000148041 001__ 148041 000148041 005__ 20250110163829.0 000148041 0247_ $$2doi$$a10.1111/j.1365-3091.2011.01316.x 000148041 0248_ $$2sideral$$a78046 000148041 037__ $$aART-2012-78046 000148041 041__ $$aeng 000148041 100__ $$aRodríguez-López, Juan Pedro 000148041 245__ $$aAeolian construction and alluvial dismantling of a fault-bounded intracontinental aeolian dune field (Teruel Basin,Spain); a continental perspective on late Pliocene climate change and variability 000148041 260__ $$c2012 000148041 5060_ $$aAccess copy available to the general public$$fUnrestricted 000148041 5203_ $$aAn aeolian dune field migrating to the east encroached on the toes of alluvial fans in the Teruel Basin (eastern Spain) during a short interval in the Late Pliocene (ca 2·9 to 2·6 Ma), when Northern Hemisphere glaciation and strong glacial–interglacial cycles began. Preservation of the dune field was controlled by syn-sedimentary activity of a normal fault. Ephemeral water discharge eroded aeolian sands and formed V-shaped channels in which aeolian sandstone blocks accumulated. The incorporation of loose aeolian sand in wadi waters modified the sediment/water ratio, changing the physical properties of the flows as they penetrated the aeolian dune field. The erosion and cover of aeolian dune foresets by sheetflood deposits suggest that dune-damming caused the intermittent ponding of water behind the dunes and its flashy release. The arid climate in the Late Pliocene western Mediterranean realm favoured the transport of windblown sediments from northern Africa and western Mediterranean land masses into the Mediterranean. The formation of the studied aeolian dune field (2·9 to 2·6 Ma) and possibly others (for example, the Atacama, Namib and Sahara deserts) correlates with a strong increase of the influence of obliquity, which can be attributed to the combination of a regional expression related to the reduced effect of precession due to a minimum in the long-period (2·3 Ma) eccentricity cycle and a remote expression of the onset of the Northern Hemisphere glaciation. 000148041 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CGL2008-04518$$9info:eu-repo/grantAgreement/ES/MICINN/CGL2009-13390 000148041 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000148041 590__ $$a2.611$$b2012 000148041 591__ $$aGEOLOGY$$b6 / 47 = 0.128$$c2012$$dQ1$$eT1 000148041 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000148041 700__ $$0(orcid)0000-0002-9130-117X$$aLiesa, Carlos Luis$$uUniversidad de Zaragoza 000148041 700__ $$avan Dam, Jan 000148041 700__ $$aLafuente, Paloma 000148041 700__ $$0(orcid)0000-0001-5091-9398$$aArlegui, Luis$$uUniversidad de Zaragoza 000148041 700__ $$0(orcid)0000-0003-0900-1440$$aEzquerro, Lope$$uUniversidad de Zaragoza 000148041 700__ $$ade Boer, Poppe L. 000148041 7102_ $$12000$$2428$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Geodinámica Interna 000148041 773__ $$g59, 5 (2012), 1536-1567$$pSedimentology$$tSEDIMENTOLOGY$$x0037-0746 000148041 8564_ $$s4045420$$uhttps://zaguan.unizar.es/record/148041/files/texto_completo.pdf$$yPostprint 000148041 8564_ $$s1091673$$uhttps://zaguan.unizar.es/record/148041/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000148041 909CO $$ooai:zaguan.unizar.es:148041$$particulos$$pdriver 000148041 951__ $$a2025-01-10-14:25:43 000148041 980__ $$aARTICLE