ± 0.05
	EPHCIN-14 ¹	18.688 ± 0.001	15.671 ± 0.001	38.817 ± 0.002	0.83853 ± 0.00001	2.07707 ± 0.00004	-0.09 ± 0.06	0.01 ± 0.07	-0.13 ± 0.06
	EPHCIN-17 ^{2*}	18.818 ± 0.001	15.684 ± 0.001	38.864 ± 0.002	0.83348 ± 0.00002	2.06529 ± 0.00004	0.07 ± 0.08	0.32 ± 0.11	0.34 ± 0.10
	EPHCIN-19 ^{1*}	18.624 ± 0.001	15.672 ± 0.001	38.824 ± 0.002	0.84150 ± 0.00002	2.08457 ± 0.00004			0.62 ± 0.10
	EPHCIN-20 ^{1*}	18.613 ± 0.001	15.670 ± 0.001	38.805 ± 0.002	0.84183 ± 0.00002	2.08479 ± 0.00005	-0.13 ± 0.04	0.05 ± 0.05	-0.16 ± 0.07
	EPHCIN-21 ³	18.756 ± 0.001	15.681 ± 0.001	38.933 ± 0.003	0.83603 ± 0.00001	2.07582 ± 0.00005	0.07 ± 0.03	0.45 ± 0.05	0.43 ± 0.04
	EPHCIN-23 ⁴	18.385 ± 0.001	15.648 ± 0.001	38.474 ± 0.002	0.85113 ± 0.00001	2.09270 ± 0.00004			
	EPHCIN-24 ⁴	18.245 ± 0.001	15.635 ± 0.001	38.266 ± 0.002	0.85695 ± 0.00003	2.09733 ± 0.00006	-0.11 ± 0.05	-0.02 ± 0.04	-0.11 ± 0.07
Karaburun cinnabar ore	EPHCIN-25 ⁵	18.526 ± 0.001	15.656 ± 0.001	38.559 ± 0.002	0.84507 ± 0.00001	2.08135 ± 0.00004	0.08 ± 0.05	0.36 ± 0.04	0.46 ± 0.08
	EPHCIN-26 ⁶	18.784 ± 0.001	15.685 ± 0.001	38.958 ± 0.002	0.83504 ± 0.00002	2.07408 ± 0.00003	-0.40 ± 0.06	-0.02 ± 0.04	-0.33 ± 0.09
	EPHCIN-27 ^{6*}	18.768 ± 0.001	15.683 ± 0.001	38.942 ± 0.002	0.83563 ± 0.00001	2.07490 ± 0.00004	-0.13 ± 0.07	0.52 ± 0.06	0.48 ± 0.09
	EPHCIN-28 ⁶	18.760 ± 0.001	15.682 ± 0.001	38.907 ± 0.002	0.83591 ± 0.00001	2.07389 ± 0.00004	-0.31 ± 0.03	-0.04 ± 0.05	-0.21 ± 0.08
	EPHCINO-03 _D	19.034 ± 0.001	15.704 ± 0.001	38.986 ± 0.002	0.82501 ± 0.00001	2.04821 ± 0.00003	-0.05 ± 0.03	0.01 ± 0.05	-0.07 ± 0.03
	EPHCINO-04 _{D*}	18.963 ± 0.001	15.701 ± 0.001	38.953 ± 0.002	0.82800 ± 0.00001	2.05414 ± 0.00004	-0.04 ± 0.04	0.04 ± 0.05	-0.03 ± 0.06
	EPHCINO-05 _{K*}	19.202 ± 0.001	15.706 ± 0.001	38.623 ± 0.002	0.81800 ± 0.00001	2.01149 ± 0.00004			
	EPHCINO-08 _K	19.464 ± 0.001	15.721 ± 0.001	38.735 ± 0.002	0.80772 ± 0.00001	1.99012 ± 0.00004	-0.15 ± 0.11	0.00 ± 0.07	-0.11 ± 0.05
	EPHCINO-11 _K	19.332 ± 0.001	15.721 ± 0.001	38.746 ± 0.002	0.81320 ± 0.00001	2.00423 ± 0.00004	-0.20 ± 0.13	-0.12 ± 0.10	-0.29 ± 0.08
	EPHCINO-12 _K	19.130 ± 0.001	15.710 ± 0.001	38.692 ± 0.002	0.82125 ± 0.00001	2.02261 ± 0.00003	-0.19 ± 0.03	0.04 ± 0.06	-0.23 ± 0.08
BHVO-2	BHVO-2	18.453 ± 0.001	15.669 ± 0.001	38.626 ± 0.003	0.84915 ± 0.00002	2.09321 ± 0.00005	-0.15 ± 0.06	0.03 ± 0.03	-0.21 ± 0.06
	BHVO-2**	18.62 ± 0.05	15.53 ± 0.05	38.21 ± 0.04			0.05 ± 0.06	0.42 ± 0.04	0.38 ± 0.06

5 **Notes:** Pb and Hg isotope ratios ($\pm 2\text{SE}$) for samples of Terrace House 2: ¹Living unit 6 (Room 36a), ²Living unit 3 (Room 12), ³Living unit 4 (Room 21), ⁵

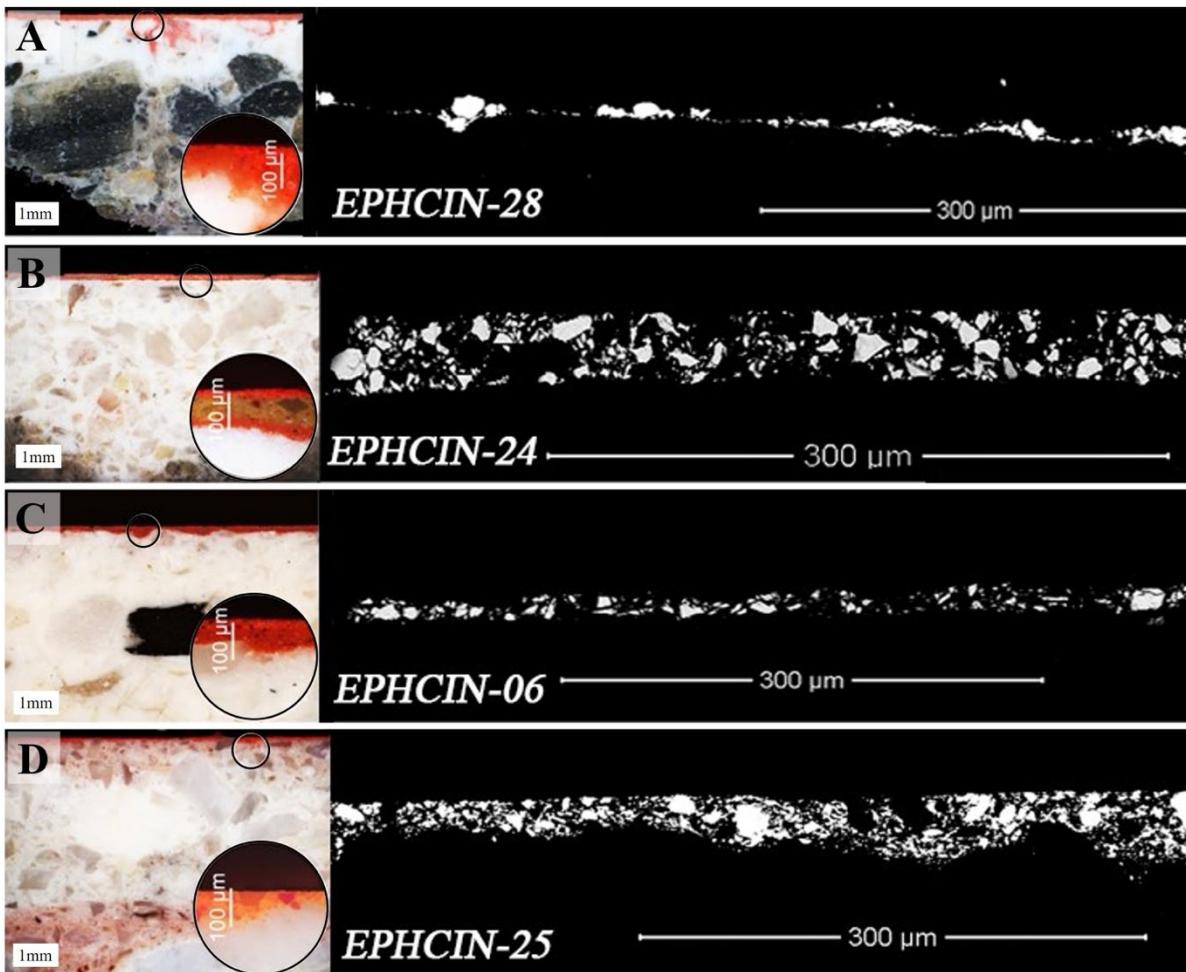

6 Room 45 (Taberna), Terrace House 1: ⁴Taberna IV, and the ⁶Agora; Karaburun ores EPHCINO-03_D and -04_D, and EPHCINO-05_K, -08_K, -11_K and -12_K are



7 from the Dikencik and Kalecik deposits, resp. (Fig. 1); *mean values (n=2); ** Pb isotope ratio data for reference material BHVO-2 ($\pm 2\text{SD}$; Weis et al., 2005)

8 **Table 3:** Painting technique and cinnabar source groupings with the archaeological context of the Ephesian wall painting fragments analyzed

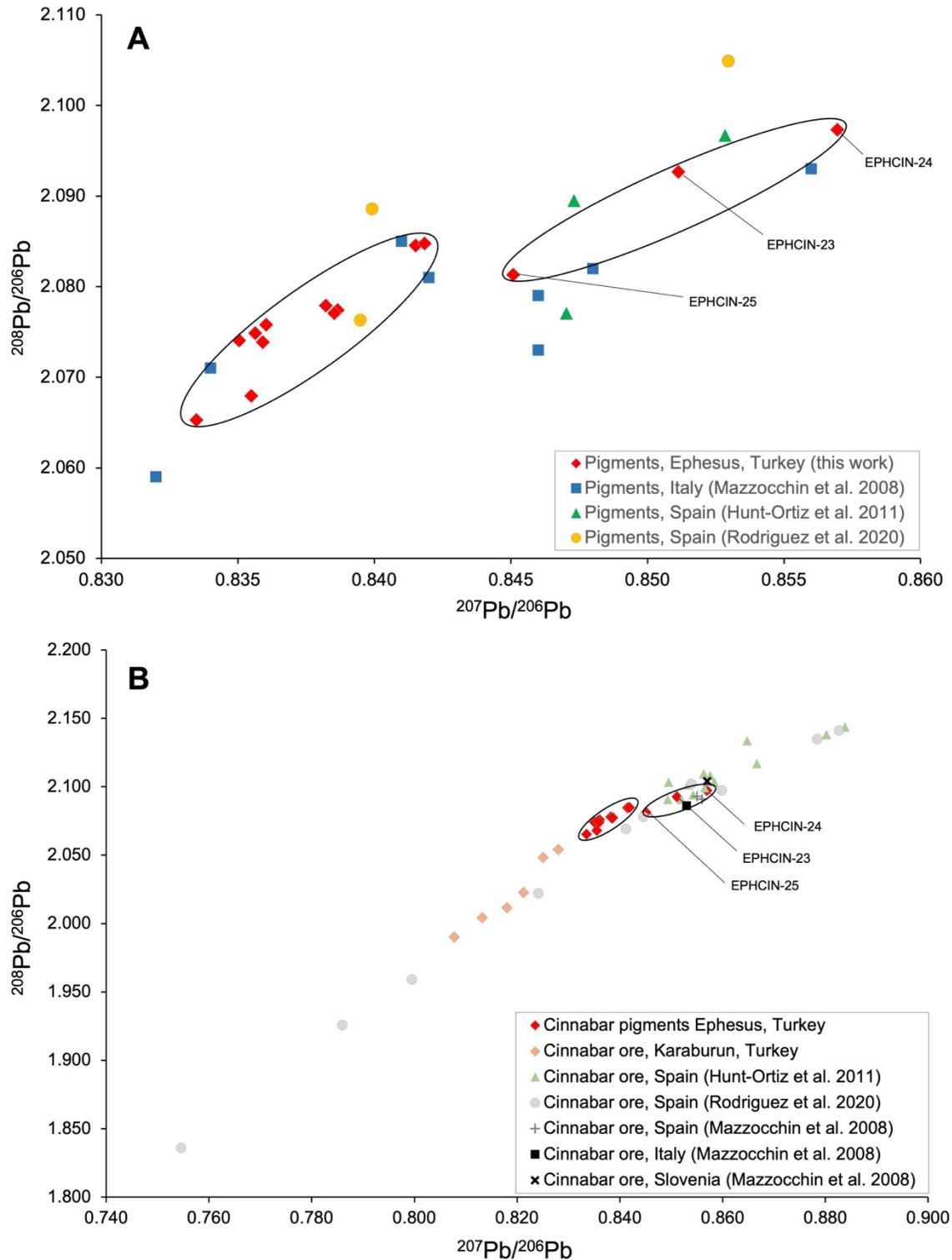


	SEM micrograph	Cross section	Painting technique Sample ID	Geochemistry-based groupings LID – Pb isotope ratio data HgID – Hg isotope ratio data	Archaeological context
Cinnabar layer with little to no ochre admixing	Thin, compact cinnabar layer on red ochre	Thin, compact cinnabar only layer on ochre, rough intonaco	1–Agora EPHCIN-26, -27, -28	All Agora samples have similar LID; all within the range of TH2 samples, overlapping with Turkish / Balkan references (Fig. 2); EPHCIN-26 (and -25): perhaps different heat treatment compared to other samples (Fig. 3A)	Tetragonos Agora Southern portal Part of the Roman agora, 1 st –3 rd c. CE ¹
	Relatively dense cinnabar layer with little to no ochre admixing	Cinnabar mixed with some ochre, on yellow and red ochre layer	2–TH1 EPHCIN-23, -24	Different from other samples (Fig. 3); mixed signal or unknown source? But similar heat processing as TH2 samples (Fig. 3A)	Terrace House 1 (TH1), Taberna IV Levelling layer with wall painting fragments dated to 1 st c. CE ² ; samples likely from a reconstruction phase (~17–140 CE) ³
		Thick cinnabar only on intonaco layer tinted with red ochre	4–TH2B EPHCIN-25	Different from other samples, but better overlap with Balkan reference LID (Fig. 3); different heat treatment (Fig. 3A)	Terrace House 2 (TH2), Room 45 Taberna adjacent to and at times part of Living Unit 7; up to eight painting phases <i>in situ</i> and dated between the 1 st –3 rd c. CE ⁴
Cinnabar mixed with ochre	Thin cinnabar layer with larger spacing of grains (due to ochre admixing)	<i>Cinnabar mixed with ochre</i> over red ochre	3–TH2A EPHCIN-02, -06, -13, -14, -19, -20	Larger cluster of TH2 samples, overlapping with Turkish and Balkan reference LID (Fig. 2); similar material heat processing as TH1 sample (Fig. 3A)	TH2, Living Unit 6, Room 36 Living area of ~650 m ² ; Room 36 is part of representative rooms, cinnabar pigment was likely used for the upper floor and pertains to an earlier painting phase (I–III) ^{5*}
			EPHCIN-21		TH2, Living Unit 4, Room 21 Living area of ~460–360 m ² , Room 21 is the Peristyle (~160 m ²) ⁶ ; the sampled wall painting fragment likely pertains to the Peristyle upper floor of Room 21, dated to building phase II ^{7*}
			EPHCIN-17		TH2, Living Unit 3, Room 12 Living area of ~260 m ² , Room 12 is the Muse room, wall paintings pertain to building phase IV ⁸

9 **Notes:** Scherrer and Trinkl (2006: 11); ² Lang-Auinger (1996: 121–123); ³ Lang-Auinger and Otschar (1996); ⁴ Zimmermann (2016a: 731); ⁵ Zimmermann (2014: 287, 309, 323); ⁶ Thür (2005: 51); Zimmermann (2005: 106); ⁷ Zimmermann (2005: 110, 128–129); ⁸ Zimmermann (2016b: 82); * building phases in Terrace House 2 are grouped as **I** until mid-1st c. CE, **II** ~120 CE, **III** mid-2nd c. CE, and **IV** early 3rd c. CE (Zimmermann, 2005).



19
20 **Figure 2.** Field photographs at sites where cinnabar was collected at Kalecik (A-B) and Dikencik (C-D)
21 (Photos: L.V. Sørensen, B. Çakmakoglu, C. Helvacı), and examples of wall painting fragments where
22 samples were collected (Photos: A. Rodler-Rørbo) (2-column fitting image)

Figure 3. Site and sample location maps, incl. the Agora, Terrace House 1 and 2, with the collected samples (EPHCIN-#, see Tab. 3)
(2-column fitting image)

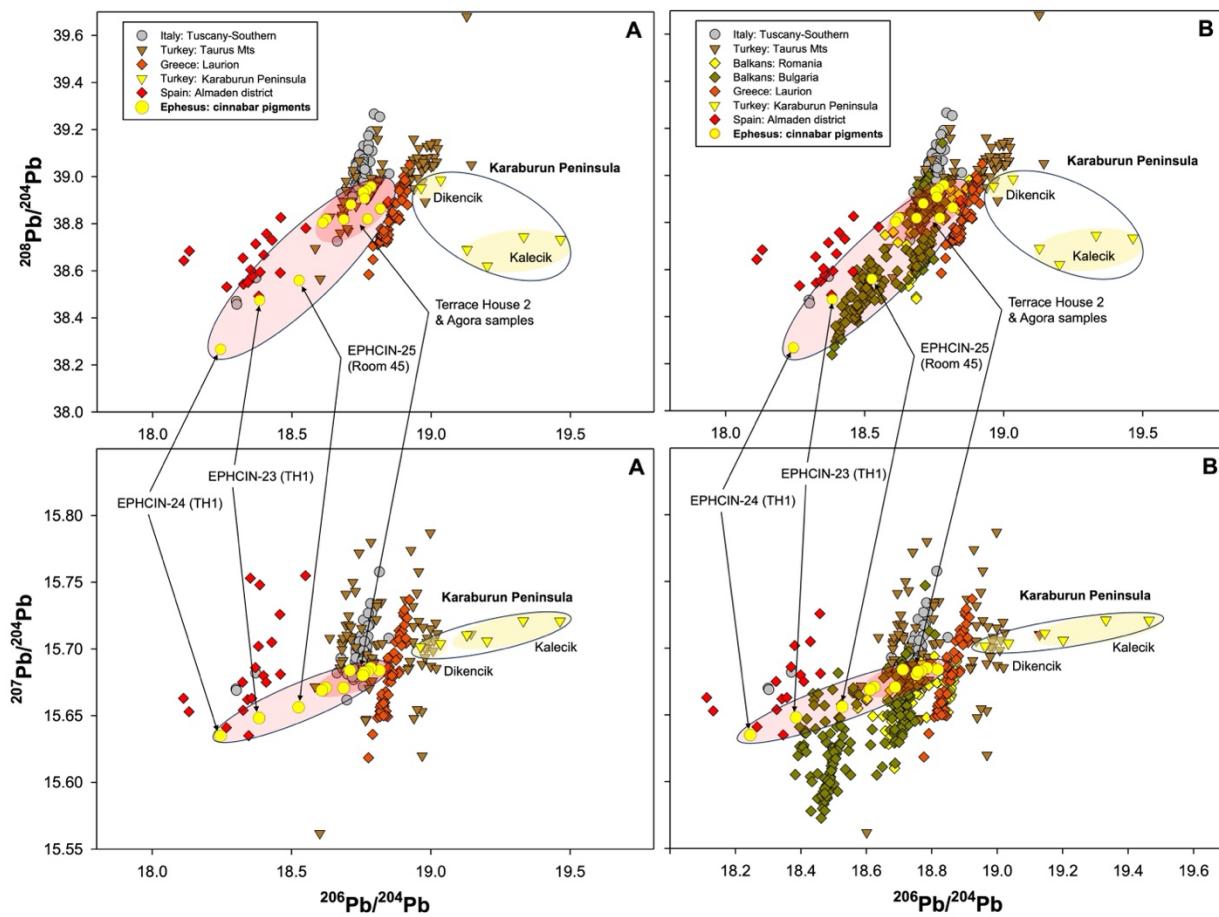


28

29 **Figure 4.** *Left*, Cross-section images of four wall painting fragments from the subject area displaying
 30 different painting techniques with corresponding over-exposed SEM micrographs showing grain size
 31 distribution of cinnabar only (ochre not visible) (Tab. 1), *to the right*: **A**) Technique 1 – ‘Agora’ (sample
 32 EPHCIN-28): *left*, thin, compact cinnabar layer on ochre applied *a secco* without polishing, rough intonaco;
 33 *right*, thin, compact cinnabar layer over red ochre; **B**) Technique 2 – ‘TH1’ (Terrace House 1, sample
 34 EPHCIN-24): *left*, cinnabar mixed with some ochre, over yellow ochre, red ochre; layers *right*, relatively
 35 dense cinnabar pigment layers with some ochre admixing; **C**) Technique 3 – ‘TH2A’ (Terrace House 2,
 36 Room 36, sample EPHCIN-06): *left*, cinnabar mixed with ochre over red ochre; *right*, a thinner cinnabar
 37 layer displaying larger spacing of grains (attributable to ochre mixed with the cinnabar); **D**) Technique 4 –
 38 ‘TH2B’ (Room 45, Taberna adjacent to Living Unit 7 of Terrace House 2, sample EPHCIN-25): *left*, thick
 39 cinnabar-only on an intonaco layer tinted with red ochre; *right*, the thick, dense layer of cinnabar pigment
 40 grains.

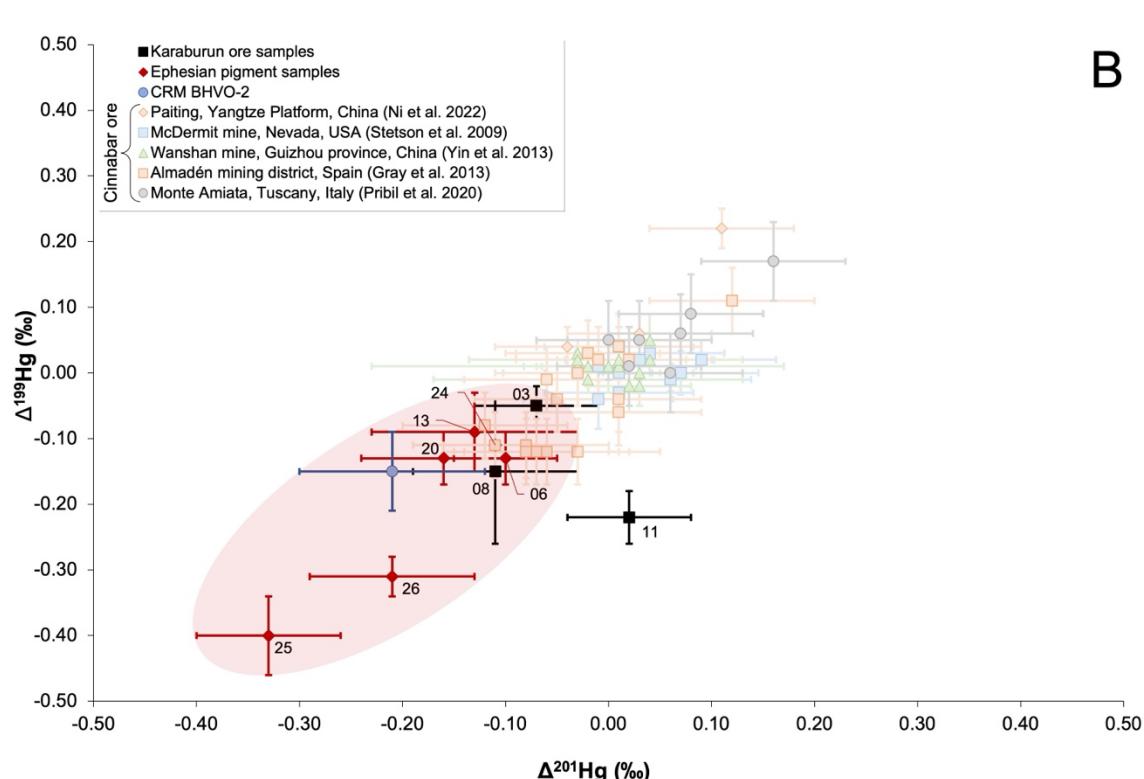
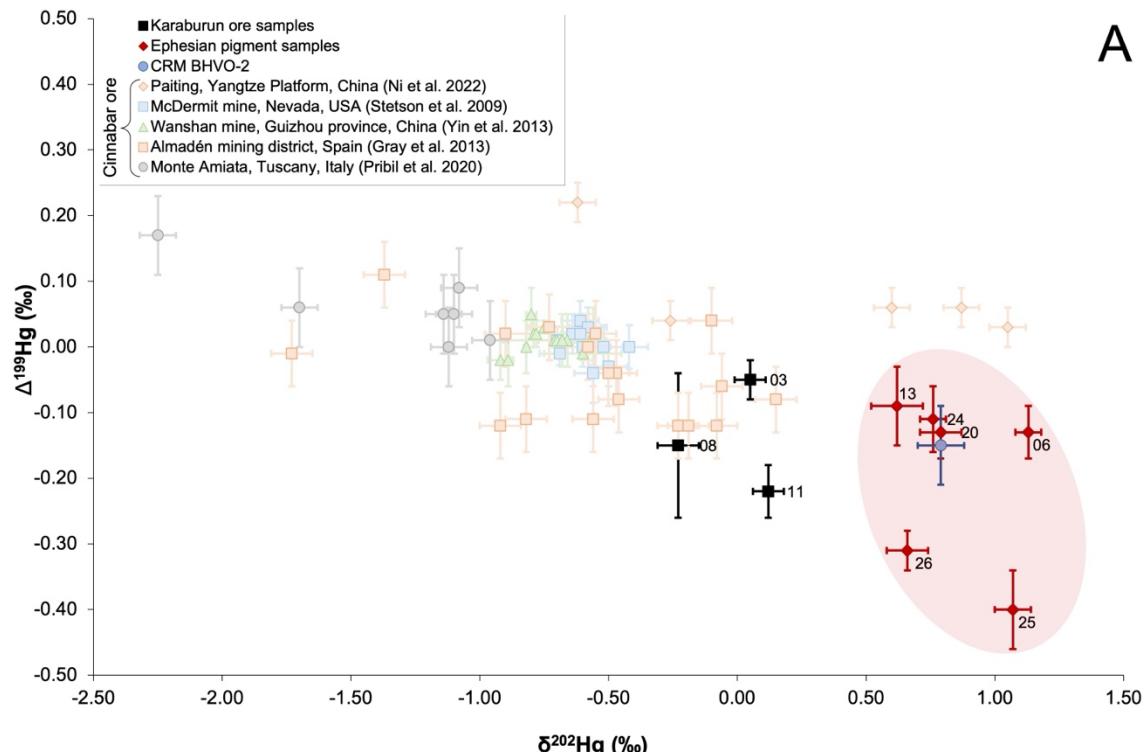
41

42 (2-column fitting image)



43

44



45 **Figure 5.** Pb isotope ratios of **A** cinnabar pigment samples from Ephesus (this work; ellipse: Terrace House
 46 2 and Agora samples), Italy and Spain, and **B** cinnabar ore samples from Karaburun (Turkey), Spain, Italy,
 47 and Slovenia.

48 (2-column fitting image)

49
50 **Figure 6.** Pb isotope ratios for wall painting samples from Ephesus, ore samples from the Karaburun
51 Peninsula and reference data for **A** Italy, Turkey, Greece, and Spain, **B** as well as with Balkan reference
52 data from the AAcP database.

53
54 (2-column fitting image)

Figure 7. Hg isotope ratio data (A $\Delta^{199}\text{Hg}$ vs $\delta^{202}\text{Hg}$, B $\Delta^{199}\text{Hg}$ vs $\Delta^{201}\text{Hg}$) for wall painting samples from Ephesus, ore samples from the Karaburun Peninsula, and cinnabar ore samples from Italy (Pribil et al., 2020), Spain (Gray et al., 2013), China (Yin et al., 2013; Ni et al., 2022), and USA (Stetson et al., 2009). (2-column fitting image)