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We employ a neural-network architecture based on the Vision Transformer (ViT) architecture to
find the ground states of quantum long-range models, specifically the transverse-field Ising model
for spin-1/2 chains across different interaction regimes. Harnessing the transformer’s capacity to
capture long-range correlations, we compute the full phase diagram and critical properties of the
model, in both the ferromagnetic and antiferromagnetic cases. Our findings show that the ViT
maintains high accuracy across the full phase diagram. We compare these results with previous
numerical studies in the literature and, in particular, show that the ViT has a superior performance
than a restricted-Boltzmann-machine-like ansatz.

I. INTRODUCTION

Understanding quantum many-body problems is cru-
cial for elucidating the properties of condensed matter
systems. However, this is generally a challenging task, as
exemplified by the problem of searching for the ground
states of strongly correlated models. Beyond exactly
solvable models, some systems are tractable by introduc-
ing elements such as matrix product states (MPS), tensor
networks [1], dynamical mean field theory (DMFT) [2],
quantum Monte Carlo [3], and hybrid quantum-classical
algorithms [4]. Additionally, there are physically inspired
ansätze available, like the Bethe and polaron approaches,
correlator product states [5], and generalized coherent
states [6].
In 2017, neural networks (NNs) emerged as an alternative
ansatz for solving quantum many-body systems [7]. NNs
have since been recognized for their ability to generate
states beyond the area law entanglement [8, 9], address-
ing problems beyond the reach of MPS. Variational op-
timization of ansätze like NNs also avoids the sign prob-
lem of other quantum Monte Carlo techniques, enabling
the handling of frustrated systems and account for states
with long correlation lengths beyond those tractable with
DMFT. Despite these advantages, it is difficult to deter-
mine in advance which NN architecture will be most suit-
able for a specific problem or whether it can be trained
with sufficient precision. Therefore, it is interesting to
investigate generic models of significant importance and
evaluate how well they are solved using NNs [10].

In this context, we focus on a set of models in which
two-body interactions decay according to a power law,
commonly referred to as long-range systems. They
are ubiquitous in nature, with examples arising, among
others, from dipolar [11], Coulomb [12], and van der
Waals interactions [13]. Recent experimental advances
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in atomic, molecular, and optical systems have renewed
interest in long-range models [14–17]. In these experi-
ments, the effective interactions are often long ranged and
tunable, underscoring the need for a comprehensive un-
derstanding of long-range systems. Although less studied
than their short-ranged counterparts, there are already
some rigorous and numerical results available for systems
with long-range interactions [18–22]. Various equilibrium
and dynamical properties have been explored in compari-
son with short-ranged systems. Notable examples include
the existence (or absence) of an area law of entanglement
[23–26], the algebraic decay of two-point correlators out-
side criticality [27–29], the spreading of correlations [30],
the existence of Majorana modes [31], and topological
properties [32].

In this work, we test neural networks (NNs) for solv-
ing quantum long-range models, specifically focusing on
the quantum Ising model as a paradigmatic example.
Our primary motivation is to use a sufficiently generic
NN ansatz capable of covering the entire phase dia-
gram, from short-range to strong long-range interactions,
and for both ferromagnetic and antiferromagnetic phases.
Since the introduction of Restricted Boltzmann Machines
(RBMs), several NN architectures have been developed,
including multilayer perceptrons [33], convolutional neu-
ral networks [34], and recurrent architectures [35]. This
list is not exhaustive; for a comprehensive review of the
field, we refer to Ref. 10. Recently, the transformer [36]
has proven to be a game changer in the field of machine
learning (ML), replacing recurrent architectures in nat-
ural language processing tasks [37], being adapted with
particular success adapted to computer vision tasks in
the form of the Vision Transformer (ViT) [38] but also
to more specialized applications like the determination
of protein structures [39]. A key feature of transformer
architectures is their decoupling of nonlinear processing,
which may still be performed by conventional fully con-
nected subnetworks acting on subsets of the data, and
mixing between those pieces of data according to the rel-
evance of those interactions to the result, which is han-
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FIG. 1. Dependence of the generalised harmonic numbers on
the system’s size (N) and on the range of the interactions (α).
It can be seen that for α < 1.5 the dependence of this factor
on size intensifies. The solid grey line indicates the asymp-

totic value of H
(α)
N = 1 and the dashed black line indicates

the Riemann zeta function, ζ(α), to which the generalised
harmonic number tends when N → ∞.

dled by an attention mechanism. This allows it to extract
complex patterns very efficiently. Due to these promis-
ing features, application of transformers in the field of
condensed matter as a variational ansatz has quickly fol-
lowed [40–42]. This type of architecture could help find-
ing solutions more efficiently in problems where estab-
lished methods like MPS (systems with more than one
dimension) or quantum Monte Carlo encounter difficul-
ties (wave function with negative coefficients).

In this work, we continue to explore the capabilities of
this type of architecture by selecting the Vision Trans-
former (ViT). We demonstrate that this architecture is
capable of computing the full phase diagram and charac-
terizing its critical properties. By doing so, we provide a
single ansatz that encompasses previous numerical works
discussing parts of the phase diagram [43–47]. Addition-
ally, we compare the performance of our ViT and RBM
architectures. Our results help establish transformers as
an efficient variational ansatz that can be highly use-
ful for tackling a wide range of problems in many-body
physics.

The rest of the manuscript is organized as follows: in
section II we lay out the details of the family of models
we are trying to solve, in section III we discuss the meth-
ods, software and parameters that we use, in section IV
we present and contextualize our results, and in the last
section we summarize our main conclusions. Details of
the finite size scaling are sent to Appendix A.

II. LONG-RANGE INTERACTING QUANTUM
MODELS

Generically, quantum long-range models on a d-
dimensional, N -site lattice contain interactions described
by a Hamiltonian of the form

Hc = −1

2

N∑
ij

Jij

(
CiC†

j + h.c.
)
, (1)

where Ci is a local operator acting on site i and the in-
teractions decay according to a power law

Jij = J
J̃ij

Ñ
, (2)

with

J̃ij =

{
b if i = j

r−αij otherwise.
(3)

In this equation, b is a parameter that can be tuned to
shift the spectrum of J and is taken as b = 1 in our
simulations, and the parameter α sets the range of the
interactions. Throughout this paper, we will assume pe-
riodic boundary conditions (PBC) and d = 1, therefore
we define rij = min (|i− j|, N − |i− j|).
It is important to discuss the normalization used in

Eq. (2). For α < d, the interactions decay slowly enough
that the sum in the coupling term (1) depends on N
superlinearly, breaking the extensive character of the
model [19, 21, 48]. Kac’s renormalization factor, 1/Ñ ,
restores that feature, ensuring a well-defined thermody-
namic limit. In particular,

Ñ =
∑
j

J̃ij = 1 +

N∑
j=1

1

rαij
= 1 +H

(α)
⌊N/2⌋ +H

(α)
N−1−⌊N/2⌋ ,

(4)

where H
(α)
N is a generalized harmonic number. We have

used the fact PBC make the model translationally in-
variant and thus

∑
i J̃ij is independent of j. In figure 1,

we plot H
(α)
N for different sizes as a function of α. For

α > 1, H
(α)
N approaches the ζ(α) function as N → ∞. In-

deed, for α ⪆ 2, in the next sections we confirm through
numerical simulations that the dependence of the Kac
factor on system size can be safely neglected. Eventu-
ally, Ñ → 3 as α → ∞. For α < 1, the asymptotics of

H
(α)
N are richer, but it diverges as a function of N , which

makes this regularization necessary to have a well-defined
thermodynamic limit.
The general phenomenology, both quantum and clas-

sical, can be characterized by the value of α. The
non-additive regime, characterized by α < 1, is termed
(strong) long-range. This regime is often overlooked in
many analytical and numerical studies due to the chal-
lenges posed by an ill-defined thermodynamic limit re-
sulting from non-extensivity. However, Kac’s rescaling
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FIG. 2. Diagram of the nature of interactions as a function
of α.

overcomes this obstacle. In the quantum context, numer-
ical studies that solve the transverse-field Ising model in
the strong long-range regime can be found in Refs. 43
and 49, confirming that in this regime, the model is
within the mean-field universality class. Furthermore,
it has been proven that, in both the classical and quan-
tum realms, some models can be solved exactly through
mean-field-like approximations that become exact in this
regime [45, 50–54].
Within α > 1 domain, additional subregimes are dis-
cernible: a threshold α∗ exists such that for α > α∗ the
critical exponents of the model align with those of the
nearest-neighbour model (α → ∞). This is the short-
range regime. Conversely, in the range where 1 < α < α∗,
the model exhibits critical exponents distinct from their
short-range counterparts, revealing the influence of long-
range interactions while retaining additivity. This con-
dition defines the weak long-range regime [18, 21]. It is
also possible to further subdivide these classes by intro-
ducing αMF such that for 1 < α < αMF the critical expo-
nents correspond to those predicted by mean-field (MF)
theories [55, 56]. It appears that the weak long-range
regime is the most challenging to access from an analyti-
cal standpoint, making numerical approaches indispens-
able for its understanding [23, 43, 46, 47, 57]. For ease
of reference, we summarize this classification in Fig. 2.

In this paper, we solve the long-range Ising model,
which is of significant interest for various experiments
[14, 58, 59] and from a theoretical perspective, offering
numerous results for comparison. We consider the Hamil-
tonian given by

H =

N∑
ij

Jijσ
z
i σ

z
j − hx

N∑
i

σxi , (5)

where the σx represent the standard Pauli matrices and
Jij is defined as in Eq. (2). Throughout all computa-
tions, we set hx = 1, thereby fixing the units of J . This
model yields exact analytical results in the limit α→ ∞
(nearest neighbors) via the Jordan-Wigner transforma-
tion. Conversely, in the limit α → 0, the model re-
duces to the Lipkin-Meshkov-Glick (LMG) model, which
is also solvable in the thermodynamic limit. Moreover,
for α < d, the model admits an exact solution in the fer-
romagnetic (J < 0) case [45]. These analytical insights

can be complemented by numerical approaches that span
various ranges of α, utilizing diverse techniques such as
quantum Monte Carlo [43, 49] and ansätze such as tensor
networks [23, 46], and, more recently, restricted Boltz-
mann machines (RBM) [47]. All these works together
offer a comprehensive overview for both the ferromag-
netic and antiferromagnetic scenarios. The system un-
dergoes a second-order quantum phase transition (QPT)
from ferromagnetic and Néel respectively ordered phases
to paramagnetic phases at a certain critical point Jc(α).
Within this model, αMF = 5/3, below which the criti-
cal exponents align with those predicted by Mean Field
theory. Conversely, for α > 3, the system falls within
the universality class of the 2D classical short-range Ising
model. As a consequence, model (5) provides an excellent
baseline for evaluating the accuracy of the transformer
variational ansatz across the entire α spectrum, ranging
from short-range to flat interactions, and for both ferro-
magnetic and antiferromagnetic cases.

III. METHODS

A. Variational quantum Monte Carlo

We use an unnormalized representation of the ground
state over the canonical basis states {|s⟩}:

|ψθ⟩ =
∑
s

ψθ(xin)|s⟩, (6)

where ψθ is a sufficiently flexible ansatz with a collection
of parameters θ, yielding the probability amplitude of
each of those states, and xin is an appropriate encoding
of |s⟩ to serve as an input to the function. In this work
we focus on spin 1/2 chains, so xin will be composed of
a binary variable for each spin, whose values we encode
as +1 or −1 (see Figure 3a). Our choices for ψθ are all
general machine-learning models, which we generically
represent as M (θ).
In this framework, the solution for the ground state

of the system comes in the form of an optimal set of
parameters θ. Those parameters are thus variationally
optimized by minimizing the energy of the Hamiltonian,
⟨H⟩ψθ

≡ ⟨ψθ|H|ψθ⟩/⟨ψθ|ψθ⟩. The expected value of an
observable explicitly represented on this basis as a func-

tion Q (xin) =
⟨s|Q|ψθ⟩
⟨s|ψθ⟩ , can be calculated as

⟨Q⟩ψθ
=
∑
s

pθ(s)Q (xin) , (7)

where pθ(s) = |ψθ (xin) |2/⟨ψθ|ψθ⟩. Note that, in con-
trast to a more conventional ML workflow for building a
classifier or a regressor, no training outputs are necessary
here to define a loss, since optimization is guided by the
minimization of the value of the energy ⟨H⟩ψθ

estimated
using the model itself. The data used to train the model



4

FIG. 3. (a) General scheme of the parameterization of a wave-function, ψθ, through a machine learning model,M , characterized
by a series of variational parameters θ. (b) General structure of a RBM. The parameter αRBM indicates the density of the
hidden layer. (c) Block diagram representing the structure of the ViT ansatz used in this work. The color code is used: green
corresponds to all those operations that act at token level; in yellow we represent operations that generate correlations between
the channels originating from different tokens; finally, red highlights the operations placed after the Core block that merge the
channels and post-process that result.

are thus only inputs in the form of states sampled from
the canonical basis.

As these definitions suggest, we are forced to resort to
Monte Carlo (MC) sampling in order to evaluate the av-
erages to carry out the minimization process, given the
impossibility of considering the totality of states. Specif-
ically, we use the Metropolis-Hastings algorithm with a
combined transition rule. On the one hand, a random
spin is flipped according to a uniform probability with-
out taking into account any constraints such as the total
magnetization. On the other hand, we invert the total
magnetization of a random number of Markov chains.
The probability for the former is three times larger than
the probability for the latter in our implementation. Fur-
thermore, among all the available optimization methods,
we employ Stochastic Gradient Descent (SGD) with cus-

tom schedules for the learning rate, λ, combined with the
Stochastic Reconfiguration (SR) method [60], character-
ized by a stabilizing parameter called diagonal shift that
we denote as ∆sr.

B. Ansätze: neural networks and restricted
Boltzmann machines

In this variational framework, NNs are leveraged to
provide a trainable ψθ. In this study we employ and
compare two different architectures with very different
levels of complexity: an RBM adapted for regression and
a vision transformer. Multilayer perceptrons (MLPs),
the most basic incarnation of a feed-forward neural net-
work (FFNN), are used as building blocks in the ViT and
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also serve to introduce this RBM.
The architecture of an FFNN is characterized by the

unidirectional flow of information from the input towards
the output, passing through a set of hidden layers. In the
case of an MLP, each neuron in a layer computes a linear
combination of all the outputs from the previous layer
and applies a nonlinear activation function to the results
to create its own output. The defining characteristics of
an MLP are the all-to-all connectivity between adjacent
layers and the fact that there is at least a single hidden
layer. The functional form of an MLP with activation
function F and ℓ hidden layers is

MLP (xin;w1,b1,w2,b2 . . .wout,bout) =

= F (bout +woutF (bℓ +wℓF (. . . F (b1 +w1xin))))

Here, the w matrices and b vectors are the weights and
biases of each layer, respectively. Layers can have differ-
ent widths, and F is understood to act elementwise on its
arguments. We create the functional form of our ansatz
by using an MLP for the logarithm of the wave function:

ψFFNN
θ = exp

[∑
MLP(xin;θ)

]
. (8)

where θ stands for the collection of weights and biases
and the sums run over elements of the output to gener-
ate a single value. This results in a real wave function
with positive coefficients, which aligns with our interests.
However, if one were to deal with problems where the
ground state is a non-positive wave function, the ansatz
would need to be modified. One option can be to add
a second MLP to parametrize the imaginary part of the
logarithm, i.e., the phase of the wave function. This cov-
ers both the scenario where the wave function may be
complex and the case where it is real but non-positive.
For the latter, one can modulate the imaginary part with
a sigmoid function with a maximum amplitude of π to
restrict the phase to the values 0 or π.
A perceptron with a single hidden layer and some mi-

nor changes is equivalent to a restricted Boltzmann ma-
chine (RBM; see Figure 3b), originally devised as a gen-
erative model. Specifically, the nonlinear activation func-
tion must be chosen as F (x) = log cosh (x) and an addi-
tional linear term is added to the output. The ansatz in
this case is

logψRBM
θ = axin+

∑
j

log
[
cosh ((Rew)xin +Reb)j

]
+

i
∑
j

log
[
cosh ((Imw)xin + Imb)j

]
(9)

In the expression above, the product runs over outputs.
The width of the output layer is usually chosen as propor-
tional to the width of the input layer through an integer
factor known as the density [7]. This variational ansatz

results in a wave function with parameters θ = {a,w,b}.
We take a = 0 following the implementation in NetKet
[61].
Although on paper MLPs can be used to approxi-

mate any sufficiently well-behaved function according to
a number of universality theorems [62, 63], the basic
MLP architecture faces important limitations in prac-
tice arising, among other factors, from the phenomenon
of vanishing gradients during training [64] as well as the
complexity of their all-to-all mapping. The former has
been alleviated through breakthroughs such as normal-
ization layers (e.g. BatchNorm [65] and LayerNorm [66]),
residual learning by means of additive shortcuts around
groups of layers [67, 68] and new activation functions
line Swish [69]. In terms of reduction in complexity, the
transformer architecture, originally developed to replace
recurrent architectures in machine translation tasks [36],
has found applications in all areas of machine learning,
and in particular been very successfully adapted to com-
puter vision tasks as the vision transformer (ViT) [38].
A key feature of transformer architectures is their decou-
pling of nonlinear processing, which is still performed by
modified MLPs acting on subsets of the data, and mixing
between those pieces of data according to the relevance
of those interactions to the result, which is handled by an
attention mechanism. The details of the version of the
transformer used in this work are presented in the form
of a block diagram in Figure 3c, and the main operations
are described in what follows.
First of all, tokenization takes place. Here the quan-

tum states |s⟩, represented as their corresponding arrays
xin, are divided into n-tokens of dimension d (N = dn).
Next they are passed through a linear embedding layer
with trainable parameters (common to all tokens), map-
ping each token into a vector of arbitrary dimension demb.
The next stage is an attention block where correlations
between tokens are taken into account. As depicted in the
central panel of Figure 3c, we first normalize the output
of the previous embedding using a LayerNorm operation
[66]. We then split each token into h vectors of dimen-
sion p = demb/h. Each of these vectors goes into one of
the h heads of the multihead attention layer, where the
following operation takes place:

Aµ
i =

n∑
j=1

aµijV
µxµj . (10)

Here, xµj represents the p-dimensional vector processed
by the µ-th head coming from token j. As it can be seen,
tokens are mixed within each head through the linear
transformation parameterized by V µ and the attention
matrix aµij . Note that this is a simplified version of the

original dot-product attention mechanism [36]. The key
feature of this simplification is that the attention weights
are dependent only on the relative positions of each pair
of spins. In contrast, the usual dot-product attention is
invariant with respect to permutations and therefore does
not encode positions at all, so explicit positional encod-
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ings must be introduced to avoid losing that information
[70]. Furthermore, since we deal with spin chains with pe-
riodic boundary conditions, we enforce the translational
symmetry by constraining aµij to be a circulant matrix,

i.e., aµij = cµ(j−i) modp [40]. This is complemented by

an explicit symmetrization through an average over all
the possible cyclic permutations of the tokens. In this
regard, the ViT improves upon the complexity of a fully-
connected model when applied to a translationally sym-
metric system, as the latter would require a similar sym-
metrization over all cyclic permutations of spins. After
applying this layer, we concatenate the h Aµ

i vectors to
recover a single demb-dimensional vector for each of the
input tokens. Each of those vectors is then fed through
a modified MLP for nonlinear processing, whose compo-
nents are represented in the right-hand-side panel of Fig-
ure 3c. The output is again a demb-dimensional vector for
each input token. Note that both operations (mixing by
the attention block and processing by the MLP) are also
surrounded by ResNet-like bypasses [68]. We further pass
the output through an elementwise log cosh (x), which we
have found to greatly enhance the training performance
of the model when it must learn wave functions whose
norm is concentrated over a few states. The inspiration
for our choice of transformation comes from the simpler
RBM-like architecture, where the log-cosh function is es-
sential for a satisfactory training, as opposed to more
conventional nonlinear activation functions. This com-
pletes our ViT core block and the set of operations de-
fined terms of tokens. A pooling operation is now applied
so that the n vectors corresponding to the tokens are av-
eraged to give rise to a single (still demb-dimensional)
vector. This is further processed by another MLP where
layer by layer the dimensions of the vector resulting from
pooling are reduced: demb → d1 → · · · → dnpp

. Finally,
a last linear transformation acts as an offset-and-scaling
block. This complete ViT is used to create the real parts
of logψθ, and we do not include an imaginary part.

C. Parameters and computational details

All calculations in the following studies were performed
using GPUs. The hyperparameters used in the ViT ar-
chitecture are listed in Table I. Our code is written in
Python and available on GitHub [71]. Our models
are defined using the Flax neural-network library [72],
which runs on top of JAX [73]. Training (including the
schedules for the learning rate and for the diagonal shift
in the SR preconditioner) is handled by a combination of
Optax [74] and NetKet [61], which also takes care of
sampling.

Each iteration of the training is performed using a to-
tal of 4096 MC samples distributed over 1024 indepen-
dent Markov chains. For the training process we chose
a protocol for the learning rate, λ, consisting of a linear
warm-up followed by an exponential decay. This proto-
col is defined by an initial value of the learning rate, λ0,

Variable Notation Value

Chain length N 50− 200
Token dimension d N/10
Number of tokens n = N/d 10

Embedding dimension demb 14
Number of heads h 2
Head dimension p = demb/h 7

MLP layers within Core Block nMLP 3
Post-processor MLP (d1, . . . , dnpp) (5, )

TABLE I. Summary of parameters in the ViT architecture
and their values used for the simulations [cf. Figure 3].

a maximum value, λmax that it attains after nwarm iter-
ations corresponding to the linear warm-up and a ratio
γ for the exponential decay. To obtain the states with
which we created Figure 4, a maximum of 250 iterations
for training were used, along with following parameters:
λ0 = 0.1, λmax = 2.0, nwarm = 75, γ = 0.995. The
stabiliser parameter present in the SR method follows a
simple linear schedule with an initial value of ∆sr = 10−2

and a final value of ∆sr = 10−4.

IV. RESULTS

Here we discuss the performance of the ViT ansatz
for characterizing the full phase diagram of Eq. (5). We
compare these results with previous studies that cover
specific ranges of the model.

A. Quantities to compute

We define the generalized staggered magnetization
through the operator ms,

m̂s (q) =
1

N

∑
j

σ̂zj e
iqj , (11)

where q = 0 when J < 0 and q = π when J > 0. Once
the network parameters have been determined, this can
be computed using Eq. (7).
To characterize the entanglement between two parti-

tions of the system within the ground state, we also
compute the Renyi-2 entanglement entropy Ŝ2 follow-
ing Ref. 75. We define |ψθ⟩ based on the states of
the computational basis corresponding to each of the
partitions, sA ∈ A and sĀ ∈ Ā, such that |ψθ⟩ =∑

sA,sĀ
ψθ(sA, sĀ)|sA⟩|sĀ⟩. Therefore we can define

Ŝ2 = − log2 Tr[ρ
2
A] , (12)

where ρA = TrĀρ. From this definition we can sam-

ple states from each of the partitions to estimate ⟨Ŝ2⟩
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according to

⟨Ŝ2⟩ =
∑
sA,sĀ
s′A,s

′
Ā

pθ(sA, sĀ)pθ(s
′
A, s

′
Ā)S2(sA, sĀ, s

′
A, s

′
Ā) ,

(13)
where

S2(sA, sĀ, s
′
A, s

′
Ā) = − log

〈
ψθ(sA, s

′
Ā
)ψθ(s

′
A, sĀ)

ψθ(sA, sĀ)ψθ(s′A, s
′
Ā
)

〉
.

(14)
For our simulations we choose A to be half of the system
size. This procedure is already implemented in NetKet
[61].

Finally, it is useful to employ a metric to quantify the
quality of the converged wave functions. One such met-
ric is the V-score [76]. It is defined in terms of the en-
ergy fluctuations, conveniently normalized to yield an N -
independent quantity:

V-score = N

(
⟨H2⟩ψθ

− ⟨H⟩2ψθ

⟨H⟩2ψθ

)
, (15)

B. Phase diagram and critical exponents

In Figure 4 we summarize our calculations for the full
phase diagram of the Ising model (5). In contour 4a) we
plot the fluctuations ⟨m̂2

s⟩ in order to resolve the phase
transition. Here the simulations are done with N = 50
spins and a discretization of δJ = 0.375 and δα = 0.4.
The darker zones stand for ordered phases, both ferro and
antiferromagnetic. We also plot several critical Jc found
with different techniques in previous works [43–46]. Light
blue circles mark values where a deeper investigation has
been done (see below). In panels 4 b) and c), the V-
score is plotted for different sizes N = 20, 50, 100 along
the cuts marked in panel a) with white lines (the darker
the curve, the larger the size). We observe that the V-
score does not depend on the system size, demonstrating
that the simulations do not deteriorate as N increases.
The values around 10−4 compare well with variational
methods for other quantum many-body problems [76].
Beyond this figure of merit, in panels 4 d) and e) we
plot the fluctuations ⟨m̂2

s⟩ for the same sizes and along
the same cuts. In addition to the finite-size behavior, the
curves are smooth, which confirms the convergence of the
method. It is important to note that all of these results
are the outcome of single shot runs. No averaging or
filtering has been performed, which again highlights the
consistent convergence of the model. It is worth stressing
that the inclusion of the log-cosh function at the end of
the core block [cf. Figure 3], as described in Section III B,
is instrumental in obtaining accurate states in the deep
FM regime.

Given that the model is able to qualitatively obtain
the phase diagram across the entire parameter space, we
proceed to extract the critical exponents. This requires

precision in the order parameter that characterizes the
transition. In our case, we take advantage of how well
the ViT reproduces the fluctuations ⟨m̂2

s⟩. This allows us
to determine both the critical point Jc and the critical
exponents associated with the phase transition, ν and β.
In order to do so, we use finite size scaling theory [77, 78].
Close the critical point, ⟨m̂2

s⟩ scales with the system size,
N , as

⟨m̂2
s(N, J)⟩ = N−2β/νf

(
N1/ν(J − Jc)

)
, (16)

where ν is the critical exponent indicating how the cor-
relation length diverges and β the exponent indicating
how the magnetization diverges in the thermodynamic
limit. f is a dimensionless scaling function that depends
on the ratio between system size and correlation length
and controls for finite size effects. The critical values are
fitted so that different sizes collapse with the same f . In
our case, we use the Python fssa library [79, 80] for the
fit. All the collapses obtained are plotted in Appendix A.
Table II summarizes the critical values obtained for the
most paradigmatic cases, comparing them to analytical
results, where available, and to other numerical values
reported in Refs. [43] and [47]. Note that, to enable a
direct comparison, we do not apply the Kac renormaliza-
tion factor of Eq. (4). In addition to Jc, ν and β, we also

list h̃c = 1/J̃c and θc = arctan(1/h̃c).

FM

α Method Jc h̃c θc ν β

1.5
Ours −1.27(3) 4.57(9) 0.22(9) 1.6(5) 0.46(7)

Ref. 43 −1.2107 4.7600 0.2071 1.9911 0.4968
Theory - - - 2.0 0.5

2.5
Ours −2.09(1) 1.76(1) 0.516(9) 1.08(9) 0.19(3)

Ref. 43 −2.0878 1.7631 0.5159 1.1084 0.1880

6.0
Ours −2.963(1) 1.0242(4) 0.7734(2) 1.00(3) 0.12(3)

Ref. 43 −2.9444 1.0307 0.7703 0.9849 0.1238
Theory - - - 1.0 0.125

AFM

α Method Jc h̃c θc ν β

2.5
Ours 4.7527(6) 0.77449(9) 0.91180(3) 1.17(2) 0.0911(9)

Ref. 43 4.6638 0.7893 0.9026 0.9103 0.1153
Ref. 47 4.6778 0.7869 0.9041 1.01 0.122

6.0
Ours 3.143(2) 0.9655(5) 0.8029(2) 1.04(2) 0.11(2)

Theory - - - 1.0 0.125

TABLE II. List with all critical points and exponents obtained
with a ViT ansatz through finite-size scaling analysis (marked
as Ours in the Method column) for different values of α and
in both interaction regimes, FM (Jc < 0) and AFM (Jc > 0).
Moreover, we show the analytical results when they exist, at
α ≤ αMF = 5/3 and α = 6 > α∗, as well as different values
reported in Refs. 43 and 47.

The values presented in Table II are comparable to
those found in the literature or indicated by the theory.
During our investigation, we observed that the results
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FIG. 4. (a) Squared magnetization, ⟨m̂2
s⟩, obtained from the ground states determined by the ViT ansatz for a size of N = 50

spins for different values of J and α. In this diagram different transition curves present in the literature are represented [43–46].
In addition, the points indicated with light blue circles correspond to our estimates obtained by finite-size scaling analysis. The
panels to the right of the phase diagram indicate the behavior of different quantities along two slices of the diagram (white
lines). In panels (b) and (d) the value of α = 4.0 has been set and the V-score (15) and squared magnetization ⟨m̂2⟩ are shown
as a function of J , respectively. In panels (c) and (e) the same quantities are shown in the same order but fixing J = 4.75
and varying α. The different curves in all these panels indicate different chain sizes, with N = 20 being the lightest color and
N = 100 the darkest, going through N = 50 (intermediate).

worsen for the smallest α, which is unexpected since we
are approaching the MF regime where the wave function
should be easier to find. Therefore, we attribute this
to finite-size effects. This was confirmed by simulating
longer chains (N = 200) and observing an improvement
in the results.

Once the critical point has been determined, we can
study the behavior of the entanglement entropy. On one
hand, it reveals the limitations in the amount of entan-
glement other methods such as MPS can capture. On the
other hand, it also characterizes the critical points, where
it is known that the behavior of the entropy is universal
and violates the area law, following a logarithmic depen-
dence with the size N [81]. Our results for the entropy
are plotted in Figure 5 as a function of J for both ferro-
magnetic and antiferromagnetic cases at α = 2.5. These
points correspond to single-shot executions. To aid vi-
sualization, we applied a Savitzky-Golay filter, which al-
lows us to observe a certain trend across the different
system sizes. Far from the critical point, indicated by a
solid gray line in each case corresponding to the values
reported in Table II, it is clear that the entropy becomes
size-independent, in accordance with the area law. How-
ever, near the critical point, these data do not allow us to
deduce the predicted volume dependence. Therefore, we
focus on the estimated critical point and perform statis-
tics over 10 independent runs. The insets in each of the
panels of Figure 5 show the results for the mean and
standard deviation. In this case, it is clear that the data
are consistent with the expected logarithmic growth, val-
idating the ansatz’s ability to reproduce highly entangled

states.

C. Comparison to the RBM-like solution

We conclude this section by comparing the ViT and
RBM-like architectures using the V-score (15) and limit-
ing the total training time for each network to 3 minutes.
The results for α = 2.5 and N = 50 as a function of J
are shown in Figure 6. The training used for the ViT
is the same as the one described in Sec. III C. For the
RBM, we use hand-optimized parameters for all values of
J . However, since the chosen training protocol may be a
crucial factor in the model’s performance, we explore two
different protocols to ensure fairness in the comparison.
These two protocols consist in different schedules for the
learning rate λ: a linear decrease and a linear warm-up
followed by an exponential decay. The first one corre-
sponds to a linear decrease where the initial and final
values of the learning rate are λ0 = 0.1 and λmin = 0.01,
respectively. The other has the same structure as the
one detailed in Sec. III C, with values for those parame-
ters of λ0 = 0.01, λmax = 1.2, nwarm = 50 and γ = 0.995.
The corresponding results for each protocol are shown in
panels (a) and (b) of Figure 6, respectively. To allow for
more iterations within the maximum allotted time, the
number of MC samples has been reduced to 2048 in all
cases.
The main observation from Figure 6 is that the ViT ar-

chitecture achieves better quantum states across most of
the spectrum in all scenarios, including within the critical
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FIG. 5. Determination of the Renyi-2 entropy. For α = 2.5,
the entropy for different chain sizes is shown in the FM regime
[panel (a)] and in the AFM regime [panel (b)]. The dots in
the main panels represent the simulation results [cf. Eq. (13)]
while the solid lines have been obtained with a Savitzky-Golay
filter to act as a guide to the eye. The insets show the sta-
tistical analysis performed at the critical points of each case
(vertical lines in the main panels). The mean value obtained
from 10 independent runs is displayed, along with the cor-
responding standard deviation as error bars. The linear fit
indicates that the system’s entropy follows the expected log-
arithmic scale in both cases.

regions, which are marked by dashed lines. In this regard,
it is particularly interesting how the V-score worsens in
the vicinity of the critical point for all the architectures
and training protocols considered. This behaviour is sim-
ilar to what has been observed in other ansätze used to
obtain ground states such as quantum circuits [82]. Addi-
tionally, we see that increasing the RBM’s density briefly
improves the results, but ultimately reaches a plateau in
the V-score that cannot be surpassed by simply adding
more hidden neurons to the RBM. The only region where
all architectures converge in accuracy is around J = 0,
where the model is trivial. In fact, numerical tests indi-
cate that in this limit it is favourable to reduce the token

dimension to a single spin, replicating the non-interacting
spin scenario, which in turn helps us understand why the
simpler RBM achieves better accuracy here. Nonetheless,
the ViT provides consistent quality results regardless of
the value of J and the phase, whether ordered or not.
Moreover, the RBM with αRBM = 1 already has more pa-
rameters than our ViT architecture, with 5100 vs. 1133,
respectively. Therefore, the ViT is able to achieve bet-
ter results using fewer parameters and less training time,
demonstrating its superiority in terms of efficiency.

Despite these results for the finite-size case, it is worth
noting that a recent study [83] demonstrates that the
RBM is capable of finding the ground state using only a
single variational parameter in the thermodynamic limit
(N → ∞) and in the strong long-range regime (α < 1).

V. CONCLUSIONS

In this work, we explored the application of the Vi-
sion Transformer (ViT) to quantum long-range models,
with a focus on the transverse-field Ising model. Our re-
sults affirm the ViT’s capability to handle all interaction
regimes, from short-range to strong long-range interac-
tions. Figure 4 summarizes the full phase diagram and
its comparison with previous results that focus on specific
regions. Additionally, Table II quantitatively compares
the critical properties, Jc, and the critical exponents ν
and β with values reported in the literature.

Throughout this work, our intention has been to em-
ploy an economical approach in terms of the number of
hyperparameters and to use single-shot results, without
further curation or cherry-picking. The attention mech-
anism, a fundamental aspect of this architectural design,
is responsible for identifying the most significant correla-
tions within a relatively small number of iterations. Ad-
ditionally, the remaining MLP layers endow the model
with sufficient expressiveness and versatility, allowing it
to produce a solution for any point within the parameter
space. This is further corroborated by Figure 6, where
a comparison was made with an ansatz based on RBMs
setting the maximum training wall time. The ViT out-
performs the accuracy obtained in critical regions by up
to two orders of magnitude. Moreover, the use of the
log-cosh function as a nonlinear activation function at
the end of the core block [cf. Figure 3] was revealed as
crucial: its inclusion, as described in Section III B, was
fundamental in obtaining consistently and stably accu-
rate states in the deep FM regime.

Our results illustrate the power of modern NN architec-
tures to afford superior accuracy and efficiency than their
more traditional counterparts when used as ansätze in
variational quantum Monte Carlo workflows, and specif-
ically demonstrate the ability of the ViT to capture im-
portant correlations in a cost-effective manner, opening
the door to its use for a wider variety of problems involv-
ing long-range interactions.
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FIG. 6. Performance comparison between RBM-like models
and ViT. Two different schedules for the learning rate have
been used for the RBM, indicated in panels (a) and (b). The
training for the ViT model is the same in both cases and it is
described in Sec. III C. Fixing a maximum training time (3
minutes) for each point, the V-scores obtained by an RBM-
like ansatz with different densities (denoted as αRBM in the
legend) are compared with the ones obtained by our ViT im-
plementation. The chain size is N = 50 and the interaction
range α = 2.5. The black dashed lines mark the critical points
obtained by FSSA [see Table II].
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Appendix A: Finite-size scaling analysis

Here we show all the collapses of the curves correspond-
ing to the fluctuations that are used to perform finite-size
scaling analysis (FSSA), as detailed in the main text, in
order to obtain the critical parameters of the system.
These curves are shown in Figure 7. For each value of
α considered, 60 points have been simulated in different
windows for J . Not every point has been used to ob-
tain the critical parameters; narrower windows centred
on the critical point and different for each α have been
chosen in order to obtain the best collapses. However,
in Figure 7 all the 60 points are shown. To get these
points a maximum number of 500 iterations was set in
the training procedure. The schedule for the SR param-
eter, ∆sr, the number of warm-up iterations, nwarm, as
well as the decay rate γ, are all the same as the ones de-
scribed in Section III C. The peak value for the learning
rate, λmax goes from 5.0 for the training of the smallest
chains (N = 50) up to 12.0 for the largest (N = 200)
taking intermediate values for the intermediate sizes.

The maximum chain size was N = 150 spins for all
interaction ranges except for α = 1.5, where we made
a further push to simulate N = 200 spins to verify the
finite size effects in the MF regime mentioned in the main
text.

[1] R. Orús, A practical introduction to tensor networks:
Matrix product states and projected entangled pair
states, Ann. Phys. 349, 117–158 (2014).

[2] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozen-
berg, Dynamical mean-field theory of strongly correlated

fermion systems and the limit of infinite dimensions, Rev.
Mod. Phys. 68, 13 (1996).

[3] F. Becca and S. Sorella, Quantum Monte Carlo Ap-
proaches for Correlated Systems (Cambridge University
Press, 2017).

https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13


11

FIG. 7. Collapsed curves using the FSSA technique for the data obtained from the fluctuations ⟨m̂2
s(N, J)⟩ for different values

of α. In each panel the values of the critical parameters obtained through the corresponding fit are shown.



12

[4] Y. Alexeev, M. Amsler, P. Baity, M. A. Barroca,
S. Bassini, T. Battelle, D. Camps, D. Casanova, Y. jai
Choi, F. T. Chong, C. Chung, C. Codella, A. D. Corcoles,
J. Cruise, A. D. Meglio, J. Dubois, I. Duran, T. Eckl,
S. Economou, S. Eidenbenz, B. Elmegreen, C. Fare,
I. Faro, C. S. Fernández, R. N. B. Ferreira, K. Fuji,
B. Fuller, L. Gagliardi, G. Galli, J. R. Glick, I. Gobbi,
P. Gokhale, S. de la Puente Gonzalez, J. Greiner,
B. Gropp, M. Grossi, E. Gull, B. Healy, B. Huang,
T. S. Humble, N. Ito, A. F. Izmaylov, A. Javadi-
Abhari, D. Jennewein, S. Jha, L. Jiang, B. Jones, W. A.
de Jong, P. Jurcevic, W. Kirby, S. Kister, M. Kita-
gawa, J. Klassen, K. Klymko, K. Koh, M. Kondo,
D. M. Kurkcuoglu, K. Kurowski, T. Laino, R. Land-
field, M. Leininger, V. Leyton-Ortega, A. Li, M. Lin,
J. Liu, N. Lorente, A. Luckow, S. Martiel, F. Martin-
Fernandez, M. Martonosi, C. Marvinney, A. C. Med-
ina, D. Merten, A. Mezzacapo, K. Michielsen, A. Mi-
tra, T. Mittal, K. Moon, J. Moore, M. Motta, Y.-
H. Na, Y. Nam, P. Narang, Y. ya Ohnishi, D. Otta-
viani, M. Otten, S. Pakin, V. R. Pascuzzi, E. Penault,
T. Piontek, J. Pitera, P. Rall, G. S. Ravi, N. Robert-
son, M. Rossi, P. Rydlichowski, H. Ryu, G. Samsonidze,
M. Sato, N. Saurabh, V. Sharma, K. Sharma, S. Shin,
G. Slessman, M. Steiner, I. Sitdikov, I.-S. Suh, E. Switzer,
W. Tang, J. Thompson, S. Todo, M. Tran, D. Trenev,
C. Trott, H.-H. Tseng, E. Tureci, D. G. Valinas, S. Val-
lecorsa, C. Wever, K. Wojciechowski, X. Wu, S. Yoo,
N. Yoshioka, V. W. zhe Yu, S. Yunoki, S. Zhuk, and
D. Zubarev, Quantum-centric supercomputing for ma-
terials science: A perspective on challenges and future
directions (2023), arXiv:2312.09733 [quant-ph].

[5] H. J. Changlani, J. M. Kinder, C. J. Umrigar, and G. K.-
L. Chan, Approximating strongly correlated wave func-
tions with correlator product states, Phys. Rev. B 80,
245116 (2009).

[6] S. Anders, M. B. Plenio, W. Dür, F. Verstraete, and H.-J.
Briegel, Ground-state approximation for strongly inter-
acting spin systems in arbitrary spatial dimension, Phys.
Rev. Lett. 97, 107206 (2006).

[7] G. Carleo and M. Troyer, Solving the quantum many-
body problem with artificial neural networks, Science
355, 602–606 (2017).

[8] D.-L. Deng, X. Li, and S. Das Sarma, Quantum entan-
glement in neural network states, Phys. Rev. X 7, 021021
(2017).

[9] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and
J. I. Cirac, Neural-network quantum states, string-bond
states, and chiral topological states, Phys. Rev. X 8,
011006 (2018).
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