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ABSTRACT

Ephesus was an important harbor city that flourished during the Roman period and ancient texts mention
Almadén in Spain and the Cilbian fields of Ephesus as important cinnabar sources in antiquity. This work
investigates whether imported cinnabar was used and whether this could be related to changes in painting
activities over time. Microscopic analysis indicates a consistent preparation of cinnabar, hinting at a
uniform source material quality or processing technique. However, the use of cinnabar varies among the
architectural structures studied, indicating a plurality of painting techniques. A few of the analyzed cinnabar
samples overlap with Turkish- and Balkan reference Pb isotope ratios; three samples from tabernas,
however, deviate from this. The Hg isotope ratios reveal that cinnabar from carbonate-hosted deposits was
likely used, and that processing of cinnabar included heating as suggested by ancient texts. Most notably,
a correlation exists between the geochemical data and the painting technique — shifts in sourcing and
cinnabar usage are potentially assignable to building chronology and/or usage. Through the lens of material
provenance and processing, Ephesian cinnabar brings the organization of pigment trade into focus.

Keywords: Microscopic analysis, Pb isotope ratios, Hg isotope ratios, wall paintings, pigment trade

1. INTRODUCTION

Various types of mineral pigments were used in Roman art — some of these materials might have been
readily accessible, while others were most likely traded. Among the rarest and most highly valued materials
used as pigment in antiquity was cinnabar (0-HgS), which was known as uiviov in Greek and minium in
Latin (inter al. Theophrastus De Lap. 58; Vitruvius De Arch. 7.8.1-7.9.6; Pliny HN 33.37-40; Dioscorides
MM 5.94 in Beck 2005, 374; Becker, 2022). These terms should not be confused with Indian cinnabar (or
dragon’s blood (Indica cinnabaris) and minium secundarium (or red lead, which was also known as cerussa
usta). Despite the widespread use of pigments throughout history (e.g., Hunt-Ortiz et al., 2011; Cooke et
al., 2013; Emslie et al., 2015) and the particularly high demand for various colorants during the Roman
period, as evidenced by the rich wall paintings found in both private and public buildings (e.g., Esposito,
2017; Slavdori and Sbrolli, 2021), there is limited knowledge about the organization of pigment
production/processing and trade. This is puzzling, considering that ancient authors such as Theophrastus
(c. 371-287 BCE) in De Lapidibus (De Lap.), Vitruvius (c. 80/70-15 BCE) in De Architectura (De arch.),
Pliny the Elder (23/24-79 CE) in Historia Naturalis (HN), and Dioscorides (c. 40-90 CE) in De Materia
Medica (MM), highlight the significance of provenance for the value of ancient pigments. The Cilbian fields
of Ephesus and the Almadén mines in Spain were mentioned as the most important cinnabar sources during
the Roman period (Gliozzo, 2021); whether Monte Amiata in Grosseto (Italy) or Idrija in Slovenia have
been exploited during the Roman period is not certain (Spangenberg et al., 2010). Furthermore, several
surveys have already investigated the geology and geochemistry of larger relevant ore bodies in Turkey
(e.g., Yildiz and Bailey, 1978; Gemici, 2008; Sayre et al., 2001) and mention for example the Tmolus Mt.
near Sardis (Foss and Hanfmann, 1975) or cinnabar outcrops near Selguk (Schmiesser, 1906). Cinnabar can
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occur as a vein mineral, in strata-bound deposits such as in Almadén, Spain, or as secondary mineral in
gossans such as in Las Cruces, Spain (e.g., Higueras et al., 2005; Palero-Fernandez et al., 2015; Yesares et
al., 2017). While ancient texts provide highly valuable clues for evaluating cinnabar provenance,
archacometric analysis — drawing on geological, mineralogical-petrographic and geochemical data — can
provide crucial information on material provenance; together these approaches have the potential of
providing a way forward for understanding the organization of pigment trade and production networks. The
city of Ephesus (present-day Selguk, south of izmir, Turkey) developed near the mouth of the Kiigiik
Menderes River on the west coast of Anatolia (for a geochemical discussion of the Ephesian harbor, see
Delile et al., 2015). During the Hellenistic and Roman periods, Ephesus emerged as an important trading
hub of Asia Minor and the Aegean area. In 188 BCE, Ephesus became part of the Pergamene Empire,
leading to significant investments in the reorganization of the harbor and urbanization of Ephesus, which
were the foundations for its emergence as an exceptionally important and influential commercial center of
the ancient Mediterranean world and its success during the Roman period (Ladstitter, 2016). In 133 BCE,
Ephesus became part of the Roman Republic and the capital of the province Asia Minor. Already during
the 2™ ¢. BCE, local artisans began to produce ceramics such as table ware and lamps for exportation
(Ladstétter, 2016; Fragnoli et al., 2022). However, despite the significance of Ephesus in the production of
ceramic lamps during the Hellenistic period, pottery workshops from this period have not been found so far
(Fragnoli et al., 2022). Ephesus was a thriving trade center and a pigment consumer, which raises the
question whether this site only imported pigments, or whether processing also occurred here. Currently
there is no evidence of pigment production or processing workshops in or near Ephesus, however, this does
not necessarily mean that no (local) raw materials were processed for use as painting material. Only a few
pigment workshops are currently known for the Hellenistic and Roman periods and their trade networks
are still not fully understood. These include sites in the Bay of Naples, Italy (1* c. BCE; e.g., Lazzarini and
Verita, 2015), in Memphis, Egypt (1% c. BCE; e.g., Nicholson, 2003), and the late Hellenistic multi-crafting
workshop of Kos, Greece (Kostomitsopoulou Marketou, 2019).

Identifying the material quality, processing and provenance of cinnabar can therefore enhance our
understanding of ancient pigment workshop practices and the reconstruction of trade routes (e.g., Hunt-
Ortiz et al., 2011; Prieto et al., 2015; Rodriguez et al., 2020; Minami et al., 2021). For example, recently,
the provenance of cinnabar used in wall paintings in the Roman city of Averticum (Avenches, Vaud,
Switzerland) has been investigated suggesting that cinnabar was possibly from the Almadén mining district
in Spain (Spangenberg et al., 2010). The analysis of pigment raw materials applies
mineralogical/petrographic and geochemical approaches to evaluate possible raw material sources (e.g.,
Spangenberg et al., 2010; Hunt-Ortiz et al., 2011; Rodler et al., 2017). Geochemical approaches have
included lead (Pb) and/or sulphur (S) isotopic analysis as well as mercury (Hg) isotopic analysis (recently
reviewed by Gliozzo, 2021). The latter has been used for evaluating which cinnabar deposits were exploited
during Andean prehistory (Cooke et al., 2013). Pb is a trace element in sulphur-bearing minerals such as
cinnabar, and Pb isotopic analysis has long been used for the provenance study of various inorganic artifacts
(e.g., Stos-Gale and Gale, 2009; Artioli et al., 2016). Lead isotopic analysis makes use of the four isotopes
of lead 2**Pb, 2°°Pb, 2°7Pb and 2**Pb that have a natural relative abundance of ca. 1.4 %, 24.1 %, 22.1 % and
52.4 %, respectively (Faure and Mensing, 2005). Of these, only 2**Pb is not radiogenic and its absolute
abundance has been stable since the formation of the Earth, while the other three (***Pb, *’Pb and 2%*Pb)
are formed as end products of radioactive decay from three nuclides, 2**U, 23U and 2*2Th, respectively. The
three ratios of each radiogenic isotope to ?*Pb significantly aid in determining the geochronological age of
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ore minerals from different deposits. Mercury (Hg) has seven stable isotopes (196—204 amu), which can be
affected by both mass-dependent fractionation (MDF, expressed as 8?*?Hg) and mass-independent
fractionation (MIF; expressed as A!'”Hg and A*'Hg). The MDF of Hg is known to occur during
reduction—oxidation reactions, biological cycling, and volatilization of Hg (Blum and Bergquist, 2007).
When Hg isotopes undergo MIF, even- and odd-mass-numbered isotopes fractionate from each other; this
is most pronounced during UV-induced photochemical reactions (Bergquist and Blum, 2007). Recent
research explored the sources of pre-Inca and colonial archaeological cinnabar, as well as the Hg pollution
preserved in lake sediment cores in Peru and the Galapagos Islands (Cooke et al., 2013). This research
suggested that cinnabar ores from the largest cinnabar-bearing district in Central and Southern America
(Huancavelica, Peru) were used. In contrast, cinnabar for Inca artifacts originated from a distinctly different
source. Such evaluations can complement the provenance analysis of ores used to manufacture
archaeological artifacts.

The aim of this study was to analyze the origin and use of cinnabar in Roman wall paintings found in both
private and public houses at Ephesus of the mid-1* to the early 3™ century CE through mineralogical-
petrographic and geochemical analyses. This aimed to shed light on changes in material supply and
processing, and with this, painting activities organization across different architectural units (likely in a
diachronic approach). The evaluation of the origin of the cinnabar used will be aided by making
comparisons to available reference data and newly acquired information on cinnabar deposits from the west
coast of Turkey, specifically from the Karaburun Peninsula. Overall, this work contributes to the discussion
of the organization of pigment trade and processing practices in antiquity.

2. MATERIALS AND METHODS
2.1. Geological materials

The Karaburun cinnabar mining district consists of three closely associated deposits: Kalecik, Dikencik and
Karareis (Fig. 1). These deposits are in the northern part of the Karaburun Peninsula, which is west of Izmir
and north of Ephesus. This study includes six samples from these deposits: four from Kalecik and two from
Dikencik (examples can be seen in Fig. 2).

Mercury deposits occur in a large variety of rock types, often associated with structural discontinuities. This
is also the case for the Karaburun deposits, which can be observed in various geological formations. The
oldest rock units in the northern part of the Karaburun Peninsula are represented by relatively autochthonous
successions (~495-292 Ma) that consist of clastic sedimentary rocks (Kiigiikbah¢e and Dikendagi
Formations) at the western side and various tectonostratigraphic allochthonous units (~245-65 Ma)
consisting mainly of carbonates (Gerence, Camibogazi, Giivercinlik Formations) and flysch deposits (izmir
flysch and Yeniliman serpentinite) at the eastern side (Cakmakoglu and Bilgin, 2006). These units are
unconformably covered by younger rock units of Neogene and Quaternary age (~24 Ma—present) and
include volcanic and sedimentary successions (Helvaci et al., 2009; Cakmakoglu et al., 2013). The ore
deposits are epithermal and primarily contain mercury sulphide and quartz crystallized by rising
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hydrothermal solutions. The main ore mineral is cinnabar, which occurs as veinlets and fracture fillings in
silicified wall rocks (Yildiz and Bailey, 1978). The origin of the cinnabar occurrences is likely related to
Neogene volcanism (Y1ldiz et al., 1967; Helvaci et al., 2009), which introduced mercury-rich solutions into
the structural discontinuities of the various formations in the Karaburun Peninsula.

The Kalecik deposit is situated along a channelway through which the rising solutions flowed, following
the major northwest-trending fault cutting through the Izmir flysch rocks. The Izmir flysch rocks consist of
a sandstone-mudstone dominated matrix and radiolarites, basic volcanic rocks, ultrabasic rocks, and
limestone blocks. The ore was likely deposited just beneath the basalt flow unit (Y1ldiz and Bailey, 1978;
Helvaci et al., 2009). In the Dikencik deposit, cinnabar is observed in quartz veins along a fault that silicified
the Dikendag1 Formation, which includes sand-, silt- and mudstones with black cherts (lydite). The ore zone
is approximately 0.7 m wide and 75 m long and is unique in Turkey as it contains a considerable amount
of native mercury (Y1ldiz and Bailey, 1978). The Karareis deposit is very close to the Dikencik mine and
is present in the clastic sediments of the Dikendagi Formation. Due to the close proximity to the Dikencik
mine and due to cost considerations, no samples from the Karareis deposit were included in this study. The
geological materials were collected during fieldwork in 2013 (Fig. 1 and 2). Subsamples of these ore
samples were processed for isotopic analysis at Vrije Universiteit Brussel, Université Libre de Bruxelles,
and Ghent University, Belgium.

2.2. Archaeological materials

The samples drawn from upper painted layers of plasters (as well as cross-sections) were collected from
wall painting fragments stored in various boxes at the Ephesus Excavation House of the Austrian
Archaeological Institute of the Austrian Academy of Sciences, in Turkey. According to excavation notes,
these fragments belong to the southern portal of the Tetragonos Agora (referred to as Agora), as well as to
Terrace House 1 and Terrace House 2 (Fig. 3). Some excavation notes also attribute the fragments to
specific living units and rooms. However, precise contextualization and dating are challenging. This work
uses the excavation notes, descriptions of living units/rooms, and available information about building
periods, to provide all the available information about the samples. The samples were collected from wall
painting fragments from Terrace House 1 (Taberna IV), various living units and rooms of Terrace House 2
(including a taberna adjacent to Living Unit 7), and wall painting fragments from the Agora. However, the
samples were not collected from walls still in situ in various Roman houses introducing an uncertainty
regarding building structure and periods. These samples more generally represent cinnabar pigments from
Roman Ephesus.

The top layer of wall painting fragments (e.g., Fig. 2) was first analyzed using the handheld energy-
dispersive X-ray fluorescence (HH-EDXRF) spectrometer Olympus InnovX Delta Premium 6000 (Rh
anode, 8-40 keV, Si-drift detector, 4W X-ray tube, current range of 5-200 pA). Based on this semi-
quantitative in situ analysis of major and trace elements, wall painting fragments were selected on-site for
sample collection and further analysis.

The insula houses Terrace House 1 and Terrace House 2 were excavated amidst the remains of Ephesus.
Terrace House 1 covers an area of ~3,000 m? and consists of several living units, each containing multiple
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rooms. Terrace House 2 covers an area of ~4,000 m?; it consists of seven living units. Both insula houses
were built in the first century CE and subsequently destroyed during an earthquake in 262/263 CE (Thiir
and Rathmayr, 2014; Delile et al., 2015). The samples from Terrace House 1 pertain to Taberna IV.
Renovation works were undertaken in Terrace House 1 following an earthquake (2™ period, ~17-140 CE;
Lang-Auinger and Outschar, 1996). The samples are likely pertaining to this renovation period. The
samples from the Tetragonos Agora are from the Southern portal. The samples from Terrace House 2
pertain to the Taberna adjacent to Living Unit 7 (Room 45), as well as to Room 36 of Living Unit 6, Room
12 of Living Unit 3, and Room 21 of Living Unit 4. Wall paintings with cinnabar were discovered in Room
36 and 31b, leading to the proposal that these would represent an early painting phase (Thiir and Rathmayr,
2014). The building phases in Terrace House 2 are categorized into four groups spanning from the mid-1*
c. CE to the early 3" ¢. CE (Zimmermann, 2005).

Stratigraphic wall painting cross-sections, and scrapings of the top pigment layer, were collected with a
saw and scalpel, respectively. Of the wall painting fragments collected, ten (four from Terrace House 2,
two from Terrace House 1, and four from the Agora) were processed into polished petrographic cross-
sections to study plaster and paint layer stratigraphy. All samples were obtained from large sections of
monochrome red wall paintings, although occasionally other hues were visible (e.g., EPHCIN-20 and -26;
Fig. 2). The pigment powders were processed at Vrije Universiteit Brussel, Université Libre de Bruxelles,
and Ghent University for isotopic analysis.

2.3. Cross-sections: optical microscopy and SEM-BSE/EDX

To study the morphology of cinnabar pigment and its application on painted surfaces, the plaster fragments
processed as cross-sections were examined using both light microscopy and SEM-BSE/EDX. This
examination was conducted on unprocessed fragments as well as on those prepared as stratigraphic polished
cross-sections. For incident light microscopy, a Nikon SMZ 1500 stereomicroscope was used. In addition
to optical microscopy, SEM analysis was performed under high vacuum conditions, using an accelerating
voltage of 15-25 kV in back-scattered electron (BSE) detection mode on the cross-sections to provide a
clearer view of cinnabar morphology and its distribution within the samples. Cinnabar appears brighter in
SEM-BSE images relative to red and/or yellow ochre owing to the higher atomic mass; this was exploited
to create images in which only the cinnabar grains are visible by radically adjusting the brightness/exposure
until the ochre grains no longer are visible. This can be verified since there are corresponding light
microscopy images showing the location of both cinnabar and ochre pigment grains concentrated in
separate paint layers in the same samples; once the known ochre layers disappear from the image, it is
assumed that only cinnabar remains in the BSE image. This allows the exclusive study of cinnabar,
including quantitative grain size and distribution image analysis with Image-J freeware (which was also
performed on SEM-BSE images of the surface of painting fragments before processing into cross sections).
Semi-quantitative EDX analysis of 20 grains of cinnabar per sample, thus isolated, was performed in
support of the more precise and specific chemical analyses described below. The SEM-BSE/EDX analysis
was performed at the University of Applied Arts Vienna using a Quanta FEG 250 (FEI, U.S.A.) scanning
electron microscope coupled to the Octane Elect Plus EDX detector (Ametek/EDAX, U.S.A.) and equipped
with Genesis EDX Quant software.
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2.4. Isotopic analysis

Subsamples (a few mg) of the collected top pigment layers (consisting of cinnabar and red clays, see 3.1)
and the geological samples from the Karaburun deposits were fully digested in aqua regia under a 100-
class flow hood at the G-Time laboratories at Université Libre de Bruxelles. Lead was chromatographically
isolated from the digested geological and archaeological samples using the anion exchange Biorad™ AG1-
X8 resin (mesh size of 100-200 pm). Lead was separated from the matrix elements using a standard protocol
based on the use of HBr-HCl (Vanderstraeten et al., 2020). After the purified Pb eluent fractions were
obtained and evaporated to dryness, they were dissolved in 100 ul of concentrated HNOs, evaporated and
finally dissolved in 0.05% HNOs, for subsequent isotopic analysis using a Nu Plasma II (Nu II) high-
resolution multi-collector inductively-coupled-plasma mass-spectrometry (HR-MC-ICP-MS) instrument
from Nu Instruments at the Laboratoire G-time, Université Libre de Bruxelles.

A thallium standard solution (Alpha ICP standard) used as a dopant - with a known 2%T1/2*Tl isotope ratio
0f 2.3871 - was added to all sample and standard solutions. Solutions were prepared to obtain a Pb-T1 ratio
of 4 or 5, and a minimum signal of 100 mV in the axial collector for ***Pb (i.e., the concentrations were
controlled to get 200 ppb of Pb and 50 ppb of Tl). A combination of internal correction based on the
monitoring of the T1 isotope ratio and external correction with the standard measured in a sample-standard
bracketing (SSB) approach was applied to correct for the bias induced by instrumental mass discrimination
for the measured Pb isotope ratios. Isobaric interference on mass 204 due to potentially present 2**Hg was
monitored during acquisition by measuring the signal intensity at an m/z = 202 (Weis et al., 2006;
Vanderstraeten et al., 2020). While the Pb total beam was at ~8 V, the 2?Hg beam intensity remained below
3 mV. The corrected Pb isotope ratios are reported using the recommended values of Abouchami et al.
(2000) for the Pb isotopic reference material NIST SRM 981.

A solution of the isotopic reference material NIST SRM 981 Pb standard solution was routinely analyzed
before starting a sample batch, as well as between every two samples to assess precision and reproducibility;
repeated analyses of NIST SRM 981 provided mean values of 16.941 & 0.004, 15.501 + 0.005 and 36.716
+0.015 (2SD, n=26) for 2°°Pb/?**Pb, 27Pb/?*Pb and 2®*Pb/>**Pb, respectively. These results are in line with
the long-term repeatability of NIST SRM 981 values at the Laboratoire G-time of 16.9407 + 0.0036,
15.4968 + 0.0047 and 36.7163 £ 0.0121 (2SD, n=167; Vanderstracten et al., 2020) for 2°°Pb/**Pb,
207ppb/204Pb and 2°°Pb/***Pb, respectively, and with the data reported by (Weis et al., 2005). Six samples were
analyzed in duplicate (EPHCIN-17, -19, -20, -27; EPHCINO-04 and -05), and the data repeatability was
within two standard deviations (2SD) for all samples. The procedural blank contained a Pb amount of 5 ng
(n=1), which is significantly lower (<5%) than the sample Pb contents and thus not expected to affect the
Pb isotope ratio results. The blank contribution to individual samples was <0.1%.

The isotopic analysis of Hg was carried out using a Neptune MC-ICP-MS unit from Thermo Fisher
Scientific at Ghent University. Hg was introduced as Hg(0) generated via the selective reduction of Hg*"
with 3% SnCl,.2H>0 in 1.2 M HCI in an HGX-200 cold vapor and hydride generation unit (Teledyne Cetac
Technologies, USA). The Hg(0)-loaded carrier gas coming from the cold-vapor generation (CVG) unit was
admixed in a ‘T piece with a wet aerosol of Tl generated by using a 100 uL min™' concentric nebulizer
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mounted onto a dual (cyclonic and Scott-type) spray chamber (this setup is described in detail elsewhere:
Rua-Ibarz et al., 2016a,b, 2019; Bolea-Fernandez et al., 2019).

For instrumental mass discrimination correction, like for Pb isotopic analysis, a combination of internal
correction using T1 as admixed internal standard (NIST SRM 997 - T1) in a “Baxter approach” and external
correction (NIST SRM 3133 - Hg) with the SSB-approach was used (Baxter et al., 2006). An in-house
standard solution of Hg previously characterized for its isotopic composition was measured in-between the
samples for Quality Assurance and Quality Control (QA/QC). Using NIST SRM 3233 (Hg), the external
precision was calculated to be <0.12 %o (2SD; over a period of 18 months, n=250; Rua-Ibarz et al., 2016a).
This precision is sufficient for studying the natural isotope ratio variation of Hg. To obtain accurate results,
the Hg concentration and acid content of all samples and standards were matched within £ 10 %. Blank
subtraction was not applied because the effect of the blank was demonstrated to be negligible within the
experimental precision.

Hg isotope ratios are reported as delta (6**Hg) values. To separate the effect of MIF on the Hg isotope ratio
from that of MDF, the contribution caused by MDF is subtracted from the experimentally determined
0™*Hg values using the equations below. Both delta and capital delta values are reported in per mil (%o)
(Blum and Bergquist, 2007).

(“*Hg/***Hg)
0" Hg (%00) = ( xxxpy o 7198 ERES—— 1 |+ 1000
(***Hg/ H'g)msr SRM 3133

where xxx = 199, 200, 201 or 202 and NIST SRM 3133 is the Hg isotopic reference material.

AY¥Hg = 3'%°Hg — (82°2Hg = 0.2520)
A%YHg = 920yg — (92°2Hg * 0.7520)

3. RESULTS
3.1. Material processing, pigment layers and painting techniques

Visual examination of the wall painting fragments from Ephesus and optical microscopy (OM) shows a
similar appearance. However, a closer examination beneath the surface of the 10 cross-section samples
reveals technical details not immediately evident through visual inspection or non-invasive analysis. Figure
4 shows four examples of these cross-sections as examined by OM, along with SEM/EDX micrographs of
pigment layers with the exposure adjusted to highlight the cinnabar grains only. These images display four
different painting applications / cinnabar usage described below; each of the 10 cross sections fit into this
typology. They are:

Technique 1 (Agora) (samples EPHCIN-26, -28): Figure 4A shows a sample taken from the Tetragonos
Agora, where a thin (= 25 pm) layer of cinnabar was applied over an ochre layer applied a secco - ochre
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paint has seeped into drying cracks. The granulometry of this sample also indicates the use of a coarser
pigment (average particle size 8.5 um, site average of 5.8 um; Tab. 1).

Technique 2 (TH1) (samples EPHCIN-20, -24): Figure 4B, representing a sample from Terrace House 1,
displays a pigment layer over 100 pm thick, consisting of 2 layers of ochre, one yellow and one red, topped
by a thin layer of cinnabar.

Technique 3 (TH2A) (samples EPHCIN-05, -06, -14, -18): Figure 4C shows a sample from Terrace House
2, exhibits a clearly distinct technique from that of Terrace House 1; it shows a two-layer system of cinnabar
mixed with ochre over an ochre underpainting around 100 pm thick.

Technique 4 (TH2B (samples EPHCIN-21, -25): Figure 4D shows a second technique from Terrace House
2; it displays a thick (75 um) layer containing cinnabar pigment only, over an ochre-tinted intonaco layer.
Additionally, the sample in Figure 4D contains an ochre-tinted intonaco layer roughly 5 mm below the
finished surface.

Despite the difference in ochre underpainting between Techniques 2 and 4, there are also some similarities.
The visual resemblance is apparent in both techniques (Fig. 4B, D), which use a significant amount of
cinnabar, but digital image analysis reveals that the grain size distribution of the cinnabar is quite similar.
In contrast, Technique 3 (Fig. 4C) shows that not only was less cinnabar used, which is visually apparent
as well as supported by an average particle spatial distribution of 7 um, but it also tended to be a finer grade
of pigment (Tab. 1).

3.2. Element and isotope ratio data

EDX analysis on a representative number of cinnabar grains in all 10 cross-sectioned samples, provided
semi-quantitative elemental characterization. The stoichiometry of the cinnabar used at the site appears
relatively similar, with any differences in the mercury-to-sulphur balance attributed to other elemental
“impurities” affecting this balance. Trace amounts of As and Se are present in the cinnabar grains of the
samples analyzed, at slightly different levels from sample to sample. Broadly speaking, in samples of
painting Technique 3 the signal for As and Se was at or below the margin of error for the detection limit,
i.e., they could not be determined to be present. Samples from Technique 4 had the highest levels of these
elements detected, equivalent to about a ratio 0f 200:1 S:As, 400:1 S:Se —too low for definite quantification,
but far enough above the background signal to be determined to be present. The cinnabar grains of the other
two techniques (/ and 2) had average levels of As and Se roughly half that of Technique 4. An important
caveat to this is that some grains had no As or Se detectable, while others had levels as high as Technique
4, which may indicate pigment mixing. However, due to the low levels detected and limitations of the
method, it is generally advisable to defer to the results of geochemical testing described that follows.
Despite the possibility for contamination in these samples and others, it is expected that the Pb and Hg
contents (and their respective isotope ratios) accurately reflect the visually identified cinnabar.

The Pb isotope ratios of the Karaburun ores (n=8) fall within the range 18.96 - 19.46 (+ 0.01, 2SD) for
206pp/204Pb, 15.70 - 15.72 (+ 0.01, 2SD) for 2*’Pb/**Pb, and 38.62 - 38.99 (+ 0.02, 2SD) for 2*Pb/**Pb
(Tab. 2). The Pb isotope ratios of the Ephesian pigment samples (n=18) vary between 18.24 and 18.82 (+
0.01, 2SD) for 2%Pb/>*Pb, 15.63 and 15.69 (+ 0.01, 2SD) for 2°’Pb/***Pb, and between 38.27 and 38.96 (+
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0.02, 2SD) for 2%8Pb/?*Pb (Tab. 2). Among the fourteen cinnabar samples analyzed, eleven exhibit similar
Pb isotope ratios, while the remaining three samples show distinctly lower values across all three Pb isotope
ratios. These three pigment samples originate from wall painting fragments found in Terrace House 1
(EPHCIN-23, -24) and Room 45 of Terrace House 2 (EPHCIN-25); the 2’Pb/?%Pb and 2°*Pb/>°Pb ratios
of these samples are between 0.8451 + 0.0001 and 0.8569 £ 0.0003 (= 2SD), and between 2.0813 + 0.0004
and 2.0973 £+ 0.0006 (£ 2SD), respectively (Tab. 2). These results of cinnabar pigment samples from
Ephesus were first compared to previously reported cinnabar pigment and ore samples by Mazzocchin et
al. (2008), Hunt-Ortiz et al. (2011), and Rodriguez et al. (2020), and plotted with the available Pb isotope
ratio data (Fig. 5). This was followed by a statistical compilation of the dataset based on calculation of the
Euclidean distances between pigment and cinnabar ore samples compared to reference Pb isotope ratio data
using the AAcP Pb isotope ratio database (Artioli et al., 2016) for evaluating potential cinnabar source areas
(Fig. 6). This was focused on comparing to ore deposits with known cinnabar mineralization. Pb isotope
ratio data of cinnabar pigment samples should be first and foremost compared to Pb isotope ratio data of
cinnabar ore deposits as this is more appropriate than comparing to lead-bearing minerals (Higueras et al.,
2005; Minami et al., 2021). However, reference Pb isotope ratio data for potentially relevant cinnabar ore
deposits, such as those of Chios (Greece) or at the Black Sea Coast (e.g., Georgia) are currently not available
for comparison.

The mercury isotopic composition (i.e., 8'Hg, 8 Hg, A""’Hg and A**'Hg) of six pigment and three ore
samples was characterized. The mercury isotope ratio data for Kalecik ore samples are characterized by
8??Hg values of -0.23 and +0.12 %o and A'”Hg values of -0.15 and -0.22 %o (n=2; Tab. 2), while the ore
sample from Dikencik is characterized by a §**?Hg value of -0.05 %o and a A*’Hg value of -0.05 %o (n=1;
Tab. 2). Among the pigment samples, three (EPHCIN-13, -24, -27; Tab. 2) cluster closely with §*“Hg
values ranging from +0.62 to +0.79 %o and A'”’Hg values ranging from -0.09 to -0.13 %o (Fig. 7). The
remaining three samples (EPHCIN-06, -25, -26) have §°*?Hg values of +1.13 %o, +1.07 %o and +0.66 %o
and A'"Hg values of -0.13 %o, -0.40 %o and -0.31 %o, respectively, and the analytical precision is <0.12 %o
(2SD; n=250; Rua-Ibarz et al., 2016a).

A Dbrief description and overview of the sample groupings according to material processing, painting
techniques and geochemical results along with the archaeological contexts is listed in Table 3.

4. DISCUSSION

Trade in pigments was mentioned in ancient texts, yet little is currently known about the organization of
pigment trade and production networks in antiquity (Becker, 2021, forthcoming). Several ancient authors
mentioned pigment use, provenance, and processing, as discussed in a recent review on cinnabar (Gliozzo,
2021). Briefly, Theophrastus wrote that cinnabar was ground in stone- and washed in copper vessels (De
Lap. 58; c. 315-305 BCE). Similarly, Vitruvius mentioned that cinnabar was prepared by repeatedly being
ground and washed to a powder to separate it from mercury (De Arch. 7.9.1; 1% ¢. BCE). According to Pliny
(HN 33.37; ¢. 77-79 CE), cinnabar was extracted from red sand found in silver mines. Like Vitruvius, Pliny
described repeated grinding and washing to obtain a high-quality cinnabar. However, there are currently no
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cinnabar pigment production or processing workshops known from the archacological record. The
investigation of pigment processing and its organization therefore rests on the available evidence such as
wall paintings and other use contexts. The initial visual examinations of the wall painting fragments from
Roman Ephesus prior to making cross-sections suggested a consistent appearance. SEM images generally
show similar pigment grain morphology across different samples, and the stoichiometry of the cinnabar
used (i.e., here Hg:S ratio) is consistent among the samples analyzed (Tab. 1). This might be indicative of
material from similar sources (Maras et al., 2013; Gliozzo, 2021).

Photomicrographs of cross-sections from the Agora, Terrace House 1 and 2 (Fig. 4), however, revealed
different painting techniques that can be attributed to different painting activities and/or time periods. A
similar observation was recently made regarding the use of cinnabar in Roman Noricum (mostly present-
day Austria and Slovenia), where different painting techniques were used in roughly contemporanecous
sites, likely representing different painting activities, different representations the artists wanted to paint
and/or resource levels of the patrons (Baragona et al., 2022). The results of this work suggest at least two
painting phases: one involving Technique 1 and 3, and another involving Technique 2 and 4 (Tab. 3). There
may also be a 3™ phase associated with the deeper ochre-tinted intonaco in Technique 4, possibly indicating
later replastering and repainting. As for other sites, differences in painting techniques can possibly be
attributed to processing by different painting activities, which might have implications for the diversity of
workshops and/or artists expressions in these periods.

A sample taken from the Tetragonos Agora (Technique 1) displays a thin layer of relatively large-grained
cinnabar pigments mixed with ochre. However, whether this appearance is due to weathering or differences
in resource allocation by the artists remains uncertain. Furthermore, Technique 3 of Terrace House 2 is
similar to the example from the Agora (Technique 1), but it features thicker pigment layers and a finer-
grade cinnabar. While these techniques are similar and might have used comparable raw materials, as
suggested by the Pb isotopic analysis (see 4.2; Fig. 6), phase chronology is unclear and the relationship
between Technique 1 and 3 cannot be fully established at this point. However, this might be possible for
Technique 2 and 4. A similar effect with cinnabar over yellow ochre on top of an ochre-tinted intonachino
as seen in Taberna IV of Terrace House 1 at Ephesus (Technique 2) was also observed in Noricum from a
likely mid-2" century CE structure (Baragona et al., 2022). Furthermore, imagery of the sample from the
Taberna adjacent to Terrace House 2 (Room 45, Technique 4) displays a thicker cinnabar layer with no red
ochre underpainting and shows the final millimeters of intonaco have red ochre added (as opposed to ochre
underpainting) and a second ochre-tinted intonaco layer 5 mm below the first, indicating a re-painting
campaign. The practice of adding ochre to the final layer of the intonachino has been previously reported
at other sites, for example at Ostia Antica, and is associated with wall paintings of the 4™ Pompeiian style
(mid-1% to early 2™ century CE) (Esposito, 2014; Bracci et al., 2021). Cinnabar granulometry, as
determined by EDX analysis, as well as Pb isotopic analysis reveals similarities between Technique 2 and
4, that hint at similar material processing by the painting activities and/or a painting period. There is
increasing evidence that stylistic changes over time were similar empire-wide (Tober, 2021), which might
have influenced the organization of painting workshops. The following sections demonstrate how these
differences can also be linked to geochemical data and, consequently, to the organization of the trade
networks that supplied cinnabar for Ephesus.

The advantageous location of Ephesus, on the west coast of Asia Minor, made it a significant cultural and
communication center during the Roman period (Delile et al., 2015). The site’s location enabled access to
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natural resources and products, such as control over the trade of certain pigments (e.g., Tezgor, 2022).
Theophrastus mentions the use of natural cinnabar found in Iberia and in Colchis at the Black Sea (Gliozzo,
2021): cinnabar from a location ‘above’ Ephesus was prepared from sand that shone brightly and resembled
scarlet dye (i.e., kermes) (De Lap. 58). In agreement with Theophrastus, Vitruvius also mentioned that
cinnabar was first discovered in the Cilbian fields near Ephesus (De Arch. 7.8.1). Pliny agreed with both
Theophrastus and Vitruvius, stating that a hard and sandy kind of cinnabar came from Spain and the region
of the Colchi, while the highest-quality cinnabar used for painting could be found in the Cilbian territory
beyond Ephesus (HN 33.37; 39). Dioscorides mentioned Libya as the place of origin for high-quality and
expensive cinnabar, while emphasizing the Cilbian fields of Ephesus and the Almadén mines in Spain as
the most important cinnabar mines (MM 5.94; c. 50-70 CE; Beck, 2005). Cilbian is the area north and east
of the ancient city of Larisa on the Tmolos and extends to present-day Kiraz in the east (Keil and
Premerstein 1914; Meri¢ 2009; Zabrana 2022). A rock inscription from the 3™ c¢. CE (Keil and Premerstein
1914) and near today’s Emirli might identify this area as belonging to the city of Ephesus and might
furthermore connect it with the Cilbian territory (Zabrana 2022).

From previous works, several cinnabar sources are known in Turkey. For example, the preliminary survey
of mineral resources by Foss and Hanfmann lists cinnabar ore deposits in Tmolus Mt., located ~20 km from
Sardis. Ancient workings above the village of Ayasuluk (possibly the ancient Nicaea of the Cilbiani) in the
Cayster Valley were documented there (Foss and Hanfmann, 1975:21). Modern workings were also
observed south of the village of Allahdiyen, visible from the mountain road connecting Sardis to Odemis.
The work by the German geologist Carl Schmeisser had previously mentioned mercury/cinnabar
occurrences in Turkey; one crops out in quartz-bearing slate and is located near the village Habibler, ~20
km northeast of Selguk, and the other in clay-rich sedimentary deposits in the Kaystros Valley near the
village Halikoy, ~85 km northeast of Selguk (Schmiesser, 1906). Additionally, cinnabar deposits within the
Izmir province are located near Ulubey, Alasehir and Odemis. The geology (Yildiz and Bailey, 1978;
Gemici and Oyman, 2003; Gemici, 2008) and geochemistry (Gale and Stos-Gale, 1981; Wagner et al.,
1985; Yener et al., 1991; Hirao et al., 1995; Sayre et al., 2001; Hauptmann et al., 2002; Begemann et all.,
2003; Willett and Sayre, 2006; Gokce and Bozkaya, 2007) of ore deposits in Turkey have been extensively
investigated before, facilitating a comparison with the new data included in this study while the focus was
to compare to ore bodies with cinnabar mineralization included in the AAcP database (see 3.2.).

While the Pb isotope ratio data of the Ephesian cinnabar samples roughly fall into two groups: (i) two
samples from Taberna IV of Terrace House 1 and one sample from Room 45, which is part of the Taberna
adjacent to Living Unit 7 of Terrace House 2, and (ii) the remaining samples from Terrace House 2 and the
Agora. The Pb isotope ratio data of the Karaburun cinnabar ores do not align with those of the Ephesian
cinnabar samples, and thus, cannot be considered as the source of cinnabar to Ephesus; other ore deposits
appear to be a better fit. Perhaps (a mixture of) cinnabar from different source areas might have been used,
as previously proposed for cinnabar samples from Roman wall paintings (Mazzocchin et al., 2008). The
work by Mazzocchin et al. (2008) proposed that cinnabar from various sources — such as Huelva (Rio Tinto)
and Almeria, Spain, as well as other mining districts in southern Spain that were exploited by the Romans
— might have been mixed at a hitherto unknown production or processing workshop in Rome before the
pigments were used at various Roman sites. Interestingly, Vitruvius specifically recorded that cinnabar
from Spain was processed in a workshop there (De Arch. 7.9.4); in such a workshop environment, cinnabar
collected from different sources in Spain could have been intermixed. This might be supported by overlaps
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of previously published Pb isotope ratio data for cinnabar pigments (Mazzocchin et al., 2008; Hunt-Ortiz
et al., 2011; Rodriguez et al., 2020) and Ephesian cinnabar pigments (Fig. 5A).

Furthermore, it was suggested that cinnabar from Almadén, Spain, was used for wall paintings in the Roman
city of Aventicum (Avenches, CH) on the basis of sulphur isotopic analysis for comparing relevant
European mining districts (Spangenberg et al., 2010). In this work, samples from Almadén were the closest
match for the cinnabar used in Aventicum. However, it was also noted that cinnabar from various sources
might have been brought to Rome and mixed there before being used (Spangenberg et al., 2010). While
some Ephesian samples overlap with cinnabar from Almadén, for most of them there is a good match with
reference samples from the Taurus Mts in Turkey or from Balkan sources. However, the possibility of
mixtures from various sources remains plausible (Mazzocchin et al., 2008; Spangenberg et al., 2010) — for
example, the 20’Pb/2%Pb ratio of Terrace House 1 samples points in this direction: 2°’Pb/>°°Pb ratios between
0.847 and 0.856 correspond to the gap between the Variscan and the precursors of the Alpine orogeny in
Europe, when there were only a few ore-forming events; Pb isotope ratios that plot within this gap therefore
likely result from mixing (Klein et al., 2004). Furthermore, potential source areas such as Chios (Greece)
or the Black Sea Coast of Georgia could not be considered due to the current lack of reference data. As
shown for lead and copper ore deposits (Klein et al., 2009) and noted previously (Spangenberg et al., 2010),
cinnabar from different Hg-mineralized bodies within mining districts could be characterized by
heterogeneous isotope ratios, potentially contributing to a wider range in sample isotope ratios and
necessitating careful data interpretation.

With regards to the Hg isotope ratio data, it seems likely that cinnabar from sedimentary exhalative deposits
was used. While cinnabar sources need to be carefully characterized (Stephens et al., 2021), this provides
additional insights for assessing material provenance and for enriching reference databases. Briefly,
hydrothermal ore deposits exhibit a wide intra-deposit range in §***Hg values (Yin et al., 2016). The level
of MIF as reflected by the A'’Hg values is low (Fig. 7A). The A'””Hg values of the samples analyzed
ranged between -0.09 %o and -0.13 %o for the larger Pb isotope ratio cluster of samples mainly from Terrace
House 2. These values closely resemble those observed for sedimentary exhalative deposits (A'”’Hg: -0.09
+ (.18 %o; Yin et al., 2016). The Karaburun deposits are sedimentary exhalative deposits, but similar to the
Pb isotope ratio data, there is no overlap between pigment and Karaburun ore Hg isotope ratios. However,
while the use of high-temperature conditions does not induce Hg isotope MIF (Chen et al., 2022), MDF
may occur during ore roasting processes (Ni et al., 2022) as indicated by recent laboratory roasting of
cinnabar ore from Almadén (Gray et al., 2013). This MDF can be the result of several complex geochemical
processes involved during roasting which include redox processes, vapor transport, and secondary mineral
formation (Smith et al., 2014) and was observed in a small laboratory experiment during retorting (Gray et
al., 2013). The 8**?Hg values obtained for the pigment samples (0.62 %o to 1.13 %o) are higher than those
corresponding to the Karaburun ore samples (-0.23 %o to 0.12 %o). If cinnabar from these ores would have
been used, then this could be in agreement with the loss of isotopically lighter Hg isotopes under high-
temperature conditions. This might apply to cinnabar pigments from Ephesus, where the §?°?Hg values are
not within the range reported for cinnabar from Almadén (-0.92 to 0.15 %o, n=7; Gray et al. 2013; -1.73 to
0.15 %o, n=18; Pribil et al., 2020). However, the use of Karaburun or Almadén ores (in cinnabar pigment
mixtures) cannot be excluded based on the Pb isotopic analysis alone and either might be a possibility based
on the Hg isotope ratio data.
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Cinnabar was a highly valued colorant and several historical sources mention the ore deposits of Almadén
and ore deposits near Ephesus as source areas. Recent research used Pb, S and Hg isotope ratio data of
cinnabar from archaeological contexts to evaluate cinnabar provenance and potential trade contacts
(Mazzocchin et al., 2008; Spangenberg et al., 2010; Hunt-Ortiz et al., 2011; Tsantini et al., 2018; Rodriguez
et al., 2020; Minami et al., 2021). This work contributes cinnabar samples from ancient wall paintings from
Ephesus and cinnabar ore from nearby deposits and uses Pb as well as Hg isotope ratio data to evaluate
material provenance, trade and processing. However, future research would benefit from a more detailed
evaluation of mixing with other pigments (Rodriguez et al., 2020) and building on first laboratory
experiments (Gray et al., 2013), further research is necessary to characterize the effect of ancient cinnabar
processing on the Hg isotopic composition of cinnabar pigments. This is needed in order to better compare
archacological with geological materials and to substantiate a potential MDF due to heat treatment. If
cinnabar processing treatments influence trace element partitioning or isotope fractionation, then this would
be relevant for such an interpretation. Furthermore, comparing geochemical results of ancient pigments to
a wider range of possible source areas would significantly advance pigment provenance studies. This work
contributes new cinnabar ore samples and emphasizes that several potential source areas are currently not
available for comparison. The lack of cinnabar processing sites in the archaeological record complicates
this further. In general, only a few pigment workshops are currently known (e.g., Kostomitsopoulou
Marketou & Rodler-Rerbo, 2023). An archacometric investigation of such workshops (Kostomitsopoulou
Marketou, 2019; Kostomitsopoulou Marketou et al., 2020) is helpful for evaluating pigment preparation
methods, for example, in comparison to ancient literary evidence, and can aid an interpretation of possible
trade routes. Further investigations of Hg paleopollution in sedimentary deposits might be useful in this
regard (Cooke et al., 2013); further analysis of cinnabar pigments to add to the already existing data (Fig.
5A) and minor cinnabar deposits should be considered and included in future studies (Rodriguez et al.,
2020) to expand the currently available data (Fig. 5B).

5. CONCLUSION

In conclusion, this work aimed to determine whether raw materials from the Karaburun Peninsula north of
Ephesus, from the Spanish Almadén mining district, or from other close or distant cinnabar sources were
used at Ephesus. Analysis using optical and scanning electron microscopy of the paint layer stratigraphy,
as well as cinnabar grain size distribution, indicated consistent cinnabar pigment preparation. While this
could suggest uniform source material quality, it could also indicate a relatively consistent (although likely
diachronic) material processing technique. However, variations in paint layer stratigraphy among different
architectural structures suggest a diversity of painting techniques over time. A correlation between painting
technique and geochemical information was observed, implying changes in cinnabar source and pigment
preparation, possibly associated with changes in building chronology and/or usage. Although the Pb isotope
ratio data of the majority of the Terrace House 2 and the Agora samples cluster closely together and align
well with Balkan or central Turkish ore deposits, a small subset of samples — all from tabernas adjacent to
either Terrace House 1 (Taberna IV) or Terrace House 2 (Room 45, adjacent to Living Unit 7) — suggests
different sources. However, while Turkish ore deposits are well-represented in reference databases, several
potentially relevant cinnabar deposits have not yet been included (e.g., Chios, Greece; Black Sea Coast,
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Georgia). Additionally, the possibility of cinnabar mixing from various sources remains plausible. The Hg
isotope ratio data of Ephesian pigment samples consistently shows the loss of isotopically lighter Hg
isotopes. However, additional research is necessary to evaluate whether this could indicate heat treatment
during pigment processing as suggested by ancient authors.
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Table 1. Cinnabar grain size diameter, average particle size and intergranular spacing for the Ephesian wall painting fragments analyzed

Cinnabar grain size diameter

L. . Average Average
:)allllltl‘ng Sample ID Site <1 1-2 2-3 3-5 5-10 >10 particle size  intergranular
echnique pm pm pm pum pm pm
I B S N 7 MO B ) S space (um)

1-Agora EPHCIN-28 Agora n.d. n.d. 1.00 23.0 56.0 20.0 8.25 4.50
2-TH1 EPHCIN-24 Terrace House 1 3.00 19.0 14.0 24.0 32.0 8.00 4.70 3.10
3-TH2A EPHCIN-06 Terrace House 2, Room 36 n.d. 43.0 15.0 20.0 31.0 6.00 3.50 7.00
4-TH2B EPHCIN-25 Room 45, Taberna adjacent to living  3.00 9.00 12.0 18.0 44.0 15.0 6.70 5.00

unit 7 of Terrace House 2

Average across samples 1.50 17.8 10.5 213 40.8 12.3 5.79 4.90

Notes: Tabular display of the information given in Fig. 1, with the additional information of the average cinnabar intergranular space; this is based on the
analysis of all cross-sectioned samples even though only the four shown in Fig. 1 are mentioned here as examples.



4 Table 2. Isotope ratio data for cinnabar samples from Ephesian wall painting fragments and cinnabar ore from the Karaburun Peninsula, Turkey
A199H A200H AZOIH
Sample ID 206pp,204p}, 207pp,204p}, 208pp204p}, 207pp206p}, 208pp, 206p}, 5199 Hf, 5200 H§ 20 H§ g
EPHCIN-02! 18.711 £ 0.001 15.684 +0.001 38.880+0.002  0.83822 +0.00001 2.07791 £ 0.00004
EPHCIN-06! 18.771 £0.001 15.683 £0.001 38.819+£0.002  0.83549 £ 0.00002 2.06797 £ 0.00004 -0.13 £0.04 -0.03 £0.06 -0.10 £0.05
@ 0.15+0.05 0.54 +£0.06 0.75 £ 0.05 1.13+0.05
§ EPHCIN-13! 18.686 +0.001 15.671 £0.001 38.818 £0.002  0.83865 +0.00001 2.07744 £ 0.00003 -0.09 £0.06 0.01 £0.07 -0.13 £0.06
g" 0.07 £0.08 0.32+0.11 0.34+0.10 0.62+0.10
&  EPHCIN-14! 18.688 +£0.001 15.671 £0.001 38.817+0.002  0.83853 +£0.00001 2.07707 £ 0.00004
%D EPHCIN-17%* 18.818 £0.001 15.684 +£0.001 38.864 +£0.002  0.83348 +0.00002 2.06529 +0.00004
£ EPHCIN-19'* 18.624 +0.001 15.672 £0.001 38.824+0.002  0.84150 + 0.00002 2.08457 +0.00004
& EPHCIN-20'* 18.613 £0.001 15.670 £0.001 38.805+0.002  0.84183 +0.00002 2.08479 + 0.00005 -0.13 £0.04 0.05+0.05 -0.16 £0.07
= 0.07 +£0.03 0.45+0.05 0.43 +0.04 0.79 £0.08
& EPHCIN-213 18.756 £ 0.001 15.681 £0.001 38.933+0.003  0.83603 + 0.00001 2.07582 £+ 0.00005
.§ EPHCIN-234 18.385 £0.001 15.648 £ 0.001 38.474+0.002  0.85113 +£0.00001 2.09270 £+ 0.00004
j:; EPHCIN-244 18.245 £0.001 15.635 +0.001 38.266 +0.002  0.85695 + 0.00003 2.09733 £0.00006 -0.11 £0.05 -0.02 £0.04 -0.11 £0.07
[ff 0.08 +0.05 0.36 £0.04 0.46 £0.08 0.76 £0.05
g EPHCIN-25% 18.526 +£0.001 15.656 +£0.001 38.559+0.002  0.84507 +0.00001 2.08135 £ 0.00004 -0.40 £0.06 -0.02 £0.04 -0.33 £0.09
3 -0.13+£0.07 0.52 +0.06 0.48 £ 0.09 1.07 £0.07
E EPHCIN-26¢ 18.784 +0.001 15.685+ 0.001 38.958 £0.002  0.83504 + 0.00002 2.07408 £+ 0.00003 -0.31 £0.03 -0.04 +£0.05 -0.21 £0.08
© -0.15+0.04 0.29 £0.04 0.29 £0.04 0.66 £0.08
EPHCIN-27¢* 18.768 = 0.001 15.683 £0.001 38.942 £ 0.002  0.83563 + 0.00001 2.07490 £ 0.00004
EPHCIN-28¢ 18.760 £ 0.001 15.682 +£0.001 38.907+£0.002  0.83591 +0.00001 2.07389 + 0.00004
o EPHCINO-03p 19.034 £0.001 15.704 £ 0.001 38.986 +0.002  0.82501 +0.00001 2.04821 £ 0.00003 -0.05 £0.03 0.01 £0.05 -0.07 £0.03
S -0.04 £0.04 0.04 £0.05 -0.03 £0.06 0.05 £0.06
E EPHCINO-04p* 18.963 +£0.001 15.701 £ 0.001 38.953+£0.002  0.82800 + 0.00001 2.05414 £ 0.00004
§ EPHCINO-05k* 19.202 £ 0.001 15.706 +0.001 38.623 £0.002  0.81800 + 0.00001 2.01149 £+ 0.00004
‘5 EPHCINO-08k 19.464 +0.001 15.721 £0.001 38.735+0.002  0.80772 £ 0.00001 1.99012 + 0.00004 S0.15+0.11 0.00 £0.07 -0.11 £ 0.05
g -0.20+0.13 0124010  -029+0.08  -0.23+0.08
é EPHCINO-11k 19.332 £0.001 15.721 £ 0.001 38.746 £ 0.002  0.81320 + 0.00001 2.00423 £ 0.00004 -0.22 £0.04 -0.02 £0.05 0.02+0.12
3 -0.19£0.03 0.04 £0.06 0.11+£0.15 0.12 £0.06
M EPHCINO-12k 19.130 £ 0.001 15.710 £ 0.001 38.692+0.002  0.82125 +0.00001 2.02261 +0.00003
BHVO-2 18.453 £0.001 15.669 +0.001 38.626 +0.003  0.84915 +0.00002 2.09321 £ 0.00005 -0.15£0.06 0.03+0.03 -0.21 £0.06
BHVO-2** 18.62 +0.05 15.53 +£0.05 38.21 £0.04 0.05 +0.06 0.42 +0.04 0.38 +£0.06 0.79 +0.09
5  Notes: Pb and Hg isotope ratios (+2SE) for samples of Terrace House 2: ! Living unit 6 (Room 36a), 2 Living unit 3 (Room 12), * Living unit 4 (Room 21),
6  Room 45 (Taberna), Terrace House 1:  Taberna IV, and the ¢ Agora; Karaburun ores EPHCINO-03p and -04p, and EPHCINO-05k, -08x, -11x and -12k are
7  from the Dikencik and Kalecik deposits, resp. (Fig. 1); *mean values (n=2); ** Pb isotope ratio data for reference material BHVO-2 (£2SD; Weis et al., 2005)



8  Table 3: Painting technique and cinnabar source groupings with the archaeological context of the Ephesian wall painting fragments analyzed
SEM Cross section Painting technique Geochemistry-based groupings Archaeological context
micrograph Sample ID LID — Pb isotope ratio data
HgID — Hg isotope ratio data
1-Agora All Agora samples have similar LID; all Tetragonos Agora
Thin, compact Thin, compact cinnabar EPHCIN-26, -27, -28 within the range of TH2 samples, overlapping  Southern portal
cinnabar layer only layer on ochre, with Turkish / Balkan references (Fig. 2); Part of the Roman agora, 13" ¢. CE !
Cinnabar on red ochre rough intonaco EPHCIN-26 (and -25): perhaps different heat
layer with treatment compared to other samples (Fig. 3A)

little to no

Cinnabar mixed with

2-TH1

Different from other samples (Fig. 3); mixed

Terrace House 1 (TH1), Taberna IV

ochre Relatively some ochre, on yellow EPHCIN-23, -24 signal or unknown source? But similar heat Levelling layer with wall painting fragments dated
admixing dense cinnabar and red ochre layer processing as TH2 samples (Fig. 3A) t‘;llﬂ C(- CIE zi Zgn(ljplfi likely from a reconstruction
1 phase (~17— E
iyrfg :)Véﬁéltﬂe Thick cinnabar only on 4-TH2B Different from other samples, but better Terrace House 2 (TH2), Room 45
. . . . EPHCIN-25 overlap with Balkan reference LID (Fig. 3); Taberna adjacent to and at times part of Living
admixing intonaco layer tinted ) . > Unit 7- ‘oht paintine ph o d dated
ith red ochre different heat treatment (Fig. 3A) nit 7; up to eight painting phases in situ and date
ks between the 153" ¢. CE *
3-TH2A Larger cluster of TH2 samples, overlapping TH2, Living Unit 6, Room 36
EPHCIN-02, -06, with Turkish and Balkan reference LID (Fig. Living area of ~650 m?; Room 36 is part of
-13,-14,-19, -20 2); similar material heat processing as TH1 representative rooms, cinnabar pigment was likely
sample (Fig. 3A) used for the upper floor and pertains to an earlier
Thin cinnabar painting phase (I-III) 5 *
Cinnabar layer with _ EPHCIN-21 TH2, Living Unit 4, Room 21
mixed larger spacing Cinnabar mixed with Living area of ~460-360 m?, Room 21 is the
with ochre of grains ochre over red ochre Peristyle (~160 m?) é; the sampled wall painting
(due to ochre fragment likely pertains to the Peristyle upper floor
admixing) of Room 21, dated to building phase I1 7 *
EPHCIN-17 TH2, Living Unit 3, Room 12
Living area of ~260 m?, Room 12 is the Muse
room, wall paintings pertain to building phase IV 8
9  Notes: Scherrer and Trinkl (2006: 11); 2 Lang-Auinger (1996: 121-123); 3 Lang-Auinger and Outschar (1996); * Zimmermann (2016a: 731); 5 Zimmermann
10 (2014: 287, 309, 323); ® Thiir (2005: 51); Zimmermann (2005: 106); 7 Zimmermann (2005: 110, 128-129);  Zimmermann (2016b: 82); * building phases in
11 Terrace House 2 are grouped as I until mid-1% ¢. CE, II ~120 CE, III mid-2" ¢. CE, and IV early 3" ¢. CE (Zimmermann, 2005).
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Figure 1. Geological map of the northern part of the Karaburun Peninsula (simplified from Cakmakoglu
and Bilgin, 2006) with the sampling sites at the deposits of Karareis, Dikencik and Kalecik indicated with
black stars; samples from the Dikencik and Kalecik deposits were included in this study.
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Figure 2. Field photographs at sites where cinnabar was collected at Kalecik (A-B) and Dikencik (C-D)
(Photos: L.V. Sgrensen, B. Cakmakoglu, C. Helvaci), and examples of wall painting fragments where
samples were collected (Photos: A. Rodler-Rerbo) (2-column fitting image)
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Figure 3. Site and sample location maps, incl. the Agora, Terrace House 1 and 2, with the collected samples (EPHCIN-#, see Tab. 3)
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Figure 4. Left, Cross-section images of four wall painting fragments from the subject area displaying
different painting techniques with corresponding over-exposed SEM micrographs showing grain size
distribution of cinnabar only (ochre not visible) (Tab. 1), fo the right.: A) Technique 1 — ‘Agora’ (sample
EPHCIN-28): left, thin, compact cinnabar layer on ochre applied a secco without polishing, rough intonaco;
right, thin, compact cinnabar layer over red ochre; B) Technique 2 — ‘TH1’ (Terrace House 1, sample
EPHCIN-24): left, cinnabar mixed with some ochre, over yellow ochre, red ochre; layers right, relatively
dense cinnabar pigment layers with some ochre admixing; C) Technique 3 — ‘TH2A’ (Terrace House 2,
Room 36, sample EPHCIN-06): left, cinnabar mixed with ochre over red ochre; right, a thinner cinnabar
layer displaying larger spacing of grains (attributable to ochre mixed with the cinnabar); D) Technique 4 —
‘TH2B’ (Room 45, Taberna adjacent to Living Unit 7 of Terrace House 2, sample EPHCIN-25): left, thick
cinnabar-only on an intonaco layer tinted with red ochre; right, the thick, dense layer of cinnabar pigment
grains.

(2-column fitting image)
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Figure 5. Pb isotope ratios of A cinnabar pigment samples from Ephesus (this work; ellipse: Terrace House
2 and Agora samples), Italy and Spain, and B cinnabar ore samples from Karaburun (Turkey), Spain, Italy,

and Slovenia.

(2-column fitting image)

Page 8 0of 10



49
50

51
52
53
54

208p},2%p

ZOTPbIZU‘lP b

396 4 © haly: Tuscany-Southem © Italy: Tuscany-Southem
W Turkey: Taurus Mis ¥ Turkey: Taurus Mis
@ Greece: Laurion <> Balkans: Romania
39.4 4 W/ Turkey: Karaburun Peninsula 4@ Balkans: Bulgaria
d @ Spain: Almaden district @ Greece: Laurion
Ephesus: cinnabar pigments 7/ Turkey: Karaburun Peninsula
© @ Spain: Aimaden district @
39.2 4 Q ) Ephesus: cinnabar pigments 3
390 ¥ Karaburun Peninsula w Karaburun Peninsula
38.8
@ A g
Kalecik &
386 ¢
Terrace House 2 Terrace House 2
384 1 & Agora samples & Agora samples
EPHCIN-25
38.2 4 (Room 45)
38.0 T T T T T T r T
18.0/ / 18.5 / 19.0 19.5 18.0/ / 18.5 19.0 19.5
EPHCIN-23 (TH1) / B
EPHCIN-24 (TH1) EPHCIN-24 (TH1)
15.80 A
15.75 A
; 2
15.70 - 7% Kalecik
*
15.65 *
v
15.60
v
15.55 T T T T T T T T T T T T
18.0 18.5 19.0 19.5 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6
zostF“Pb 206PbI204Pb

Figure 6. Pb isotope ratios for wall painting samples from Ephesus, ore samples from the Karaburun
Peninsula and reference data for A Italy, Turkey, Greece, and Spain, B as well as with Balkan reference

data from the AAcP database.

(2-column fitting image)
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Figure 7. Hg isotope ratio data (A A'"Hg vs §**Hg, B A'"Hg vs A?*'Hg) for wall painting samples from
Ephesus, ore samples from the Karaburun Peninsula, and cinnabar ore samples from Italy (Pribil et al.,
2020), Spain (Gray et al., 2013), China (Yin et al., 2013; Ni et al., 2022), and USA (Stetson et al., 2009).
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