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Abstract: Regarding the decision to opt for vehicles with electric propulsion systems to achieve a
sustainable future, much research has focused on the electrification of passenger cars, since this class
of vehicles is the largest contributor of greenhouse gas emissions in the transportation sector. The
purpose of this paper is to assess the energy performance of an electric vehicle used as a taxi in
Loja, Ecuador, an intermediate Andean city, using a model-driven approach. Data acquisition was
performed through the OBDII port of the KIA SOUL EV for 24 days and the variable mass of the
vehicle was recorded as a function of the number of passengers; the effects of road gradient were also
considered. The energy performance of the vehicle was simulated by developing an analytical model
in MATLAB/Simulink. An average measured battery performance of 8.49 ± 1.4 km/kWh per day
was obtained, where the actual energy regenerated was 31.2 ± 1.5%. To validate the proposed model,
the results of the daily energy performance estimated with the simulation were compared with those
measured in real driving conditions. The results demonstrated a Pearson correlation coefficient of
0.93, indicating a strong positive linear dependence between the variables. In addition, a coefficient
of determination of 0.86 and a mean absolute percentage error of 3.35% were obtained, suggesting
that the model has a satisfactory predictive capacity for energy performance.

Keywords: electric taxi; energy performance; model-driven approach; real driving conditions

1. Introduction

Electric vehicles (EVs) are envisioned as a possible solution to achieve a sustainable
future [1–6]. By the end of 2020, more than 10 million EVs were reported globally, following
a decade of rapid growth, as seen in Figure 1. Specifically, global EV registrations increased
by 41% in 2020, despite the pandemic-related global recession, where global car sales fell by
16%. In total, sales of around 3 million EVs were reported in 2020 [7]. Although different
market analysts forecast a high global penetration of EVs, increasing to 33% by 2040 and
50% by 2050, the truth is that they currently represent a small fraction of the transportation
sector [8]. In fact, in countries that have introduced EVs, such as China, Germany, the
United States, France, Switzerland, and South Korea, the proportion of EV sales in each
country is still below 5% of total vehicle sales [9]. Related to this, most electric vehicles are
concentrated in a few countries, or regions, with high market shares, such as China, which
accounted for more than 50% of electric vehicles globally in 2022, followed by Europe
with 30% and the US with 10% [10]. The main risk factors for this low EV uptake are
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associated with insufficient range, initial purchase costs, battery costs, and poor charging
infrastructure [11,12].
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Figure 1. World stock of EVs by region [7].

Ecuador is no stranger to this reality, since EV deployment is considerably low. Ac-
cording to [13], 132,388 new vehicles were sold nationwide in 2023. Of these, 1823 were
electric vehicles, equivalent to 1.38% of total sales. In contrast to sales records in previous
years, it is noteworthy that Extended Range Electric Vehicles (EREVs) were introduced to
the national market in 2023, with 1043 units. Consequently, 780 battery electric vehicles
(BEVs) were sold this year. Figure 2 shows the historical evolution of electric vehicle sales
in Ecuador. Despite the low introduction of electric vehicles in the country, in 2023 there
was sales growth of 316.2% compared to 2022.
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Figure 2. Historical evolution of electric vehicle sales in Ecuador [13].

Figure 3 shows electric vehicle sales in the main provinces of Ecuador for the years 2022
and 2023. A predominance in the introduction of electric vehicles is observed for Pichincha
with 61.7%, followed by Guayas with 24.8%. Unlike the aforementioned provinces, the
cantonal capitals of Azuay, Manabí, and Tungurahua are considered intermediate cities.
It can be seen that there is a lower incursion of electric vehicles in these provinces with
smaller populations.
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In 2017, the southern city of Loja pioneered the introduction of 51 EVs into public
transportation by integrating them into the existing taxi system [14], forming the company
ELECTRIC LOJA ECOLOSUR. In pursuit of this objective, some economic incentives
from the government and the local municipality were proposed to current vehicle owners
to acquire 16 KIA Soul EV units and 35 BYD e5 EV units. On 26 June 2017, through
Municipal Resolution No. 001-CPO-UMTTTSV-2017, the electric cab company obtained the
corresponding operating permit [15].

In Ecuador, the transition from fossil fuel-operated vehicles to EVs poses a significant
challenge and is imperative from both the energy and environmental perspectives. This
necessity arises notably due to the transportation sector’s prominent position as the largest
consumer of energy, with a consistent pattern of growth over time, as evidenced by scholarly
sources [16,17]. By 2020, Ecuador had an energy consumption of 83,088 kBEP, an increase
of 14.3% from 2010, where historically the transportation sector is the one with the highest
consumption and has increased its annual share from 41.7% of total energy consumption
in 2010 to 45.4% in 2020; this is 30,246 kBEP and 37,744 kBEP, respectively [18], as shown
in Figure 4.
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As a result, the transportation sector is the largest contributor to greenhouse gas (GHG)
emissions, accounting for 46.7% in 2020, since 99% of the energy consumed came from
diesel and gasoline, as shown in Figure 5.
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Some studies have been carried out to promote a more efficient energy transition in
Ecuador, and thus to seek the adoption of BEVs. In [19], an evaluation of the state of the
Ecuadorian electricity system is presented and through a prospective analysis for the year
2050, hypothetical demand is predicted and a system of electricity generation 100% based
on renewable energy sources (hydroelectric, solar photovoltaic, and wind) is guaranteed,
positively impacting the economy, increasing production levels, and improving the quality
of life of citizens. In the same direction, [20] provides an overview of energy development
strategies in Ecuador and proposes energy planning for future years based on technical,
economic, and environmental indexes that improve current energy efficiency. Using the
EnergyPlan software (version 16.3), exhaustive simulations are carried out to determine
the optimal configuration of renewable sources (hydroelectric, solar photovoltaic, and
wind, among others) and energy storage required in the future, obtaining an optimal result
balanced between the technical-economic factors, the stability of the massive electrical
system, and the availability of resources. Ref. [21] presents a long-term roadmap for the
comprehensive electrification of mobility for the intermediate city of Cuenca, Ecuador; it
seeks to take advantage of the renewable energy potential available in the region. The
results indicate that the energy mix would be composed of wind (37.3%), solar photovoltaic
energy (33.9%), and hydroelectricity (25.4%). Other technologies such as biomass do not
exceed 3.4%. In [22], models are proposed to determine an optimal and sustainable supply
for the coming years in the Ecuadorian electricity system. The incursion of renewable
sources is proposed to reduce dependence on hydrocarbons, taking as a starting point
real data from the current system. In addition, a growing demand for the year 2027 is
considered, which includes 100,000 EVs in the analysis. The results show that carbon
reduction in the future is feasible and that increasing the capacity of renewable sources up
to a certain limit is viable. In [23], a LEAP model is proposed for forecasting Ecuador’s
energy sector. The model results in a final energy consumption of 158 million BOE in 2030,
where the transportation sector is the main energy consumer. Regarding Ecuador’s energy
planning, a production of 63 513 Gwh is forecast in 2030, derived from hydroelectricity.
The results indicate that energy efficiency policies for the transport sector would reduce the
use of petroleum derivatives.

Building upon the preceding discussion regarding the choice to adopt vehicles with
electric propulsion systems for advancing toward a sustainable future, the majority of
research has focused on the electrification of passenger cars, since they are the largest
contributors to transport emissions, with 3 GtCO2 in 2020, equivalent to 41.10% [24].
Therefore, this vehicle class presents an opportunity for massive gains in combating the
growing GHG effect [25].

Thus, the objective of this research is to compare the simulated energy performance
of an electric cab with that measured under real driving conditions. The research was
carried out in Loja, an intermediate Andean city with an urban population of more than
250,000 inhabitants. The city is located at an altitude of 2060 m above sea level, in the
southern highlands of Ecuador, and has a particularly mountainous terrain. The study is
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all the more important because of the uncertainty and disagreement of cab owners due to
poor cab performance, which directly affects their income. The initial performance reported
by dealers at the time of sale in terms of vehicle autonomy and energy consumption,
according to the New European Driving Cycle (NEDC), is far from the real one [15].
Indeed, it is observed that the autonomy significantly diminishes during the initial year
of operation, and there remains uncertainty regarding the actual energy consumption of
the units during urban driving conditions. The problem has reached such a point that, on
12 July 2022, the municipal council approved the reform of the ordinance that establishes
the creation and regulation of the ecological-electric cab service in the canton of Loja, where
members can change from an electric cab to a conventional cab if necessary [26]. In this
context, the current study proposes a model-driven approach aimed at estimating the
energy consumption of a BEV functioning as a taxi within the urban area of the city. These
estimations are subsequently validated through a comparative analysis with actual energy
consumption data.

2. Literature Review

A number of studies have been developed around the world aimed at the evaluation
of BEV energy consumption. For example, a simulation-based commercial BEV energy
consumption approximation approach using real-world driving cycle data in urban areas is
proposed in [27]. Although the results are promising, the energy consumption simulation
does not consider road slope, which limits the actual operating condition of the vehicle.
In [28], the effects of different environmental and control parameters on BEV energy
consumption and range are analyzed. For this purpose, they establish a digital twin
simulation model in GT-Suite software. The model is calibrated using experimental data
based on standardized driving cycles.

An approach to analyzing the impact of traffic on BEV energy consumption is pro-
vided in [1]. Thirty different drivers drove a 2017 Volkswagen eGolf twice a day on a
predetermined route; in this way, the human element of individual driving behaviors was
considered. It is to be emphasized that the methodology did not define the typical driving
cycle of the selected route, where its characteristic parameters could be denoted. In [29], the
impact of the combination of fast DC charging, higher aerodynamic loads, auxiliary loads,
reduced battery capacity, and high-speed driving on the energy consumption and driving
range of two BEVs, a Nissan Leaf and a Mitsubishi iMiEV, is discussed. The driving experi-
ments were conducted on a flat section of highway in Perth, Western Australia, at different
speeds. It should be noted that the study did not consider the effects of the highway’s slope
profile and that a typical driving cycle was not defined for the selected route.

In [30], the energy consumption modeling of a BMW i3 is performed using MAT-
LAB/Simulink software. The BEV model demonstrated a level of accuracy with less than
6% error between the simulation and experimental results for the standardized EPA and
NEDC cycles. That is, the study does not consider real driving cycles. In [31], the instanta-
neous energy consumption of BEVs is calculated using the instantaneous power exerted,
where the vehicle speed profile and the second-by-second acceleration level are used as
input variables. For model validation, the Nissan Leaf EV vehicle was used and various
standardized driving cycles were applied. As part of future endeavors, the authors in-
tended to gather empirical data on the energy consumption of BEVs in real-world settings.
Following this trajectory, a theoretical analysis of the energy consumption of a Nissan
Leaf according to NEDC and WLTC driving cycles is presented in [32]. With a different
approach, in [33], the authors estimate the energy consumption of a Mitsubishi i-MIEV on
two predetermined urban routes. To do so, they used a neural network that takes as input
data driving style variables and route characteristics, obviating deterministic knowledge of
the vehicle characteristics or driving cycles.

In [34], the energy consumption of BEVs is measured and estimated. In detail, the EV
used was a conversion of a Nissan D21 pickup truck built by the research team, in which
a CAN bus data logger and GPS were installed. However, the data set of this research is
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limited, as it contains data from a single driver, a vehicle that is not currently commercially
produced, and includes driving limited to pre-selected routes, whose typical driving cycles
have not been defined. In [35], a systematic approach to estimate the energy consumption
of BEVs for real driving conditions is developed by applying statistics. Although the
results are attractive, the study lacks methodologies to define typical driving cycles of
the predefined routes. Consistent with this approach, a simplified analytical function for
estimating the energy consumption of a BEV is derived in [36]. The real-world driving
cycles used were collected from conventional vehicle on-board tracking systems and include
different city and highway driving conditions.

Ref. [37] evaluates the performance and energy consumption of a BEV in the city
of Quito based on the measurement of SOC, total distance traveled, and vehicle speed.
For this purpose, they used a BYD e6 that circulated six times around a combined route
comprising city and highway sections, with a total of distance 55.8 km; they considered the
variation of the slope of the road. However, certain inadequacies were detected that could
make the results inaccurate, namely, the small number of tests performed, the lack of a TDC
definition for the selected route, the SOC measurement performed from the dashboard
every 2 min, and the vehicle speed obtained through GPS.

Finally, in [38], the energy efficiency behavior of a BEV in Cuenca is analyzed, con-
sidering factors such as orography and traffic conditions on three predefined routes; their
TDCs are not defined. In addition, three laboratory driving cycle tests were carried out:
FTP-75, NEDC, and WLTP. The data from each sample contain 154 variables of interest,
obtained through OBD2, which then underwent a correlation analysis to identify those that
affected the BEV’s energy performance in the six operating scenarios.

Table 1 presents a summary of the literature presented on studies aimed at estimating
the energy consumption in passenger cars BEVs, discerning the methodology used, the
application of standardized driving cycles or real-world driving conditions, the definition
of the typical driving cycle (TDC) and the consideration of the slope profile. The present
proposal is included in Table 1 to observe the differences with respect to the literature cited
in the previous paragraphs.

Table 1. Literature on estimating energy consumption in tourism EVs.

Ref. Methods/Software Standardized
Driving Cycles

Real-World
Driving

Conditions

Definition of
TDC

Considers Slope
Profile

[27] Microtrips, simulation in
Advisor software • •

[28] Digital twins, GT-Suite software •

[1] Statistical regressions,
R software and Python •

[29] Longitudinal dynamic model •

[30]
Integral propulsion system

model and longitudinal
dynamics, MATLAB/Simulink

•

[31] Power-based EV energy
consumption model (CPEM). •

[32]
Numerical model based on the

vehicle’s technical and
operational parameters

•

[33] Artificial neural networks • •

[34]
Analytical model for estimating

instantaneous power and
energy, Microsoft Excel.

• • •
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Table 1. Cont.

Ref. Methods/Software Standardized
Driving Cycles

Real-World
Driving

Conditions

Definition of
TDC

Considers Slope
Profile

[35] Polynomial model,
SPSS software. • •

[36] Statistical method based
on physics. •

•
Gasoline-

powered vehicles
•

[37]
SoC measurement from

dashboard, total travel distance
and vehicle speed via GPS.

• •

[38] Statistical correlation • • •

This article

Model-driven approach for
estimating instantaneous power

and energy; deterministic
method of Minimum weighted
differences of the characteristic

parameters (MWD-CP),
MATLAB/Simulink.

• •
Cab racing only •

3. Contribution and Novelty of the Study

Unlike the research mentioned in the previous section, it is worth noting the contribu-
tions of the present work to expand the field of knowledge about electric vehicles in real
driving conditions in an Andean city, defining the TDC. Specifically, no research has been
conducted in the region with the level of detail and relevant methodological aspects pro-
posed in this article, which seeks to serve as an input for the promotion of electric vehicles
in Latin America and worldwide. Concomitant to this, the application of the weighted
minimum difference methodology to estimate the TDC, whose characteristic parameters are
the energies of the various forces that oppose the vehicle’s motion, is somewhat novel, as
demonstrated in [39]. Also, it is relevant that the effects of the road gradient are considered
for the purpose of weighing the energy consumption and that the slope smoothing has
been performed in a different and methodical way, starting from the correction of the
instantaneous altitude data of the vehicle with the EU 646 regulation, shown in [40]. It
is worth mentioning that, in the dynamic model of the electric cab, a variable mass that
depends on the passengers makes the results more conclusive. Another contribution is
the experimental weighing of the efficiency of the electric motor using its efficiency map
and the variables of the percentage of accelerator pedal load and the engine speed for each
monitored day. And, finally, the BEV used in this research provides its services as a means
of public transportation in the cab modality; this is something that has not been studied.

4. Materials and Methods
4.1. Experimental Unit and Data Acquisition Method

The electric cab used in the research is the KIA SOUL EV (KIA, Seoul, Republic of
Korea), equipped with an AC permanent magnet synchronous motor, with a maximum
torque and power of 285 Nm and 81.4 kW, respectively. It also has a lithium-ion polymer
battery bank, with a storage capacity of 27 kWh. On the other hand, the experimental
scenario comprises the free travel of the electric cab in the urban area of the city of Loja,
whose average altitude of 2060 m above sea level was taken into account in the calculation
of air density. Since the vehicle circulates at a higher altitude, the air density will have
lower values and, consequently, there will be lower air resistance as well. Thus, an air
density of 0.88 kg/m3 was considered.

The unit was monitored for one month, during daily working days, acquiring in real
time the speed, geographical variables, accelerator pedal position, current, and battery
voltage, through the OBDII port of the KIA SOUL EV, using a data logger device, model
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OBDLink MX+, which includes GPS, at a sampling rate of 1 Hz. The reading and storage of
variables were performed with a program code developed in Labview (version 2020), used
in previous investigations [41,42]. In addition, the initial and final time of each ride with
passengers was recorded manually, and the number of passengers was also counted. This
allowed us to obtain a variable mass of the unit in service. That is, when the cab circulates
without passengers, the value of the mass of the cab considers the empty weight of the
vehicle, which was 1492 kg, plus the weight of the driver, which was 70 kg. When the
cab circulated with passengers, the mass of the unit varied according to the number of
passengers. NTE INEN 1323:2009, as detailed in [43], stipulates that the mass of an occupant
can be estimated at 70 kg. Figure 6 shows the satellite map of the electric cab route on day
3, with a total of 49,775 monitored data points. EU Regulation 646 introduces provisions
regarding pollutant emissions from passenger cars and light commercial vehicles and their
assessment. In particular, it details testing and type-approval requirements. In addition,
it presents an appendix with the calculation procedures for verifying the overall vehicle
path dynamics. This regulation is important for this research in order to establish the slope
profile to be used in the vehicle dynamic model.
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The EU 646 regulation considers four sequential processes of altitude smoothing and
two of slope smoothing, where the BEV geographic data were measured with the GPS
OBDLink and the BEV geographic data according to the topographic map, which in this
case is the digital terrain model provided by the online application GPS Visualizer [44],
where the monitored values of latitude and longitude of the vehicle are introduced. It
should be emphasized that this application is free and creates maps and profiles from
geographic data. The smoothing starts by taking as a starting point the geographical
variables of latitude, longitude, and instantaneous altitude of the vehicle. Thus, Figure 7
shows the final altitude smoothing for run 1 on day 24. Meanwhile, Figure 8 shows the
final slope smoothing when compared with the slope profile obtained with GPS Visualizer.
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Figure 8. Road gradient for run 1 on day 24.

On the other hand, to obtain the torque curve and the engine efficiency map, a
SuperFlow chassis dynamometer (Superflow, Sussex, WI, USA), model AutoDyn 30, with a
single set of rollers with a diameter of 76.2 cm, where the BEV is anchored, as shown in
Figure 9, was used.
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Figure 9. BEV located on the chassis dynamometer.

Figure 10 shows the resulting torque curve and compares it with that given by the
manufacturer [45], showing its similarity. The maximum experimental torque reached is
281 Nm.
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Figure 10. EV motor torque curve.

To obtain the electric motor efficiency map, 20 random tests were performed, where
different linear speed and throttle load percentage scenarios were applied. Figure 11 shows
the BEV electric motor efficiency map.
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4.2. Model
4.2.1. Longitudinal Dynamics of the Vehicle

According to Newton’s law of motion, the acceleration of the vehicle satisfies the
following differential equation [46,47].

m·dv(t)
dt

= Fx(t)− Fr(t) (1)

where Fx is the tractive force that must be provided by the motor to the wheels for the
vehicle to move [48]. Fr is the sum of the drag forces and m is the total mass of the vehicle,
including the rotating parts; Fr comprises the rolling resistance Rx, the aerodynamic drag
force Fd, and the gravitational force related to the inclination of the vehicle Rg. Under this
context, and by clearing Fx, Equation (1), which represents the equation of the longitudinal
motion of the vehicle, can be rewritten as shown in Equation (2) [49]. It should be noted
that m· dv

dt was substituted for the inertia force Ri.

Fx = Fd +Rx + Rg + Ri (2)

Equations (3)–(5) show the equivalences of the various resistance forces [35].

Rx = frmgcosθ (3)

Rg = mgsenθ (4)

Fd =
1
2

Cd Aρa(V)2 (5)

where V is the vehicle speed and θ is the slope of the road in radians. The terminology
used in the previous equations, as well as the associated values, are detailed in Table 2.
Figure 12 represents the longitudinal diagram of the vehicle showing the forces required
and the force generated at the wheel.

Table 2. Variables of the longitudinal dynamics of the BEV.

Variable Description Value Unit

fr Rolling resistance coefficient 0.017 [41] −
g Gravity 9.81 m/s2.

Cd Aerodynamic coefficient 0.35 [41] −
A Front area of the vehicle 2.3 [41] m2

ρa Air density 0.88 kg/m3;

4.2.2. Torque, Power, and Wheel Energy

The wheel torque was obtained with Equation (6) [50], where rd is the dynamic radius
with a value of 0.31 m, obtained by calculation based on the wheel designation.

τx = Fx·rd (6)

The power required for a vehicle traveling at a given speed can be estimated using the
following equation [34]:

px = Fx·V =

(
ma +

1
2

Cd AρaV2 + mgsenθ + mg frcosθ

)
V (7)

On the other hand, the total energy consumption, understood as the total electricity
use for a trip, was calculated by integrating the power during the travel time T, as shown
in the equation below [39]:

ex =
∫ T

0
px(t)dt (8)
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Figure 12. Force diagram for the longitudinal dynamics of the vehicle.

ex(+) is considered, since this is what is the needed to provide traction and move
the vehicle [51]. The negative energy is channeled through the BEV regeneration system.
The positive energy of the different forces that oppose the movement of the vehicle will be
equal to the energy demand or consumption.

4.2.3. Power and Discharge Energy

The calculation of the angular velocity of the motor commences with Equation (9),
where Ntd is the total gear ratio, set at 8.206 according to the BEV manufacturer’s data.

we =
V·Ntd·30

rd·π
(9)

Then, using Equation (10), the required torque to the electric motor was determined.

Tm =
(F x + me·a)·rd

Ntd·ηtd
(10)

where ηtd is the transmission efficiency, with a value of 0.93 [40,41], a is the acceleration of
the vehicle, and me is the equivalent mass. Together, these last two make up the rotational
inertia losses.

The discharge power of the motor was calculated with Equation (11), where ηm is
the motor efficiency, with an average of 0.88, obtained experimentally using the motor
efficiency map and the measured variables, i.e., the position of the accelerator pedal and
the angular velocity of the electric motor, for each monitored day.

PD =
Tm·we

ηm
(11)

Finally, the discharge energy was calculated using Equation (12):

ED =
∫ T

0
PDdt (12)

4.2.4. Energy Regeneration

The regenerative braking power, or charging power, of the BEV can be defined by
Equation (13) [52,53].

Pc = kηtdηmFxV + Paccesorios (13)

where k (0 < k < 1) is the regenerative braking factor, which indicates the percentage of the
total braking energy that can be recovered by the motor. The regenerative braking factor is
defined according to the conditions given in (14).
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In addition, Equation (13) considers the effects of accessories on the BEV electrical
power consumption. For the present study, the accessory power is close to 800 W, consider-
ing certain consumers referred to in [30] that are applied in the electric cab.

k =


0.5

Vx

5
Vx <

5m
s

0.5 + 0.3
Vx − 5

20
Vx ≥ 5m/s

 (14)

Figure 13 shows a global scheme of the model developed MATLAB/Simulink, based
on the equations detailed in this section (Appendix A).
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4.3. Methodology for Defining the TDC

The minimum weighted differences of characteristic parameters (MWD-CPs), a method-
ology developed by [54], was used to obtain the TDC. The methodology consists of
three phases: route selection, driving cycle sampling, and representative cycle selection.
The first two phases were already addressed in previous sections of this article. However,
it is emphasized that the definition of the TDC focuses specifically on the runs made by
the electric cab during the month. That is, it excludes from this analysis the periods when
the cab circulates without passengers. Regarding the last phase, the objective is to choose
among all the sampled runs the one that represents them, expressing each run in terms of
the characteristic parameters or performance values.

Pij was defined as the value of the parameter i obtained for cycle j. First, the arithmetic
mean of each parameter was calculated and Pi was calculated for all the cycles sampled.
The second step consisted of comparing each characteristic parameter with respect to
the mean value of the same parameter for all the cycles sampled,

∣∣Pij − Pi
∣∣, and then

summing the differences obtained for each parameter. However, some parameters are more
relevant than others. Therefore, the sum of the differences should be weighted according
to the relevance of each parameter in determining, for example, the energy demand, as
in [39], where the proposed characterization parameters are the energies demanded by the
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types of loads, and their weight will be the percentage of their contribution to the total
energy demand.

Finally, as described in Equation (15), the cycle, or run, with the smallest sum of
weighted differences is selected as being representative of all cycles in the sample and,
therefore, as the TDC.

C = Arg
{(

min
j

∑ wi
∣∣Pij − Pi

∣∣) }
(15)

5. Results and Discussion
5.1. General Performance of the Electric Cab in Its Working Day

Regarding the measured linear speed of the electric cab, as shown in Figure 14, an
average of 12.95 ± 1.3 km/h per day was obtained. This considers a Student’s t distribution
and establishes a 95% confidence interval (CI). The highest speed records are reached
from 3 to 5 am due to the low influx of vehicles and because the traffic light system
remains inactive at those hours. The opposite occurs from 12 am to 1 pm, where traffic is
considerable because it is rush hour and the speed drops to an average of 9.39 km/h.
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Figure 14. Average BEV velocities by time of day.

On the other hand, the measured battery energy efficiency per hour of the day is
shown in Figure 15. The electric cab travels an average of 153 km per day and has an
average battery performance of 8.49 ± 1.4 km/kWh, showing congruence with the results
of [55] for city driving, with mild weather, and without the use of air conditioning. A
higher energy efficiency, that is, 13.41 km/kWh, is highlighted in the 3 to 4 am interval,
justified by low traffic conditions, as it occurs with the speed analysis. On the other hand,
the lowest energy efficiency, with 3.80 km/kWh, is found between 6 and 7 pm, as this is the
hour with the highest traffic congestion.

Regarding traction energy ex(+), a daily average of 54 ± 2.4% was obtained when the
cab circulated with passengers. During the 24 days of the study, a total of 895 passengers
were transported, equivalent to an average of 37.29 passengers per day. That is, almost half
of the vehicle’s route was driven without passengers, as shown in Figure 16. These data
are interesting and could be used by the cab driver to adopt possible strategies to optimize
their working day.

Likewise, a daily average of real battery regenerated energy of 31.2 ± 1.5% was
obtained. Figure 17 shows the measured battery regeneration energy for day 3 of the trip,
with a duration of 49,775 s and a distance traveled of 165 km. This gives a total demanded
battery energy of 29.78 kWh, a total regeneration energy of 8.52 kWh, and as a difference in
these two, a net battery energy of 21.26 kWh. When battery energy is demanded, the blue
curve rises, and so does the red curve; the green curve remains constant. On the contrary,
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when an energy regeneration phenomenon occurs, the green curve rises, while the red
curve falls; the blue curve remains constant.
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5.2. Definition of the TDC of the Electric Cab in a Running Condition

The histogram in Figure 18 represents the frequency distributions of the runs classified
by time of day. The electric cab made 660 runs in the entire month, ranging from 3 am to
7 pm. The distribution of the data exhibits a considerable predominance of runs in the
morning hours, suggesting higher labor productivity. The first quartile (Q1) indicates that
25% of the runs occur until 8 am. The second quartile, Q2, which is the median value,
indicates that half of the runs occur until 10 am. Q3 states that three quarters of the runs
take place until 1 pm. Per month, the cab performed the most runs, 75 in total, in the
8–9 am time slot, and only one run in the 6–7 pm time slot.
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Table 3 summarizes the results derived from the deterministic MWD-CP methodology.
The TDC corresponds to run 5 of day 11, with a sum of weighted differences of 0.25; this
is the lowest among all 660 runs. In addition, it presents a traction energy efficiency of
5.96 km/kWh. Of the characteristic parameters, the percentage of energy demanded by
inertia stands out in first place, at 49.48%, and in last place is the percentage of energy
demanded by aerodynamic drag, at 3.48%.

Table 3. ex(+) per run: TDC.

Day Ride %EFd(+) %ERx(+) %ERg(+) %ERi(+) ∑

11 5 3.48 27.82 19.22 49.48 0.25

In addition, Table 4 shows the parameters related to the TDC. Among them, it high-
lights a run duration of 9 min and 8 s, where 3.4 km were traveled, with a passenger
on board. The ratio of the acceleration and deceleration state of the obtained TDC can
be associated by traffic congestion conditions in the urban area where the electric cab
circulates [56].

The TDC obtained for the electric cab by the proposed method is shown in Figure 19.
Figure 20 depicts the speed–acceleration probability distribution (SAPD) of the established
real-world driving cycle. From this, it can be seen that the velocity probability is highest
for the range of 0 to 10 km/h and the acceleration is mainly distributed between −0.5
to 0.5 m/s2. These results indicate that the electric cab starts and stops several times,
accelerations and decelerations are frequent, and the velocity is low, in agreement with the
findings of [57]. These driving conditions are typical of a vehicle circulating in an urban
area, where traffic is heavy and there are traffic lights.
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Table 4. TDC parameters.

Designation Value Unit

Duration 548 [s]
Distance 3.4 [km]

Average speed 22.32 [km/h]
Maximum speed 45 [km/h]

Proportion of idle time 22.40 [%]
Proportion of cruising 16.58 [%]

Proportion of time accelerating 35.88 [%]
Proportion of time decelerating 25.14 [%]
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Additionally, Table 5 shows the results for the critical driving cycle, i.e., the one with
the highest consumption among all the runs. It corresponds to run 2 of day 5, with a sum
of weighted differences of 23.13 and a traction energy efficiency of 3.14 km/kWh. The
governing characteristic parameter is the energy demanded by inertia, at 54.63%, followed
by the energy demanded by the slope, at 23.44%.

Table 5. ex(+) per run: critical driving cycle.

Day Ride %EFd(+) %ERx(+) %ERg(+) %ERi(+) ∑

5 2 2.92 19 23.44 54.63 23.13
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In addition, the SAPD diagram in Figure 21 for the critical cycle shows that the velocity
probability is highest for the range of 35 to 45 km/h and acceleration predominates between
−0.75 and 0.75 m/s2. These values indicate, unlike the TDC, that the driving incorporates
a wider range of accelerations, which are evident in the resulting surface.
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5.3. Validation of the BEV Energy Efficiency Model

In this section, the daily energy yield obtained through the model is validated with
respect to the measured values. In the first instance, and considering the size of the samples,
the Shapiro–Wilk test is applied to contrast the normality of the data set using Past statistical
software (version 4); a significance level of 0.05 is proposed. Figure 22 shows the results
obtained. According to the orange box, since the p-value is greater than the significance
level for both samples, the null hypothesis is not rejected and it is concluded that the data
obey a normal distribution.
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Once the normality of the data set was corroborated, Pearson’s parametric correlation
test was applied to evaluate the linear dependence between the quantitative variables
under study. A Pearson’s correlation coefficient r of 0.93 was obtained, denoting a strong
and positive correlation between them, as can be seen in the correlogram in Figure 23.
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In addition, to evaluate the prediction accuracy, dependent on the relationship between
the variables under study, the coefficient of determination R2 was calculated. The point
spread of the variables with respect to the regression line is shown in Figure 24. An R2 of
0.86 was obtained, which expresses that the model has a satisfactory predictive capacity for
battery performance, surpassing the results achieved by [35], with an R2 of 0.77.
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Finally, the mean absolute percentage error (MAPE) was calculated for the 24-day
energy yield values shown in Figure 25.

The MAPE is defined by Equation (16) [34].

MAPE =
1
n

n

∑
i=1

∣∣∣∣Em − Ee

Em

∣∣∣∣× 100% (16)

where Em is the measured energy performance, Ee is the estimated energy performance,
and n is the number of evaluated data. The MAPE obtained is 3.35%, which shows an
adequate fit between the model estimates and measurements. This result is similar to that
obtained by [31], where the prediction errors are less than 3%, and it exceeds those obtained
by [30–32,34], which had errors of 6, 5.9, 4, and 15.6%, respectively.
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6. Conclusions

The purpose of this study was to estimate, through a model-driven approach devel-
oped in MATLAB/Simulink, the energy performance of an electric vehicle operating as a
cab in the urban area of the city of Loja, Ecuador. From the results obtained, it is concluded
that the electric cab traveled an average of 153 km per day and had an average measured
battery performance of 8.49 ± 1.4 km/kWh, where the actual energy regenerated from the
battery was 31.2 ± 1.5%.

The cab made 660 runs in the course of a month, of which three quarters occurred
in the 12–1 pm period, suggesting a higher labor productivity in the morning hours. The
TDC of the cab when driving with passengers corresponds to run 5 on day 11, with a
sum of weighted differences of 0.25 and a traction energy efficiency of 5.96 km/kWh. The
characteristic parameters used were the energies of the various forces opposing the vehicle’s
movement, with inertia demanding the most energy (49.48%). The TDC had a duration of
9 min and 8 s, during which the electric cab traveled 3.4 km, with a passenger on board.
A high proportion of TDC acceleration and deceleration states was shown, with 33.88%
and 25.14%, respectively. These values are associated with real-world driving conditions
in the urban area of the city where traffic and traffic lights play a predominant role. This
also justifies the low speed of the unit, with an average of 22.32 km/h. Through the SAPD
diagram, it was identified that the speed probability is higher for the range of 0 to 10 km/h
and the acceleration is distributed between −0.5 to 0.5 m/s2. In addition, with a daily
average of 54 ± 2.4% of the traction energy, the cab circulated with passengers. This finding
clearly suggests that electric cab drivers should adopt possible strategies to optimize their
working day.

To validate the energy yield obtained through the proposed model, the predicted
results were compared with the 24-day measured values. A Pearson correlation coefficient
of 0.93 was obtained, showing a strong and positive correlation between the variables
under study. In addition, a determination coefficient of 0.86 was obtained, which shows
that the model has a satisfactory predictive capacity for battery performance. In line with
these findings, the MAPE of 3.35% suggests a good fit between the model estimates and
the measurements under real driving conditions.

Regarding the limitations of the study, it should be noted that the value of the power of
the vehicle accessories was generalized based on the available literature. The measurement
of the auxiliary loads of the electric vehicle could be a subsequent study in order to improve
the results achieved in the proposed model. On the other hand, the rolling resistance
coefficient and the aerodynamic coefficient were set at a constant value. However, it would
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be interesting in future work to consider their variation at a higher level of detail as a
function of vehicle operating conditions. In addition, the monitoring frequency of the
vehicle variables was limited to 1 Hz; therefore, it would be essential to evaluate in a future
work the energy consumption of the electric vehicle at a higher frequency rate. Furthermore,
the present investigation is limited to an electric vehicle used for passenger transport, so in
future work it is planned to evaluate the energy consumption of electric vehicles used for
freight transport.

Finally, the methodology proposed with the described model can be generalized
and used with other electric vehicles. However, it is imperative to acknowledge that the
outcomes regarding energy performance will inherently vary based on individual vehicle
specifications, prevailing driving conditions, the vehicle’s intended use, and the external
environmental factors pertinent to the study location.
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