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A B S T R A C T

The prevalence of neurodegenerative diseases (NDDs) such as Alzheimer’s (AD), Parkinson’s (PD), Essential
tremor (ET), and Multiple Sclerosis (MS) is increasing alongside the aging population. Recent studies suggest
that these disorders can be identified through retinal imaging, allowing for early detection and monitoring
via Optical Coherence Tomography (OCT) scans. This study is at the forefront of research, pioneering the
application of multi-view OCT and 3D information to the neurological diseases domain. Our methodology
consists of two main steps. In the first one, we focus on the segmentation of the retinal nerve fiber layer (RNFL)
and a class layer grouping between the ganglion cell layer and Bruch’s membrane (GCL-BM) in both macular
and optic disc OCT scans. These are the areas where changes in thickness serve as a potential indicator of
NDDs. The second phase is to select patients based on information about the retinal layers. We explore how the
integration of both views (macula and optic disc) improves each screening scenario: Healthy Controls (HC) vs.
NDD, AD vs. NDD, ET vs. NDD, MS vs. NDD, PD vs. NDD, and a final multi-class approach considering all four
NDDs. For the segmentation task, we obtained satisfactory results for both 2D and 3D approaches in macular
segmentation, in which 3D performed better due to the inclusion of depth and cross-sectional information.
As for the optic disc view, transfer learning did not improve the metrics over training from scratch, but it
did provide a faster training. As for screening, 3D computational biomarkers provided better results than 2D
ones, and multi-view methods were usually better than the single-view ones. Regarding separability among
diseases, MS and PD were the ones that provided better results in their screening approaches, being also the
most represented classes. In conclusion, our methodology has been successfully validated with an extensive
experimentation of configurations, techniques and OCT views, becoming the first multi-view analysis that
merges data from both macula-centered and optic disc-centered perspectives. Besides, it is also the first effort
to examine key retinal layers across four major NDDs within the framework of pathological screening.
1. Introduction

Neurodegenerative diseases (NDDs) are progressive, have an im-
mediate impact on the central nervous system, and interfere with
the neural networks ability to communicate with one another [1]. As
life expectancy increases, the prevalence of these pathologies is also
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expected to rise [2], since aging is one of the main risk factors [3].
In this work, we concentrate on four key NDDs: Alzheimer’s disease
(AD), which is expected to affect 131 million patients by 2050 [4];
Parkinson’s disease (PD), which is the most common neurological
disorder with movement problems and whose prevalence has doubled,
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increasing faster than for any other NDD [5]; Essential tremor (ET), that
affects 1% of the world’s entire population [6]; and Multiple Sclerosis
(MS), that is the most common non-traumatic disabling disease affect-
ing young adults [7]. These disorders usually have a late diagnosis or
ven a misdiagnosis due to the similarities in symptoms and clinical
indings in the tissues [8], which negatively affects the quality of life
f the patient. Much effort has been put towards finding new tests and
iomarkers to improve the accuracy and speed of the diagnosis, and
ew research has proven that not only neurological deterioration is not
nly found in brain images, but also in fundus of the eye images [9,10],

specifically in the retinal layers. These observable characteristics make
possible the diagnosis and study of the progression of the disease by
nalyzing images of the eye. In particular, the technique typically used
s Optical Coherence Tomography (OCT) [11]. This device employs a
on contact, in vivo approach based on echo time delay or frequency
nformation of back-reflected light to capture high-resolution, micron-
cale images of tissue structures. The key strength of OCT lies in its
apacity to generate detailed cross-sectional and volumetric images of
he desired regions, offering a comprehensive view of tissue morphol-
gy and architecture, which is ideal for studying the aforementioned
etinal layers.

Numerous works have taken advantage of this important poten-
tial of OCT in relation to retinal layers and have proposed different
methods for their automatic segmentation [12–15], with deep learning
approaches demonstrating particularly satisfactory results. The recog-
nition and analysis of these retinal layers seen in OCTs has been
proven relevant in the diagnosis of NDDs [16], in particular the ones
considered in this work like AD [17], ET [18], MS [19], and PD [20].
This lead to the developing of methods specifically to measure changes
in the eye captured by OCT specially related to NDDs in order to be able
to identify and quantify those changes. Most of the published works
focus on MS patients, like developing a deep network for retinal layer
segmentation and microcystic macular edema (MME) segmentation on
MS patients [21] or analyzing their macular thickness obtained from

CT using a SVM [22] or a CNN [23]. Despite clinical findings high-
ighting the importance of retinal layers for diagnosing different NDDs,

only one research by Gende et al. [24] takes into account multiple
NDDs concurrently in a macular OCT perspective. This underlines an
mportant gap in the current landscape of NDDs diagnostics, pointing
o an unexplored field that holds substantial potential for improving
arly detection and prognosis of these diseases. Pushing forward the
xploration of deep convolutional approaches in this emerging field,
his work is the first of its kind to analyze multi-view OCT images
or the screening of various neurodegenerative diseases, using both
acular an optic disc scans.

Typically, studies in this area analyze each cross-sectional image,
known as a B-scan, on an individual basis. However, when these B-
scans are stacked together, they form 3D volumes that carry significant
potential for providing additional, more complex information. These
volumes not only retain the details from individual B-scans but also
present spatial context across the stack of images. As such, they can
reveal intricate details about tissue thickness and morphology which
might not be readily apparent from examining single B-scans. Some
works have pointed out how these features could be of use but are
overlooked [25], possibly due to images resolution or possible mo-
ion artefacts across B-scans [26]. However, some others have shown
atisfactory results using OCT volumes instead of processing each cross-
ectional image. Chen et al. [27] proposed an automated method for
egmenting 3D fluid-associated abnormalities in the retina from 3D
CT retinal images of subjects suffering from exudative age-related
acular degeneration. Wu et al. [28] designed an automatic, 3D seg-
entation method to detect both neurosensory retinal detachment

NRD) and pigment epithelial detachment (PED) in spectral domain op-
ical coherence tomography images. These same authors also proposed

an automated 3D segmentation framework to detect subretinal fluid
29]. Maetschke et al. [30] used a deep learning
in SD-OCT volumes [

2 
technique that classified eyes as healthy or glaucomatous directly from
raw, unsegmented OCT volumes of the optic nerve head using a 3D
Convolutional Neural Network (CNN). However, in the NDDs domain
and retinal layers segmentation, to the best of our knowledge, this work
is the first to study whether using this 3D information in OCT provides
interesting features for automatic segmentation of retinal layers and the
consequent study of the mentioned neurological diseases in a screening
scenario.

The interpretations of the data obtained from these segmentations
re wide-ranging and depend on the specific tasks they are applied to.
or instance, Holmberg et al. [31] applied model weights, originally
rained for retinal layer segmentation, to classify diabetes grading based
n fundus images. Similarly, Mohammed et al. [32] used the thickness

data of retinal layers to categorize patients into different stages of
diabetic retinopathy. In the realm of NDDs specifically, Garcia-Martin
t al. [33] utilized the thickness of various retinal layers to facilitate

early diagnosis of MS. It is important to note that these studies generally
focus on a specific view of the OCT images for their classification tasks.
However, medical professionals often use multiple views and modali-
ties, suggesting that integrating data from these various sources could
enhance and reinforce final diagnoses. There are works that explore
these concepts: for example, He et al. [34] proposed a multi-modal
methodology that incorporates OCTs and fundus images for classifying
different retinopathies; DISCOVER is 2D multi-view summarization of
OCT angiography for automatic diabetic retinopathy diagnosis [35].
Hence, related but different features that can be extracted from dif-
ferent views of OCT can be enhanced by 3D and built into strong
computational biomarkers. This added to the use of a non-invasive and
accessible technique such as OCT is fundamental to provide feasible
early detection in real clinical practice. In this work, we implement
a multi-view approach that integrates data from macula-centered and
optic-disc-centered views: first by automatically segmenting 2D and
3D cubes from each view, and then by combining them to use the
segmented and generated features to perform disease screening. Our
pioneering approach is the first in automatically segment retinal layers
in macular and optic disc OCT and then using both views information to
classify patients among four major NDDs, being one of the few works to
consider several at the same time. We firmly believe this methodology
marks a significant advancement towards enhancing diagnostic preci-
sion and early detection of these diseases. The principal contributions
of our study include:

• This research represents a new effort to segment and analyze the
key retinal layers across four major NDDs in a few explored field.

• We are at the forefront of examining these four diseases within the
framework of pathological screening, thus enhancing diagnostic
capabilities for neurodegenerative conditions.

• We introduce the first multi-view analysis that incorporates data
from both macula-centered and optic disc-centered perspectives.
This novel approach effectively leverages the depth of informa-
tion contained within OCT images to enhance diagnostic accu-
racy.

To illustrate our proposal, Fig. 1 shows an schematic of our com-
lete pipeline, with two distinct modules: segmentation and classifi-

cation. Each has two branches: 3D macular and single-scan optic-disc
view.

This manuscript is organized as follows: Section 2 delineates the
ata and the segmentation and classification backbones utilized in this
tudy, along with a detailed explanation of the experimental setup
nd the evaluation strategy. Section 3 presents the methodology em-
loyed to address each task: first the segmentation architecture used

for macular and optic-disc view, and secondly the proposal for patho-
logical screening based on segmentation and other features. Section 4
showcases the results obtained from each approach. Finally, Section 5
summarizes the key findings and conclusions of this research.
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Fig. 1. General overview of our methodology: Segmentation and classification modules, with a macular and optic-disc branch each.
2. Materials and methods

In this section the materials and methods used in our pipeline
are described. First, the datasets for segmentation and classification
for each view (macular and optic disc). Then, the backbone used in
segmentation, and the ones needed for the classification task: a macular
feature extractor and a classifier.

2.1. Dataset

For this work, a main dataset was available from which subsets
were made according to the task to be solved. All the samples were
acquired by a Heidelberg SPECTRALIS®imaging platform and assessed
by a neurophthalmologist with a focus on neurophthalmology, a neu-
ropathologist with a focus on demyelinating illnesses, and a neu-
ropathologist with a focus on movement disorders and dementia. The
samples belonged to patients from five classes, four of them being the
diseases previously discussed (AD, PD, MS, ET), and the fourth being
healthy controls (HC). NDDs patients were diagnosed by experts, while
HC contains patients who were referred for testing but no ocular ab-
normalities were found. Exclusion criteria for all participants included
best-corrected visual acuity less than 0.5 (Snellen chart), refractive
errors greater than 5 diopters of spherical equivalent or 3 diopters of
astigmatism, intraocular pressure greater than 20 mmHg, and media
opacities (nuclear color/opalescence, cortical or posterior subcapsular
lens opacity > 2, according to the Lens Opacity Classification System
III). In addition, patients with glaucoma, retinal diseases or systemic
conditions affecting vision were excluded. All procedures followed the
Declaration of Helsinki, and written informed consent was obtained
from all participants. The study was approved by the Ethics Committee
of Hospital Miguel Servet (CEICA: Comité Ético de Investigaciones
Científicas de Aragón) with registration number C.I. PI21/113. No
manual correction was applied to the OCT output.

For the segmentation subsets, we had ground truth annotations with
two semantic classes: the Retinal Nerve Fiber Layer (RNFL), and a class
grouping the remaining retinal layers between the Ganglion Cell Layer
and Bruch’s Membrane (GCL-BM). The subset used to validate the mac-
ular segmentation methodology consisted of 1250 B-scans organized
into 50 OCT cubes composed of 25 equally spaced macular B-scans
each taken in line-raster pattern over the macular area. There were
10 samples of size 512 × 496 per class, from 50 different patients
in total. These types of OCT scans are commonly used in medical
research for thickness measuring [36–39], so for the sake of replicating
a real clinical scenario, we used this configuration of OCT cubes. The
subset for optic disc segmentation was formed by 90 one-line scans
taken in the parapapillary area, measured along a 3.45-mm-diameter
around the optic disc, considering 18 1-line OCT scans per class, being
each one from a different patient. Each of the segmentation subsets
were randomly divided into three splits, following a 70–10%–20%
3 
Table 1
Segmentation dataset used for macular view.
Each case correspond to a unique patient.
Patient type Macular view

Cases B-scan/case

HC 10 25
AD 10 25
ET 10 25
MS 10 25
PD 10 25
Total 50 25*10*50=1,250

Table 2
Segmentation dataset used for optic disc
view. Each case correspond to a unique pa-
tient.
Patient type Optic disc view

Cases B-scan/case

HC 18 1
AD 18 1
ET 18 1
MS 18 1
PD 18 1
Total 90 1*18*90=900

Table 3
Classification dataset, indicating number of samples. Each case
correspond to a unique patient with information from both
views. The amount of B-scans per case range from 25 to 61
since different macular cube densities were used.
Patient type Cases Macular view Optic disc view

B-scan/case B-scan/case

HC 81 25–61 1
AD 29 25–61 1
ET 10 25–61 1
MS 166 25–61 1
PD 82 25–61 1
Total 368 9,500 1*368=368

proportion for the training, validation and test sets, with the same
amount of patients from each class (see Tables 1–3).

Regarding the classification subset, for each class, we selected the
most recent acquisition with both macular and optic disc information
for each patient. Thus, we had 81, 29, 10, 166 and 82 patients for HC,
AD, ET, MS and PD, respectively, where we had macular and optic disc
information. 80% of this classification dataset was dedicated to training
and 20% to test, stratifying per class in each set.
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Fig. 2. Diagram of nnU-Net framework.
2.2. Segmentation backbone

In this work, we have exploited the potential provided by the
nnU-Net architecture [40]. By using a set of fixed parameters, inter-
dependent rules and empirical decisions, the authors created a self-
configured deep learning segmentation method validated on 23 public
datasets used in international biomedical segmentation competitions,
where it surpassed most existing approaches. Its main structure is
shown in Fig. 2 as an overview. Regarding parameters, there are three
types: rule-based, fixed and empirical. The rule-based parameters are
automatically used to configure hyperparameters of the model, like
the learning rate, batch size, and number of epochs, based on the
properties of the dataset. The fixed parameters are hyperparameters
that are the same for all datasets and experiments, like the number
of feature maps or the number of filters in the convolutional layers.
Empirical parameters are those tuned empirically during training, such
as the dropout rate and the weight decay coefficient. Finally, network
training configurations are the settings related to the training process,
such as the optimizer used for gradient descent, the loss function used
for backpropagation, and the weight initialization method, that are
configured based on the previous data contained in the framework.
Thus, nnU-Net does not represent a new method, but a powerful
systematic approach to all the steps in the training pipeline of semantic
segmentation models, which have shown successful results in the med-
ical domain, specially in MRI image [41–43]. However, at the time of
writing, nnU-Net has not yet been used in OCT imaging, so this would
be the first work to do so.

Most of the parameters used for this work were defined by the
method itself. The architecture template is fixed, and it is based on the
original U-Net and its 3D variation, with some minor variations over
the original one. The initial number of feature maps was set to 32 and
doubled with each downsampling operation as a compromise between
performance and memory load. The final number of feature maps was
limited to 320 for 3D and 512 for 2D U-Nets to control the final model
size. The models trained for 1000 epochs, being one epoch an iteration
over 250 mini-batches, and following a 5-fold cross-validation strategy.
The weights were learned using Stochastic gradient descent with Nes-
terov momentum and an initial learning rate of 0.01, which decayed
following the poly learning rate strategy (1 − 𝑒𝑝𝑜𝑐 ℎ∕𝑒𝑝𝑜𝑐 ℎ𝑚𝑎𝑥)0.9. Cross-
entropy (Eq. (1)) and Dice loss (Eq. (2)) were summed as the loss
function used: for each deep supervision output, a corresponding down-
sampled ground truth segmentation mask is used for loss computation.
The training objective is the sum of the losses  at all resolutions,
 = 𝑤1 × 1 + 𝑤2 × 2 + ⋯. Thus, the weights (𝑤) are halved with
each decrease in resolution, resulting in 𝑤2 = 1

2 × 𝑤1, 𝑤3 = 1
4 × 𝑤1,

etc. and are normalized to sum to 1. Also, data augmentation was
performed, and it included rotations, scaling, Gaussian noise and blur,
brightness, contrast, simulation of low resolution, gamma correction
and mirroring. This hyperparametrization and technique selection is
the result of the domain knowledge condensation of nnUNet authors
4 
after thorough experimentation with multiple medical image datasets
and tasks.

𝐶 𝐸 = − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑦𝑖,𝑐 log(𝑝𝑖,𝑐 ) (1)

𝐷 𝑖𝑐 𝑒 = 1 − 2
∑𝑁
𝑖=1

∑𝐶
𝑐=1 𝑦𝑖,𝑐𝑝𝑖,𝑐

∑𝑁
𝑖=1

∑𝐶
𝑐=1 𝑦𝑖,𝑐 +

∑𝑁
𝑖=1

∑𝐶
𝑐=1 𝑝𝑖,𝑐

(2)

As preprocessing, intensity is normalized by z-scoring. Then, images
are resampled to the same target spacing by third-order spline interpo-
lation. This target spacing is the median value of the spacings found
in the training cases computed independently for each axis. The patch
size was initialized to the median image shape after resampling and
iteratively reduced while adapting the network topology accordingly
until the network can be trained with a batch size of at least 2 given
GPU memory constraints. As for the empirical parameters, connected
component-based post-processing was applied to every class. All these
parameters were either fixed or automatically selected by the frame-
work, but a small modification was made to be able to use the models of
the 3D U-Net cascade configuration. By default, the authors considered
that this approach is only applicable to large images, so only if the
patch size of the 3D full resolution U-Net covers less than 25% of the
median resampled image shape. In this case, the images used did not
reach this minimum, so the parameter controlling this limit was mod-
ified to just 100% of the median shape of the data in order to be able
to test this configuration on our data. This affected the configuration
for the low-resolution 3D U-Net, since with this modification it was
iteratively increasing the target spacing while reconfiguring the patch
size, network topology and batch size as already described until the
configured patch size covers 100% of the median image shape. The
batch size was automatically set to 12 for 2D, 2 for cascade and 3D,
based on a strategy where the minimum was 2 and it was increased
until the GPU is fully used, capping it so the total number of voxels in
the mini-batch do not exceed 5% of the total number of voxels of all
training cases, to prevent overfitting.

2.3. Classification backbones

For the classification problem, we use two different backbones: a
feature extractor and a classifier. The first one is a pre-trained, self-
supervised feature extractor that gets the representation of the different
macular data. Specifically, macular data was the most complex and
heterogeneous in terms of formats, so a generic feature extractor was
needed to homogenize the information extraction and identification
of possible computational biomarkers. To this end, we use the DINO
framework [44], which has been used previously for different medical
imaging tasks [45–47]. Following their strategy, we have the following
main elements, simplified for the case where we have only a pair of
views. First, the image 𝑥 is randomly transformed into a set of different
views, 𝑥1 and 𝑥2 in this case, which are the inputs to the student and
teacher networks 𝑔 𝜃𝑠 and 𝑔 𝜃𝑡, respectively. These architectures 𝑔 are
composed by a projection head ℎ and a backbone 𝑓 , so 𝑔 = ℎ◦𝑓 . In
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Fig. 3. Diagram illustrating how our feature extractor, DeiT-S, is used in our method, and how is previously trained following DINO strategy.
our case, ℎ is a 3-layer MLP with hidden dimension 2048 followed by
𝑙2 normalization and weight normalized fully connected layer with 𝐾
dimensions, and 𝑓 is the DeiT implementation of ViT [48], in particular
the DeiT-S. DeiT has two main features. The first one is using hard-label
distillation. They use the decision of the teacher model as a true label,
and it is defined in Eq. (3), being 𝑍𝑠 the logits of the student model, 𝑦
the ground truth label, 𝜓 the softmax function, and 𝑦𝑡 = ar g max𝑐 𝑍𝑡(𝑐)
the hard decision of the teacher. This definition is valid for soft-labeling
if we include a smoothing term 𝜀, being 1 − 𝜀 for the true label, and
the remaining for the other classes. In our case, we used soft-label
distillation, with 𝜀 being 0.1.

ℎ𝑎𝑟𝑑 𝐷 𝑖𝑠𝑡𝑖𝑙 𝑙 𝐺 𝑙 𝑜𝑏𝑎𝑙 = 1
2
𝐶 𝐸 (𝜓(𝑍𝑠), 𝑦) + 1

2
𝐶 𝐸 (𝜓(𝑍𝑠), 𝑦𝑡) (3)

The second feature of DeiT is the inclusion of a distillation token
added to the initial patches and class tokens, and it acts like the latter. It
interacts with the other embeddings via self-attention and the network
outputs it after the last layer. It allows for the model to learn from
the output of the teacher, as in regular distillation, while remaining
complementary to class embedding. DeiT was created focusing on
knowledge distillation, so a strong image classifier as teacher model
was assumed to be available. However, in self-supervised learning as
in DINO’s approach, the teacher network is not provided beforehand,
so we need to build it based on the iterations of the student network.
The teacher parameters 𝜃𝑡 are updated in accordance with the student
parameters 𝜃𝑠 using a exponential moving average. Then, the teacher
network is followed by a centering and sharpening operation, which
is done to avoid the collapse of the network, a common problem
in self-supervised learning. Both student and teacher 𝐾 dimensional
feature vectors are normalized with temperature softmax over feature
dimension. A stop-gradient operator is set for the teacher network so
the gradients are propagated only through the student. Finally, the
similarity between the feature vectors is measured using CE loss. In our
case, as in other works [45,46,49], we extracted the features from the
macular data with the DeiT-S model pretrained in LVD-142M, a dataset
of more than 142 millions of images extracted by the DINO authors
from several other datasets like ImageNet-22k, SUN397 and DTD,
among others. Thus, although preliminary experiments were done on
OCT fine-tuning, no benefits were obtained from this strategy and only
pretrained in LVD-142M models were used. Fig. 3 shows a simplified
illustration of how our method uses this feature extractor, and how it
is pre-trained.

The classifier backbone is a Histogram-based Gradient Boosting
Classification Tree (HGBCT) [50]. It is an ensemble learning algorithm
used for classification tasks. It combines the power of Histogram-based
5 
Gradient Boosting, which uses histograms to discretize the feature space
and improve efficiency, with Classification Trees, which create a tree-
like structure to make decisions based on feature values. HGBCT builds
a sequence of classification trees using histogram-based optimization,
allowing for faster training times and efficient memory usage, making
it well-suited for large datasets. It provides accurate and robust models
with good generalization to new data, making it a popular choice
for various machine learning tasks in the medical domain [51–53].
Given the nature of the features considered, we chose this traditional
classifier due to their ability to handle engineering features designed
to capture specific, predefined information from the data. They can
provide interpretability, which is a key factor in medical diagnostics.
CNN-based classifiers are powerful methods for high-dimensional raw
data, but lack transparency and are computationally intensive, making
them less suitable for scenarios where a fast and clear explanation
is intended. In particular, we used the scikit-learn implementation,
trained during 300 iterations with an initial learning rate of 0.01 and
BCE as loss. The maximum number of leaves, depth for each tree and
proportion of randomly chosen features in each and every node split
were 31, 10 and 1, respectively. Also, given the class imbalance, class
weights were pondered towards the classes with less samples.

2.4. Software and hardware resources

The Python (v. 3.8.10) implementation of nnU-Net provided by the
authors of the architecture has been used (v. 1.7.0). The main libraries
used otherwise were PyTorch (v. 1.10.1) and scikit-learn (v. 1.2.0). As
for hardware, a machine was used with a NVIDIA RTX A6000 GPU, an
AMD Ryzen Threadripper 3960X CPU, and 256 GB RAM.

2.5. Evaluation

The metrics used to obtain a complete analysis of the performance
of the models trained were accuracy (Eq. (4)), precision (Eq. (5)),
specificity (Eq. (6)), sensitivity (Eq. (7)), Dice (Eq. (8)) and F1-Score
(Eq. (9)), defined as follows:

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 (4)

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (5)

𝑆 𝑝𝑒𝑐 𝑖𝑓 𝑖𝑐 𝑖𝑡𝑦 = 𝑇 𝑁
𝐹 𝑃 + 𝑇 𝑁 (6)

𝑇 𝑃
𝑆 𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇 𝑃 + 𝐹 𝑁 (7)
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Fig. 4. Fundus image indicating from where the scans of the macular-centered volumes and optic-disc scans were obtained. The green arrows indicate the place and direction of
these scans, 25 for macular volumes, while 1 one-line scan for optic-disc.
𝐷 𝑖𝑐 𝑒 = 2 ∗ 𝑇 𝑃
2 ∗ 𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁 (8)

𝐹1 − 𝑆 𝑐 𝑜𝑟𝑒 = 2 ∗ 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆 𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑆 𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (9)

where TP, FP, TN and FN are True Positive, False Positive, True
Negative, and False Negative, respectively. Additionally, to evaluate
the shape of the obtained segmented layers, two additional metrics
based on the Mean Absolute Error (MAE) were considered. Considering
a predicted segmentation mask for a specific layer 𝑀𝑝 of size H×W and
its ground truth 𝑀𝑔 𝑡, we can compute the MAE𝑐 as a measure of contour
error by calculating the MAE of the thickness of the map per column
for the prediction (𝑉𝑝), and ground truth (𝑉𝑔 𝑡), both defined in Eq. (10).
Thus, MAE𝑐 definition will be as defined in Eq. (11) and measured in
micrometers by multiplying by 4 the result in pixels (scale: 1 pixels =
4 micrometers). Additionally, we can also compute the full thickness
error by computing the predicted thickness 𝑇𝑀𝑝

and the ground truth
𝑇𝑀𝑔 𝑡 as the sum of the corresponding 𝑉𝑝 and 𝑉𝑔 𝑡 vectors, and then
compare it by MAE means, thus defining MAE𝑡, as in Eq. (12). By using
both, we get a thorough evaluation of the thickness extracted, which
is the biomarker used in the clinical domain. MAE𝑡 focuses on this by
simply comparing total thickness of the layer, while MAE𝑐 does a exam
comparing each column individually.

𝑉𝑥 =
[

𝑉𝑥𝑖 … 𝑉𝑥𝑊
]

, 𝑉𝑥𝑖 =
𝐻
∑

𝑗=1
𝑀𝑥𝑖𝑗 (10)

𝑀 𝐴𝐸𝑐 (𝑀𝑝, 𝑀𝑔 𝑡) =𝑀 𝐴𝐸(𝑉𝑝, 𝑉𝑔 𝑡) = 1
𝑊

𝑊
∑

𝑖=1
|𝑉𝑝𝑖 − 𝑉𝑔 𝑡𝑖 | (11)

𝑀 𝐴𝐸𝑡(𝑀𝑝, 𝑀𝑔 𝑡) = |𝑇𝑀𝑝
− 𝑇𝑀𝑔 𝑡 |, 𝑇𝑀𝑥

=
𝑊
∑

𝑖=1
𝑉𝑥𝑖 (12)

3. Methodology

Our methodology comprises the resolution of two tasks: segmen-
tation of retinal layers, and classification of the information obtained
among the different screening approaches. The first task is solved by
an automatic retinal layer segmentation model that produces maps
indicating two relevant layers from two types of views: macular and
optic-disc. Then, these maps are transformed into feature vectors: the
macular maps by using a self-trained feature extractor, and the optic-
disc ones with a 1D projection. These feature vectors are used as input
for a machine learning classifier to perform the pathological screening.
In this section the details of each task and method are described.
6 
3.1. Retinal layers segmentation

The layers considered in this task were the Retinal Nerve Fiber
Layer (RNFL), and those between the Ganglion Cell Layer and Bruch’s
Membrane (GCL-BM). For this purpose, we consider two views, as
depicted in Fig. 4. For the first one centered on macula, we had
obtained image volumes which provide complete information of the
retinal layers disposition all over the macular area. For the second,
centered on the optic disc, we considered the retinal layers disposition
in the parapapillary area measured around the optic disc. We used
transfer learning form the previous view to improve the results. Thus,
we can obtain crucial information on how the different NDDs studied
affect each specific retinal layer and zone.

3.1.1. Macular view
As shown in Fig. 5, we use nnU-Net architecture to segment two

layers in 25 line OCT scans in macular view. This backbone was used
following three different approaches depending on the configuration
used: a 2D classical setting (2D) U-Net; a 3D multi-scale cascade
configuration (3DC) which operates on downsampled images, and the
second is trained to refine the segmentation maps created by the former
at full resolution; and the 3D full resolution approach (3D). To validate
this methodology, 50 macula-centered OCTs of 25 scans each were
available. Each sample was from a different patient, with 10 patients
for each NDD considered (AD, ET, MS, PD) and healthy controls (HC).
Particularly, each class contributed with 175 B-scans for training (875
in total), 25 B-scans for validation (125 in total) and 50 for test (250
in total).

3.1.2. Optic disc view
For this view we decided to follow a transfer learning strategy. A

specific training for this view was required despite its similarities to
macular view due to the changes in morphology and arrangement of
the layers between zones. Also, we had less samples for this view,
which set data scarcity as a problem. Therefore, we took advantage
of the relationship between the two types of images and trained a
macula-centered model which weights were used as initialization in
the optic-disc training. The whole methodology of this approach is
summarized in diagram 6. Since transfer learning was being used, it was
decided to test how the number of samples used for training affected
models trained using macular weights, and models trained from scratch
in the traditional way. Specifically, training sets of 4, 8, 16, 24, 32,
40 48 and 56 samples were tested, being 56 the maximum amount of
samples available for training following the aforementioned division of
the three sets.
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Fig. 5. Diagram of the macular-view segmentation methodology.
Fig. 6. Diagram of the optic-disc-view segmentation methodology.

3.2. Neurological diseases screening

For the patient screening we have followed two different strategies
depending on the information used: single-view when we use either
macular or optic disc information, and multi-view when we use both.
Each of these views was tested with the raw image information projec-
tion, the RNFL thickness, the GCL-BM thickness, and both RNFL and
GCL-BM thickness. In the case of the macular view, we also considered
the 2D and 3D variants it can provide. For each strategy with differ-
ent information, we have different screening approaches to study the
separability of the classes considered, focusing on examining controls
against NDD patients, each NDD patient against all the other diseases
considered, and finally each class against each one of the others. In
particular, the six approaches are: (i) HC VS NDD (AD + ET + MS +
PD), (ii) AD VS NDD (ET + MS + PD), (iii) ET VS NDD (AD + MS +
PD), (iv) MS VS NDD (AD + ET + PD), (v) PD VS NDD (AD + ET + MS)
and (vi) All VS All (HC VS AD VS ET VS MS VS PD).
7 
3.2.1. Single view: Macula
Complex data can be transformed into feature vectors used for

classification [54,55]. Here our macular data with different represen-
tations, such as raw B-scans or segmentation maps, are used as input
of our feature extractor, a pretrained DeiT model which generates the
vector used for the patient screening. First, we have used the direct
projection of the original volume through the Z axis maps of size
496 × 𝑁 , where 𝑁 is the number of the slices of the volume. We
have also applied the same projection, but for each segmented layer
and the sum of both, so we had a map of the same size but indicating
the thickness of the desired element. Since these are 3D scans, we also
used the raw and segmented volumes. Finally, a combination of the 2D
and 3D information was used.

3.2.2. Single view: Optic disc
For the optic disc view, the information extracted is the same as

in the macular view, but since we only have one scan per sample, the
information maps are 1D vectors. The original scans had different sizes,
so we limited the vectors size to the most common width in the original
scans: 1036.

3.2.3. Multi-view
In this strategy we have used the single-view data already described:

both macular and optic disc information. These samples are processed
as indicated in Fig. 7, producing three main approaches to this multi-
view methodology based on the type of information considered: 2D, 3D
and 2D+3D.

4. Results

In this section, we present the results of the validation of our
methodology. It should be noted that to assess the stability of our
methods, each experiment was repeated 3 times. Hence, the metrics
presented here are the average of those repetitions.

4.1. Retinal layers segmentation

In this section, the results for the first task, retinal layer segmen-
tation, are shown for each view. The first, macular view, is given in
3D OCT scans that are processed following three different approaches:
2D, cascade and 3D. Then, the second view, optic disc is composed
by single-line images. Taking advantage of the already trained macular
models, a transfer learning to optic-disc view study is shown.
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Fig. 7. Summary diagram of the classification methodology.
Table 4
Mean test and corresponding standard deviation results obtained with 2D approach.

Retinal Nerve Fibre Layer

Class Accuracy Precision Specificity Sensitivity Dice

HC 0.998 ± 0.0005 0.946 ± 0.0107 0.999 ± 0.0003 0.954 ± 0.0061 0.950 ± 0.0061
AD 0.997 ± 0.0005 0.937 ± 0.0240 0.999 ± 0.0006 0.933 ± 0.0119 0.935 ± 0.0119
PD 0.998 ± 0.0004 0.937 ± 0.0134 0.999 ± 0.0004 0.963 ± 0.0045 0.955 ± 0.0045
MS 0.998 ± 0.0002 0.961 ± 0.0061 0.999 ± 0.0001 0.947 ± 0.0111 0.954 ± 0.0063
ET 0.997 ± 0.0005 0.936 ± 0.0213 0.999 ± 0.0004 0.944 ± 0.0132 0.940 ± 0.0138

Ganglion Cell Layer - Bruch’s Membrane

Class Accuracy Precision Specificity Sensitivity Dice
HC 0.997 ± 0.0003 0.988 ± 0.0016 0.998 ± 0.0003 0.990 ± 0.0018 0.989 ± 0.0010
AD 0.994 ± 0.0028 0.987 ± 0.0015 0.998 ± 0.0002 0.963 ± 0.0224 0.975 ± 0.0010
PD 0.997 ± 0.0005 0.987 ± 0.0017 0.998 ± 0.0002 0.987 ± 0.0038 0.988 ± 0.0022
MS 0.997 ± 0.0003 0.989 ± 0.0022 0.998 ± 0.0003 0.990 ± 0.0022 0.989 ± 0.013
ET 0.996 ± 0.0003 0.986 ± 0.0052 0.998 ± 0.0008 0.987 ± 0.0011 0.986 ± 0.0022
4.1.1. Macular view
2D approach. The test results for the approach using a classical 2D
setting U-Net are shown in Table 4. Particularly, MAE analysis is
depicted in Table 5. As for the mean values of the RNFL class, the metric
with the best values was specificity, reaching almost perfect value for
all patient types. In the other metrics, we have that the patients with
segmentations with the best values are PD, except in precision which
are those with MS. Regarding the analysis with MAE, we find a different
situation, since it is MS and ET that obtain better metrics for MAE𝑐 and
MAE𝑡, respectively. With the GCL-BM class we have a similar result in
specificity, and in the other metrics the best results are achieved for
HC and MS patients. In the MAE analysis, ET again obtains the lowest
errors, this time in both MAE𝑐 and MAE𝑡. The standard deviation is
quite low for all these mean values, showing how robust the models
were. Between the two classes, the only notable peak in this regard
is in the precision metrics, which has a slightly higher deviation for
RNFL than GCL-BM. For each class individually, we can see the highest
deviation across patient types in sensitivity and MAE𝑡, whose values
for RNFL range from 3.732 to 3.852 micrometers and from 3.116 to
4.056 micrometers, respectively, and for GCL-BM go from 3.852 to
3.960 micrometers and from 3.472 to 9.904 micrometers, respectively.
In any case, the variations between these metrics depending on the type
of patient are not too large, given their definitions.

3D multi-scale cascade approach. The test results for this approach using
a classical cascade setting U-Net are shown in Table 6. Particularly,
MAE analysis is depicted in Table 7. As for the RNFL class, in the first
analysis, the patient group with better mean values is PD for every
metric except precision, in which case MS obtains the best value. In
the second analysis with MAE, we see that these two classes obtain the
lowest MAE: lowest MAE for MS, and lowest MAE for PD. Regarding
𝑐 𝑡

8 
Table 5
Mean MAE and corresponding standard deviation re-
sults obtained with 2D approach. Metrics are depicted
in micrometers.

Retinal Nerve Fibre Layer

Class MAE𝑐 MAE𝑡
HC 2.300 ± 0.6532 3.536 ± 0.6616
AD 2.652 ± 0.5176 4.056 ± 0.9796
PD 2.792 ± 0.9164 3.900 ± 0.7296
MS 2.108 ± 0.2004 3.332 ± 0.3616
ET 2.140 ± 1.8732 3.116 ± 2.6180

Ganglion Cell Layer - Bruch’s Membrane

Class MAE𝑐 MAE𝑡
HC 2.984 ± 0.2020 4.600 ± 0.4636
AD 6.176 ± 2.8628 9.904 ± 4.6592
PD 3.172 ± 0.5552 4.552 ± 0.7848
MS 2.764 ± 0.3380 4.204 ± 0.4228
ET 2.404 ± 0.2020 3.472 ± 2.6924

the GCL-BM class, in the first analysis, MS obtains the best values in all
metrics except for sensitivity and Dice, where HC gets the best mean
values. In the MAE metrics, MS obtains the lowest values for both
MAE types. In all these analysis, the mean values have a really low
standard deviation, showing how robust and stable these models were.
Comparing RNFL and GCL-BM classes in terms of standard deviation,
we can see notable peaks in this value for RNFL precision, sensitivity
and Dice, and also slightly above in the MAE analysis. Among different
patient types, we do not have high variation between the RNFL and
GCL-BM metrics, neither.
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Table 6
Mean test and corresponding standard deviation results obtained with 3D multi-scale cascade approach.

Retinal Nerve Fibre Layer

Class Accuracy Precision Specificity Sensitivity Dice

HC 0.997 ± 0.0009 0.932 ± 0.0133 0.998 ± 0.0005 0.929 ± 0.0223 0.930 ± 0.0151
AD 0.997 ± 0.0009 0.920 ± 0.0307 0.998 ± 0.0006 0.931 ± 0.0267 0.925 ± 0.0231
PD 0.997 ± 0.0005 0.920 ± 0.0140 0.999 ± 0.0003 0.934 ± 0.0158 0.941 ± 0.0106
MS 0.997 ± 0.0007 0.934 ± 0.0292 0.999 ± 0.0004 0.925 ± 0.0258 0.929 ± 0.0167
ET 0.997 ± 0.0008 0.928 ± 0.0308 0.998 ± 0.0006 0.923 ± 0.0196 0.925 ± 0.0213

Ganglion Cell Layer - Bruch’s Membrane

Class Accuracy Precision Specificity Sensitivity Dice
HC 0.996 ± 0.0004 0.984 ± 0.0019 0.998 ± 0.0003 0.988 ± 0.0024 0.986 ± 0.0015
AD 0.996 ± 0.0006 0.984 ± 0.0021 0.998 ± 0.0003 0.984 ± 0.0032 0.984 ± 0.0015
PD 0.996 ± 0.0006 0.984 ± 0.003 0.998 ± 0.0005 0.986 ± 0.0015 0.985 ± 0.0025
MS 0.996 ± 0.0008 0.986 ± 0.0053 0.998 ± 0.0008 0.987 ± 0.0039 0.986 ± 0.0029
ET 0.996 ± 0.0008 0.982 ± 0.0033 0.997 ± 0.0005 0.986 ± 0.0051 0.984 ± 0.0039
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Table 7
Mean MAE and corresponding standard deviation re-
sults obtained with 3D multi-scale cascade approach.
Metrics are depicted in micrometers.

Retinal Nerve Fibre Layer

Class MAE𝑐 MAE𝑡
HC 3.436 ± 1.0220 4.496 ± 1.1464
AD 3.664 ± 1.1232 4.376 ± 0.6352
PD 3.264 ± 0.8180 4.200 ± 0.4152
MS 3.212 ± 0.7944 4.248 ± 0.6688
ET 3.720 ± 1.3048 4.464 ± 1.1808

Ganglion Cell Layer - Bruch’s Membrane

Class MAE𝑐 MAE𝑡
HC 3.768 ± 0.4324 5.852 ± 0.7088
AD 4.156 ± 0.5560 5.932 ± 0.7080
PD 3.772 ± 0.4824 5.816 ± 0.7808
MS 3.524 ± 0.7464 5.276 ± 0.7068
ET 3.820 ± 0.4324 5.604 ± 1.3040

3D full resolution approach. The results for the 3D setting U-Net are
shown in Table 8 and, in particular, MAE analysis is depicted in Table 9.
For the RNFL class, the best mean values were obtained for specificity.
The remaining metrics provided the best results mainly for PD, except
or precision where ET had the best results. In the MAE analysis, ET

had also the best results. Regarding the GCL-BM class, the situation is
imilar for specificity, although there is not a clear class favored by the

segmentations, since all are pretty close and there is not a clear winner
n each metric. In the MAE metrics we have ET having the best MAE𝑐 ,
nd PD with the best MAE𝑡. In these cases, the standard deviation is

quite low again, with a peak in precision between RNFL and GCL-BM.
Particularly, RNFL had the highest peak of deviation at precision, with
alues ranging from 0.942 to 0.960, and GCL-BM at sensitivity with
alues between 0.979 and 0.989. In both cases in the MAE analysis,
AE𝑡 had the highest standard deviation with values going from 3.292

to 4.000 micrometers for RNFL, and from 4.380 to 8.984 micrometers
for GCL-BM. Again, the differences among these metrics were not quite
significant.

Discussion. The cascade approach produced good results, with a mean
ice 0.930 ± 0.0124 for RNFL and 0.985 ± 0.0008 for GCL-BM.
hese metrics indicate successful model performance for both classes
nd robust models across all repetitions. However, these results do

not outperform the remaining approaches, probably because cascade
approach is thought to be used with higher-dimensional 3D images. In
our case, our images are not that big, so when downsizing them, not all
potential is extracted from this approach due to image sizes. This might
happen because, when downsizing the images, too much information is
lost due to the small initial size. Particularly, the bigger layer GCL-BM
is better represented because it has more pixels, so when downsizing,
not as much information as with the RNFL is lost. This aligns well with
 O
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the nnU-Net methodology, which inherently considers the image size
used as not suitable for this type of analysis.

In general, the 2D approach provided quite satisfactory results that
ould be summarized with a mean Dice 0.947 ± 0.0003 for RNFL

and 0.985 ± 7.392e−5 for GCL-BM. Not only is this a significant
etric of successful model performance, but also the low standard

deviation indicates the robustness of the models. Regarding the metrics
hemselves, the GCL-BM class performs better probably because it is
he major class, ignoring the background. In contrast, RNFL is much
maller and thinner, which makes it more variable and therefore its
hape is more affected at each cut.

In the 3D scenario, the trend in these results is not only maintained,
ut improved compared to the 2D approach, as Dice scores with values

0.950 ± 0.0008 and 0.987 ± 0.0024 were obtained for RNFL and GLC-
BM, respectively. The improvement 3D provides over 2D might be
given by the addition of the 3D neighboring information to the training,
so consecutive slices information improve the segmentation. However,
he metrics increase being small can happen due to the large distance

between slices. If the slices were closer, the neighboring information
could be more related and provide a even more accurate segmentation.
Related to this may also be the increase in the standard deviation for
the GCL-BM class. In addition, the density needed for each pathology
and layer to be segmented could be different, as it can be observed
that for AD the best approach is usually 3D, while for PD and MS all
are more or less equal. This could lead one to think that the approach
of the acquisition itself could be relevant when trying to segment the
layers of a patient’s particular pathology.

With regard to where these results are placed in relation to other
work in the same domain, at the time of writing, there is only one
published work on this topic [24]. Overall, our results from the 2D
and 3D approaches outperform the published ones, and to this end,
Table 10 shows which approaches in this work produced the best
metrics for each segmented class and each patient type. In general,
3D tends to provide the best results, except for specific cases such as
HC, where 2D has produced the best metrics in all cases. In the MAE
nalysis it can also be seen that 2D and 3D tie in the number of cases

where they produce the best results. As mentioned above, this may be
ecause the near pixel information incorporated in the 3D approach
as the potential to outperform the 2D approaches, but in our case the
lices are not sufficiently dense for the improvement to be constant
n all aspects. With respect to the paper taken as a reference, the U-
et used and configured by nnU-Net has generally produced better

results than the MGU-Net used in that paper. Although it is a two-
hase architecture specialized in layer segmentation, in this case our
utomatically configured U-Net has generally produced better results,
hich could be due to the fact that the automatic configuration of nnU-
et works in a satisfactory way, managing to find the best parameters.

n the case of the 3D approach, the improvement is again probably due
o the incorporation of the neighborhood information by treating the
CT slices as a single cube. This behavior has been seen not only in
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Table 8
Mean test and corresponding standard deviation results obtained with 3D approach.

Retinal Nerve Fibre Layer

Class Accuracy Precision Specificity Sensitivity Dice

HC 0.997 ± 0.0008 0.942 ± 0.0125 0.999 ± 0.0004 0.951 ± 0.0183 0.946 ± 0.0089
AD 0.998 ± 0.0004 0.946 ± 0.0271 0.999 ± 0.0005 0.945 ± 0.0133 0.945 ± 0.0143
PD 0.998 ± 0.0004 0.946 ± 0.0035 0.999 ± 0.0002 0.958 ± 0.0059 0.957 ± 0.0037
MS 0.998 ± 0.0003 0.944 ± 0.0309 0.999 ± 0.0004 0.954 ± 0.0043 0.948 ± 0.0155
ET 0.998 ± 0.0003 0.960 ± 0.0118 0.999 ± 0.0003 0.947 ± 0.0177 0.953 ± 0.0071

Ganglion Cell Layer - Bruch’s Membrane

Class Accuracy Precision Specificity Sensitivity Dice

HC 0.997 ± 0.0003 0.987 ± 0.0022 0.998 ± 0.0003 0.988 ± 0.0017 0.988 ± 0.0008
AD 0.996 ± 0.0019 0.987 ± 0.0028 0.998 ± 0.0004 0.979 ± 0.0149 0.983 ± 0.0008
PD 0.997 ± 0.0004 0.987 ± 0.0024 0.998 ± 0.0004 0.989 ± 0.0037 0.989 ± 0.0018
MS 0.997 ± 0.0005 0.990 ± 0.0021 0.998 ± 0.0003 0.988 ± 0.0036 0.989 ± 0.0020
ET 0.997 ± 0.0005 0.987 ± 0.0030 0.998 ± 0.0005 0.989 ± 0.0026 0.988 ± 0.0019
p
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Table 9
Mean MAE and corresponding standard deviation re-
sults obtained with 3D approach. Metrics are depicted
in micrometers.

Retinal Nerve Fibre Layer

Class MAE𝑐 MAE𝑡
HC 2.488 ± 1.9780 3.960 ± 1.0784
AD 2.472 ± 0.4000 4.000 ± 0.5360
PD 2.140 ± 0.3504 3.452 ± 0.4956
MS 2.288 ± 0.3100 3.620 ± 0.5852
ET 2.020 ± 0.4488 3.292 ± 0.6552

Ganglion Cell Layer - Bruch’s Membrane

Class MAE𝑐 MAE𝑡
HC 3.136 ± 0.2780 4.984 ± 0.4428
AD 4.172 ± 1.9320 6.428 ± 3.6192
PD 2.948 ± 0.4072 4.380 ± 0.4220
MS 2.944 ± 0.5112 4.404 ± 0.7312
ET 2.912 ± 0.2780 4.408 ± 0.9596

relation to the previously published paper, but also to our own 2D
onfiguration, which proves that this kind of approach has enough
otential to produce even better results than those presented, which
re already satisfactory.

4.1.2. Optic disc view
At the beginning of this approach, we trained a model with 3D

architecture with macula-centered images, for which it obtained the
0.925 and 0.964 Dice for classes RNFL and GCL-BM, respectively in
test. However, this metric was reduced to 0.765 and 0.840 for those
same classes when using optic disc-centered images, thus reinforc-
ing the need for specialized training on them to obtain performance
comparable to that obtained on macula-centered images. To this end,
we tested two approaches: training from scratch during 1000 epochs,
and training initializing with the weights from the macula-centered
model mentioned during 500 epochs, using for each approach different
training sizes. The results obtained are depicted in Fig. 8 for RNFL and

CL-BM class. In both cases, the metric improves as the number of
samples is increased for both types of training. For RNFL, we have a
imilar evolution for both training types, being always below transfer
earning but very close up to the largest set, except for some small peaks

in the 32 and 40 sample sets. Regarding the standard deviation, transfer
learning is generally slightly more unstable, but both maintain a con-
stant deviation at all sizes. For GCL-BM we have a similar increasing
evolution, but with more pronounced peaks in medium sets and with
transfer learning training being better than scratch more often than
the previous case. Regarding the standard deviation, we have a more
unstable situation, with pronounced peaks. Also, unlike the RNFL class,
here we have that the training from scratch is slightly more unstable
than the one with transfer learning.
 t
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Table 10
Metrics obtained for each patient class and retinal layer by the reference paper [24]
and our 2D and 3D macular approaches. MAE metrics are shown in pixel units for
comparison.

Retinal Nerve Fibre Layer

Class Dice MAE𝑐 MAE𝑡 Paper

HC
0.943 ± 0.001 1.290 ± 0.0300 2.070 ± 0.0600 Ref
0.950 ± 0.0061 0.575 ± 0.1633 0.884 ± 0.1654 Ours (2D)
0.946 ± 0.0089 0.622 ± 0.4945 0.990 ± 0.2696 Ours (3D)

AD
0.926 ± 0.005 1.940 ± 0.2000 2.010 ± 0.1700 Ref
0.935 ± 0.0119 0.663 ± 0.1294 1.014 ± 0.2449 Ours (2D)
0.945 ± 0.0143 0.618 ± 0.1000 1.000 ± 0.1340 Ours (3D)

ET
0.943 ± 0.0020 1.310 ± 0.0500 1.980 ± 0.0700 Ref
0.940 ± 0.0138 0.535 ± 0.4683 0.779 ± 0.6545 Ours (2D)
0.953 ± 0.0071 0.505 ± 0.1122 0.823 ± 0.1638 Ours (3D)

MS
0.947 ± 0.0020 1.180 ± 0.0300 1.810 ± 0.0400 Ref
0.954 ± 0.0063 0.527 ± 0.0501 0.833 ± 0.0904 Ours (2D)
0.948 ± 0.0155 0.572 ± 0.0775 0.905 ± 0.1463 Ours (3D)

PD
0.949 ± 0.0020 2.730 ± 0.6000 2.040 ± 0.0800 Ref
0.955 ± 0.0045 0.698 ± 0.2291 0.975 ± 0.1824 Ours (2D)
0.957 ± 0.0037 0.535 ± 0.0876 0.863 ± 0.1239 Ours (3D)

Ganglion Cell Layer - Bruch’s Membrane

Class Dice MAE𝑐 MAE𝑡 Paper

HC
0.988 ± 0.0000 1.590 ± 0.0300 2.430 ± 0.0600 Ref
0.989 ± 0.0010 0.746 ± 0.0505 1.150 ± 0.1159 Ours (2D)
0.988 ± 0.0008 0.784 ± 0.0695 1.246 ± 0.1107 Ours (3D)

AD
0.978 ± 0.0010 2.690 ± 0.1400 4.200 ± 0.2500 Ref
0.975 ± 0.0010 1.544 ± 0.7157 2.476 ± 1.1648 Ours (2D)
0.983 ± 0.0008 1.043 ± 0.4830 1.607 ± 0.9048 Ours (3D)

ET
0.986 ± 0.0000 1.810 ± 0.0600 2.760 ± 0.1000 Ref
0.986 ± 0.0022 0.601 ± 0.0505 0.868 ± 0.6731 Ours (2D)
0.988 ± 0.0019 0.728 ± 0.0695 1.102 ± 0.2399 Ours (3D)

MS
0.989 ± 0.0000 1.520 ± 0.0400 2.300 ± 0.0500 Ref
0.989 ± 0.0130 0.691 ± 0.0845 1.051 ± 0.1057 Ours (2D)
0.989 ± 0.0020 0.736 ± 0.1278 1.101 ± 0.1828 Ours (3D)

PD
0.986 ± 0.0000 1.810 ± 0.0600 2.760 ± 0.1000 Ref
0.988 ± 0.0022 0.793 ± 0.1388 1.138 ± 0.1962 Ours (2D)
0.989 ± 0.0018 0.737 ± 0.1018 1.095 ± 0.1055 Ours (3D)

For the sake of simplicity, the results by class are presented in
a series of graphs. Taking as reference the Dice and MAE metrics,
Figs. 9 and 10 show the changes for each class considered and for each
atient type in the training from scratch and with transfer learning,
espectively. Regarding the training from scratch and comparing RNFL
o GCL-BM, we have better and more stable metric. In MAE𝑐 , the
ifferences are not that clearly seen, but for Dice and MAE𝑡, we have
latter and more stable evolutions. For each of this metrics, we have
 sense of how each of the patient types perform. We have AD as the
ypically worst performing NDD class. While in the smaller sets is not
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Fig. 8. Mean Dice and STD evolution for the RNFL and GCL-BM class using training from scratch and transfer learning. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Dice and MAE metrics obtained for each class and patient type using different training set sizes and training from scratch. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Dice and MAE metrics obtained for each class and patient type using different training set sizes and training with transfer learning. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
that pronounced, it rapidly gets the biggest errors and highest insta-
bility, and gets little to no improvement with bigger sets, being highly
far from the other classes. In the biggest set, we can see that in most
cases is far away from other NDDs and HC results. PD has sometimes
a similar evolution, having the second worst results in the middle sets,
but in the bigger ones reaches the performance of other classes, like
ET and MS. ET does not usually have clearly the best performance, but
has always an increasing upgrade the bigger the set, surpassing at some
points HC and MS, which are usually the top performing classes. MS
is typically the best performing NDD, with increasingly better results
the bigger the sets and getting to the point HC reaches while other
NDDs do not. In general, HC has the best metrics and although in some
graphs we see an improvement with increasing sizes, its upgrade is way
less noticeable. As for the training with transfer learning, comparing
RNFL to GCL-BM, we have again that RNFL is usually more stable and
does not present an increase in performance as pronounced as GCL-BM
12 
does, which typically has more noticeable and unstable evolutions. The
patient types evolve in a similar fashion as in the training from scratch,
but with smaller differences in the biggest sets. AD is again the worst
class, with clearer improvements with training size but always reaching
the best metrics in the biggest sets, as the other NDDs do. PD has a
similar evolution to AD, but is not that far away from the other classes
as AD. ET usually has a better performance than PD, although not as
satisfactory as MS or HC, and it shows a concerning slight decreasing
in performance tendency as the set size increases. Then MS is the best
NDD, quite close to HC. It has a slighter improvement with increasing
size. HC is not far from MS, but it shows a more clearer tendency to be
top performing class in every set, as although it does not clearly change
from one set to another, it gets quite satisfactory metrics at each point
for each layer class and metric. In general, all these evolutions are more
pronounced in the smaller sets for the transfer learning approach, until
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Fig. 11. Best epoch for each training type at each training size. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

it reaches some stability in the bigger sets, with similar metrics to the
training from scratch.

As for the benefits transfer learning might show during traning,
Fig. 11 shows the average best epoch per traning size used for each
tranining approach. On the one hand, we see how the better model is
achieved later the larger the training set for both cases. On the other
hand, it is observed that the best model is always obtained earlier using
transfer learning.

Discussion. In the transfer learning and training from scratch compar-
ison, we saw that transfer learning did not provide any improvement
metric nor stability-wise, in general. Dice metrics were quite close, but
mainly under the scratch type for every training size, showing that its
special initialization did not provide any benefit in the end test results.
This could be due to the fact that, although related, macula-centered
and optic disc-centered scans are too dissimilar, especially because of
the abundant presence of blood vessels in optic disc scans. However,
interesting features are transferred, since the transfer learning models
converge earlier, as can be seen in Fig. 11 where it is shown in which
epoch the best model is obtained for each type of training. Since these
transfer learning models are obtained in half the number of epochs,
this technique provides models almost as satisfactory as those trained
by scratch in half the time.

Another detail that we can observe in these results are that here,
unlike in the macula-centered scans, the class that obtains the best
result is the RNFL in most cases with a top 3% improvement in Dice.
Also, GCL-BM usually has more noticeable increments in performance
as the training set increases, while RNFL shows slighter upgrades. One
reason for this behavior could again be the presence of blood vessels.
They manifest themselves in the images as distortions that dilute the
edges of the different layers, and the bottom edge of the retinal layers,
so it impacts more the GCL-BM layer. This translates into it being more
difficult to determine the edges of the retinal layers both between them
and with respect to the background, as the artifacts produced by the
vessels are similar to some that manifest in the background.

It is also interesting to note that, despite the slight differences in
performance between one type of training and the other, the same
tendencies are observed in both with respect to each type of patient.
AD has a markedly worse performance. It is true that it improves quite
a lot as samples are included, since in small sets it has notably worse
metrics, which means a much higher increase in performance than in
the other cases. However, in very few occasions it manages to achieve a
performance similar to the other classes, even with models trained with
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the complete data set. ET and PD are in an intermediate position: they
are not consistently worse than AD, but neither do they consistently
achieve the best metrics. In fact, PD has some tendency to follow a
similar evolution as AD at certain times, although it tends to stabilize
for large sets in metrics more similar to the other classes, which offers a
better performance. ET is in this sense superior to PD because it reaches
this stability earlier and even reaches higher metrics than the other
classes in medium sets. However, the classes that do so consistently
are HC and in second place MS. MS needs to increase the number of
training samples before it stabilizes at metrics very close to the best
obtained, which are those achieved by HC. In this sense, HC does not
have an overly steep improvement curve, but tends to remain stable at
the best results regardless of the number of samples in the training set.
There could be a number of reasons for AD performing notably worse.
Given that the samples were selected in such a way that the most recent
ones were taken, we are dealing with patients with 0 to 7 years of
evolution with their disease, however the distribution of this evolution
length is not uniform in all classes: the mean time difference for each
scan with respect to the first one is for each class: AD 0.069 ± 0.371, ET
2.100 ± 3.381, MS 4.615 ± 3.121, PD 1.976 ± 2.529. Here, we can see
that AD presents the most different mean, so it could be related to its
worse performance. Also, as mentioned above, these layers show some
deterioration due to the disease, but it is conceivable that it could affect
also the retinal blood vessels, given the cerebrovascular component that
many of these NDDs can have [56]. Given the effect that these vessels
have on these images and their consequent segmentation, a relationship
between the patient’s deterioration, the presence of vessels and the
differences between types of patients could be suspected, especially
when noting the difference between NDD class and HC. This could
particularly concern those patients more affected by the thinning of the
retinal layers due to their disease: if the layers are smaller and also the
presence of vessels can be exacerbated, patients with a certain disease
could have worse results when analyzing their layers, thus producing
biases such as those found in these results, both when training the
models from scratch and with transfer learning.

In a visual inspection, we can confirm the distortions of the vessels,
which might end up producing in the final segmentations gaps and
errors in the layers with respect to which layer goes on top of which.
Given that in the subsequent phase we work with thickness maps, these
gaps would cause problems when analyzing the thicknesses of each
layer. Therefore, the results were processed using classical computer
vision techniques to fill these gaps and eliminate small errors due to
artifacts. An example of a post-processing can be seen in Fig. 12, and as
an objective reference of the improvement of this extra step, Table 11
shows the metrics before and after post-processing the results of the
models trained from scratch.

In relation with the state of the art, these results are not exactly
comparable to those mentioned for macular view, as the type of scan is
different. However, we can see that they are inline with them, or similar
to other works that focus on retinal layer segmentations in different
contexts, since Dice is typically above 0.9 [57–59].

4.2. Neurological diseases screening

In this section, the results for the second task, neurological diseases
screening, are shown for each configuration. The firsts are single view,
where only optic disc or macular view are considered. Then, the last
one joins these two configurations into a multi-view approach.

4.2.1. Single-view: Optic disc
Taking as reference F1-Score for being better at considering the

class imbalance, Fig. 13 shows we have obtained poor results for every
screening approach, being the best markers RNFL and All layers in
MSvsNDDS, but only with slightly above 0.6 metrics. The AllvsAll
approach was the worst by far, indicating the poor ability of this type of
information to separate these classes on its own. The best markers for
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Fig. 12. Examples of optic-disc-centered segmentations before and after post-processing.
Table 11
Mean metrics before and after the postprocessing of the segmented results of the models trained from scratch.
MAE metrics are given in micrometers.

RNFL GCL-BM

Before After Before After

Accuracy 0.989 ± 0.0019 0.991 ± 0.0012 0.979 ± 0.0068 0.982 ± 0.0089
Precision 0.906 ± 0.0227 0.917 ± 0.0110 0.934 ± 0.0354 0.921 ± 0.0513
Specificity 0.995 ± 0.0015 0.995 ± 0.0008 0.993 ± 0.0048 0.990 ± 0.0100
Sensitivity 0.899 ± 0.0260 0.920 ± 0.0226 0.855 ± 0.0447 0.916 ± 0.0276
Dice 0.900 ± 0.0191 0.916 ± 0.0143 0.886 ± 0.0368 0.912 ± 0.0342
MAE𝑐 21.676 ± 9.9668 10.040 ± 3.8084 4.701 ± 3.0210 4.033 ± 2.2117
MAE𝑡 16.204 ± 2.7604 14.656 ± 1.8104 6.902 ± 1.6903 6.544 ± 3.7968
Fig. 13. F1-Score for each screening approach, considering different types of informa-
tion extracted from optic-disc-centered scans. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

each approach are raw image, all layers or RNFL thickness. Although
in general there is not a great difference among them, in the NDDvsET
that has a huge difference in the standard deviation of RNFL and GCL-
BM. This last type of information, GCL-BM, did not perform noticeably
well for any approach, but again the differences among different types
of information are not great.
14 
4.2.2. Single-view: Macula
Fig. 14 shows the results obtained for this method, using different

types of information and considering 2D, 3D and the combination of
both. For 2D, AllvsAll is the worst approach, not even reaching the 0.4
mark. Then we have NDDvsAD, which barely reaches the 0.5 metric,
not having any particularly type of information perform better than the
others. Then, HCvsNDD reaches the 0.6 mark using all layers thickness
information. In NDDvsET we have the raw image information perform-
ing specially well among the different types reaching a 0.7 metric, but
with a quite high standard deviation. In this approach, the remaining
types of information performed considerably worse, barely reaching
0.5. MS and PD reached 0.6 in a more stable fashion with every type
of information. Using 3D information instead, we still have AllvsAll
being the worst approach. In this case, NDDvsET barely reaches 0.5 and
has a high instability, specially for raw image and RNFL information,
while the other approaches go from 0.6 to 0.8. NDDvsMS reached 0.8
more comfortably, specially using all layers thickness information, with
low standard deviation. Second would be NDDvsPD, whose values go
from 0.7 to 0.8 for all layers and GCL-BM information, respectively.
Combining 2D and 2D+3D information, we have a similar scenario to
3D case. AllvsAll is the worst, while MS and PD are the best ones,
reaching values above 0.7. Standard deviation is more stable, reaching
peaks at NDDvsET using all layers thickness.

4.2.3. Multi-view
Fig. 15 shows the results per approach in the multi-view method.

With 2D information, all approaches get at least a 0.5 metric, but
the AllvsAll approach. HCvsNDD and some types of information for
NDDvsET seem to be the worst cases, with barely 0.5, and having
high standard deviation for ET. The remaining cases seem to be closer
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Fig. 14. F1-Score for each screening approach, considering different types of information extracted from macula-centered scans. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 15. F1-Score for each screening approach, considering different types of information extracted from both optic-disc-centered and macula-centered scans. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
of 0.6, but for RNFL information in the NDDVSET approach, which
is closer to 0.7, although with a high standard deviation too. Using
3D information we have a similar situation, but with lower standard
deviation and metrics being more consistently above 0.6 for those that
are not NDDvsET or AllvsAll. In the combination, the same situation
happens again, but with even lower standard deviation.

4.2.4. Discussion
We can analyze the previous results though three different lenses:

single and multi-view: 2D and 3D; different computational biomarkers
extracted; and disease separability.

First, in Fig. 16 we have summarized the differences between the
single-view and multi-view approaches for the 2D, 3D and combination
15 
scenarios. We can see a noticeable improvement of 2D multi-view with
respect to optic disc and macula single-view methods, specially for the
first one. We have a high standard deviation for the MS approach in
both, but since this was the best approach in general, the changes in
the metric still reflect a satisfactory performance, just not as improved
as others when combining views, probably because it might need the
information to be combined in a different way to better be exploited.
In the 3D multi-view with respect to the 3D macular view, we do
not have such a clear improvement. In fact, both perform similarly,
considering the approaches and information types where one performs
better than the other. Again, we have a high standard deviation in
the MS approach. In the combination of 2D and 3D information, we
have a similar situation, where we have some improvements for some
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Fig. 16. F1-Score changes when comparing single-view approaches to multi-view. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 17. F1-Score changes when comparing approaches using 2D, 3D and 2D+3D information in the macular single-view method. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
approaches, and other remain the same, with high standard deviation
for the MS approach. From all this, we can extract that combining
multiple views does improve the performance of the system to correctly
classify different NDDs. However, this improvement is not linear when
adding 3D information. Including 3D information or even mixing it
with 2D information might need a more specific information fusion
technique than only concatenating information. In any case, this proves
the potential of the multi-view method for this type of medical image.

Figs. 17 and 18 shows a different comparison, centered this time
in the 2D and 3D information considered in every experiment using
macular single-view and multi-view methods, respectively. In the first
method, we can see clearly how using 3D information considerably
improved the performance of the system, especially for the MS and PD
approaches. ET one has a worse performance, as it was seen previously
in every considered scenario. However, the remaining approaches ex-
periment a notable upgrade. In the combined 2D+3D approach with
respect to only 3D, the improvement is not that clear, as the improve-
ments are of less magnitude and there is much higher instability. In
the multi-view method comparison, a similar improvement is seen. As
mentioned, this might show the potential this combination has, but
it fails at some point, probably due to the way the information is
combined. A more precise technique could be applied to merge the 2D
and 3D information, instead of simple concatenation.

Regarding the different types of computational biomarkers consid-
ered in the experiments, we show in Fig. 19 the best one for each
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method and approach. It should be noted that the differences among
the different information considered are not large, so the best one might
not be outperforming the remaining ones by much. However, this sum-
mary is enough to get a first glance at the more adequate computational
biomarkers for each method and approach. In general, there is no clear
winner. HC uses better all layers and RNFL information. AD seems to
prefer all layers or GCL-BM, while ET does for RNFL and all layers. PD
prefers to center on GCL-BM in 3D approaches only, while this tendency
is not clear in the 2D ones. All for all clearly prefers RNFL information
in most of the cases. We can see that raw images only outperform in 2D
approaches, while they are not satisfactory enough in 3D ones. Again,
there is no clear predominance of one marker for each approach, which
makes sense given the instability that some of them have presented and
the possible problems in combining information given to the classifier.
However, if we interpret these results with reservation, interesting
correlations to clinical biomarkers are presented. AD patients typically
show an overall thinning of the whole retinal layers [60–63], which
can be represented as the biggest-area computational biomarkers in our
study, which are those comprehending all layers and GCL-BM and ac-
cordingly, the best computational markers for the NDDvsAD approach.
ET patients suffer from a thinning in the RNFL and GCL layers, as well
as a choroid thickening [64–67]. In our results we can see that RNFL
behavior reflected, as it was the best marker for many scenarios with
NDDvsET approach. MS affects in a similar manner RNFL [36,68–70],
but that aspect is not as clear in our best computational biomarkers
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Fig. 18. F1-Score changes when comparing approaches using 2D, 3D and 2D+3D information in the multi-view method. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 19. Computational biomarker with the best mean F1-Score per method and
screening approach. SV, MV, OD and M stand for ‘‘single-view’’, ‘‘multi-view’’, ‘‘optic
disc’’ and ‘‘macula’’, respectively.

results. Maybe the variety of MS types, complications and affections
might make it too heterogeneous to be easily differentiated to a NDD
cohort as in the NDDvsMS approach. PD shows a thinning in the
GCL and IPL layers, as well as an overall reduction in the macular
thickness [71–75]. Hence, our markers accurately represent that be-
havior in the NDDvsPD scenario. The combination of these findings
propose RNFL and overall retinal thickness as powerful indicators of
the presence of these diseases in general, which at the same time is
coherent with the results in HCvsNDD and AllvsAll approaches, where
RNFL and retinal markers are the clear best performance measures.
Therefore, the proposed computational biomarkers show a behavior
consistent with the state of the art of these pathologies.

In all these comparisons, we have also seen how the different
screening approaches perform. There is a common scenario in all these
methods where AllvsAll is the worst approach, followed by ADvsNDD
and ETvsNDD. HCvsNDD one usually performs slightly better than
these two, but the best approaches are those that considered how
separable are MS or PD. The reason that these three approaches stand
out from the others is probably because these three classes are also
by far the most numerous. Although we have tried to balance the
weights in the training, the lack of dimensionality is noticeable and
can be seen in the observed difference in performance. Regarding the
differences between these three, it seems that the selected computa-
tional biomarkers are sufficient to recognize MS or PD patients, but the
differentiation between pathological and healthy is more problematic.
Perhaps the differences in the thickness of the layers are very noticeable
between different diseases, either because some thicken it or others
thin it. Maybe HC patients are a difficult middle ground to define if we
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consider diseases with thicknesses at both ends of the spectrum, which
means that classification with only these markers is not sufficient.

In accordance with prior studies employing OCT and retinal layer
segmentation in various neurodegenerative conditions, our findings
align with the consensus. Specifically, we noted that data derived from
the RNFL proves highly advantageous to classifiers and emerges as a
dependable tool for pathology detection, demonstrating elevated sensi-
tivity. Nevertheless, when it comes to distinguishing between distinct
pathologies, the remaining segmented retinal layers contribute signifi-
cantly. This can be attributed to the unique impact of each pathology
on retinal layer thickness, resulting in distinct topographical alterations
in these structures, involving both thinning and thickening of specific
layers.

Regarding how this work is positioned withing the state of the art,
as we have previously mentioned, there is no other work that uses these
kind of features together to perform neurological diseases screening. To
get a sense of other metrics obtained from automatic methods for classi-
fication of neurodegenerative diseases against control patients based on
OCT information, we have F1-scores of 0.70 for AD based on numerical
thickness values taken from macular and optic disc views [76] and 0.68
for GCL-IPL layers measured in macular area of MS [77], while the
other diseases do not have any study of this kind. These metrics seem
to be inline with those obtained in our experiments, both single-view
and multi-view. Additionally, currently there is no independent dataset
comprehending such a variety of diseases and information similar to
ours, so a fair comparison to other state of the art architectures and
methods cannot be done at the time being. If we compare our metrics
to others obtained solving classification tasks in OCT images, we see
that there is a disparity that heavily favors those from other works [78–
80]. These papers focus on abnormalities much more notorious than
those seen in NDD OCT images, that manifest in many cases as subtle
thickness changes. This is also the main reason of our work focusing on
different techniques to process the information within our samples: to
enhance the fine differences between controls and pathological cases to
be able to perform a clinical screening approach.

5. Conclusions

Here, we have presented pioneering work in the field of neurolog-
ical diseases in relation to OCT and automated methods, as well as
the extraction of relevant features for the diagnosis and treatment of
patients of this type. First, we have segmented and analyzed the key
retinal layers of patients of four major NDDs using two different OCT
perspectives for the first time, allowing for new ways of comprehen-
sion and diagnosis in the NDD and OCT domains. In a second stage,
these four diseases and the retinal layer information extracted were
also studied in a novel exhaustive pathological screening, analyzing
the effect of the different computational biomarkers considered in 6
different scenarios and detecting the most relevant ones for each NDD,
which has never done before for these diseases.

Regarding the segmentation of retinal layers, using macula-centered
scans we were able to get quite satisfactory and stable results for the
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2D configuration, which were outperformed by the 3D approach. This
might indicate the importance of 3D information in this type of scan
to accurately segment the RNFL and GCL-BM layers. Analyzing how
this segmentation performed for each patient type, we could not see
one obtaining predominately better results than the other, but we did
see how some, like AD, benefited more notably from the inclusion of
3D information. Changing the view to the optic-disc-centered scans,
we applied transfer learning from these successful macular models
to the optic disc ones, since there is a clear link between these two
types of views. We tried different training sizes and we observed the
same tendency in all of them: training from scratch produced a slight
improvement over the transfer learning strategy. Thus, we did not
obtain a huge change in performance, but we could see how it did
affect the training times: using macular weights allowed for the models
to converge earlier. However, unlike the macular view, in both these
methods we observed that some patient types got worse results than
the others. While HC and MS typically got the highest and most stable
metrics, PD and specially AD obtained the worst. In the case of AD, the
evolution expected to decrease when adding more samples to the train-
ing set, was instead an unstable and flat curve with mainly the worst
metric for any class. This could be related to the low dimensionality
of our dataset or the influence of the blood vessels present in the optic
disc view. Although our scans’ quality and amount could be enough
for medical experts, it was not sufficient for the models to segment the
layers of the AD patients as accurately as other cohorts.

As for the classification task, our metrics were not that satisfactory
n many experiments, but we could observe interesting tendencies on
ow the different methods and computational biomarkers used affected
he results. First, applying a multi-view approach improved the single

view approaches, especially when used only 2D information. In the case
of the 3D and 2D+3D methods, some improvement was seen, but it

ight require a more precise information fusion technique to deal with
he feature vector extracted. Secondly, using 3D information benefited
he classifier, since notable improvements were observed when com-
aring 3D and 2D methods. Including 3D information to 2D did not
mprove the results as clearly, but it again could be related to the need
f a more ad hoc method to fuse the 2D and 3D data instead of only
oncatenating. Finally, regarding the different types of computational
iomarkers considered in the experiments, the differences between
hem were not great, but we did see some tendencies towards some
ypes in particular in some screening approaches. The most notable one
as the use of GCL-BM information in the identification of PD patients

n a NDD cohort. Not only was this screening approach one of best per-
orming approaches, but also GCL-BM thickness information provided
he best separability, which is in line with the medical research that

points out the thinning of this layer for this type of patient.
As future work, there are various lines to follow. For the macular

view segmentation, it could be interesting to check if the addition of
slices to the 3D cubes would add more information that could be used to
segment the layers more accurately in the 3D approach. The optic disc
view could be improved by adding more samples to ensure the absence
of overfitting and its negative effects to the consequent experiments,
both increasing the dataset or using GAN or stable diffusion models
to synthetically generate similar images. The classification task needs
to improve its metrics, for which methods could be designed to merge
information more accurately than by simple concatenation. Also, more
combinations of the computational biomarkers herein considered could
be explored to find the most efficient way to combine views, representa-
ions and markers. The feature extractor was our first step in this part
f pipeline, and we chose a generalist feature extractor. The quality

of these features seems to be adequate for this domain, but further
experimentation could be done in terms of the use of general features
applied to medical domain. The influence of the classification model is
a crucial element of this part of the methodology, and further lines of

ork should address other methods, like CNN-based classifier. Another
aspect is the improvement of the complete pipeline by following an
18 
end-to-end training strategy, which could produce potential benefits
that are not considered here. Additionally, although not possible at
the time of writing for the lack of comparable datasets, it would be
ecessary to study the performance of our method with similar datasets.
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