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Abstract: Milling machines remain relevant in modern manufacturing, with tool optimization being
crucial for cost reduction. Inserts for compound cutting tools can reduce the cost of operations by
optimizing their lifespan. This study analyzes the flank wear of cutting tools in milling machines,
with an emphasis on evaluating different approaches to predict their lifespan. It compares three
distinct modeling approaches for predicting tool lifespan using algorithms: traditional ensemble
methods (Random Forest, Gradient Boosting) and a deep learning-based LSTM network. Each model
is evaluated independently, and this comparative analysis aims to determine which modeling strategy
best captures the intricate interactions between various process variables affecting tool wear. This
method ensures greater efficiency and accuracy than conventional techniques, providing a scalable,
resource-efficient solution for reliable and insightful tool wear predictions. The results obtained
from the dataset of an insert tool can be extrapolated to other milling inserts and demonstrate the
progression of tool wear over time under varying cutting parameters, providing critical insights for
optimizing milling operations. The integration of uncertainty awareness in the predictive outputs is a
unique feature of this research and enhances decision-making for smarter manufacturing. This proac-
tive approach enhances operational efficiency and reduces overall production costs. Furthermore, the
data-driven, AI-centric methodology developed in this study offers a transferable approach that can
be adapted to other machining processes, advancing state-of-the-art tool wear prediction.

Keywords: artificial intelligence; cutting tools; machine learning; milling machines; predictive
maintenance; tool wear

1. Introduction

Amid the Fourth Industrial Revolution, commonly referred to as Industry 4.0, sig-
nificant technological changes are taking place. Industries must undergo modernization
processes not only to sustain but also to compete in the current market, both locally and,
thanks to globalization, all around the world. Material removal processes have had to
optimize all aspects of their operations to enhance efficiency, and within this broad category,
milling machines play a fundamental role in the sector, particularly in the production of
high-precision parts with superior surface finishes.

Milling machines allow for the machining of surfaces and the creation of complex
shapes in various materials, such as plastics and composites, though they are mostly used
to work with metals. However, the significance of milling machines lies not only in their
ability to perform precise and efficient cuts but also in their contribution to increasing
productivity and reducing industrial costs [1]. Over time, these machines have evolved
from simple manual devices to more sophisticated models managed by computer numerical
control (CNC), thus improving precision and enhancing the repeatability of machining
tasks to deliver unprecedented results.

The accuracy of cuts depends on the machine’s rigidity, the quality of guides and
spindles, and the operator’s skill or the CNC program’s accuracy, as well as the wearing of
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the cutting tool [2]. Shaping a workpiece requires coordinated movement of the worktable
and the rotation of a cutting tool, called a milling cutter, which removes material at high
speed, cutting small chips until achieving the final product [3]. Milling machines are
versatile and capable of performing diverse operations such as milling, drilling, boring,
and threading.

Cutting tools are essential for the machining process, enabling precise cutting, shaping,
and finishing of parts. They are robust and efficient, capable of withstanding high forces
and temperatures during milling. There are two main types: solid tools and interchangeable
insert tools. Solid tools are made from a single piece of material, usually solid carbide or
high-speed steel (HSS), known for their durability and precision; however, they require
replacement or sharpening when worn, which can be highly costly and time-consuming.
Interchangeable insert tools consist of a main body with replaceable cutting inserts, which
can be changed when worn, reducing costs and minimizing machine downtime [4].

Inserts are small cutting pieces mounted on milling tools to perform precise cuts.
They are utilized in disk cutters, slab mills, and grooving cutters for cutting flat surfaces,
contours, and grooves, respectively. Choosing the right inserts and their proper use is
crucial for optimal results in manufacturing and machining. Inserts are made from hard and
wear-resistant materials, primarily tungsten carbide, ceramics, cermet (a mix of ceramic
and metal), cubic boron nitride (CBN), and polycrystalline diamond (PCD). Tungsten
carbide is the most widely used due to its high hardness and wear resistance, while ceramic
inserts resist high temperatures, and cermet combines hardness and toughness. CBN
and PCD inserts are used for specialized applications [5]. Inserts are classified based on
shape, geometry, specific application, and the machined material. The shape determines
the insert’s cutting ability in different directions, with common shapes including square,
round, triangular, rhomboidal, and hexagonal. Geometry influences cutting behavior,
chip removal, and insert lifespan. Inserts are designed for various materials, such as
steel, stainless steel, cast iron, non-ferrous metals, and composites, each requiring suitable
properties to optimize cutting performance and minimize wear.

The cutting angles of inserts in milling machines are fundamental for tool performance
and lifespan. The main angles to consider are the inclination angle and the clearance
angle, which affect cutting efficiency, chip formation, and tool durability. Proper selection
and adjustment of these angles, along with controlling chip thickness, optimize cutting
conditions and improve productivity in milling.

Tool wear is an inevitable phenomenon affecting the efficiency, surface finish quality,
and dimensional accuracy of machined parts. During milling, both the cutting tool and
workpiece experience intense forces and frictions, resulting in various wear types. Opti-
mizing cutting parameters like cutting speed (vc [m/min]), feed rate (fz [mm/rev]), and
depth of cut (ap [mm]) can minimize the forces and heat generated during the process. Un-
derstanding common wear types is vital for optimizing machining processes and selecting
appropriate materials and cutting parameters.

The wear of cutting tools is a problem that can directly impact product quality, process
efficiency, and, consequently, cost. Tool wear is an unavoidable phenomenon that primarily
occurs due to friction forces, high temperatures, and adverse working conditions, eventually
leading to a loss of precision and tool failure. This is why the prevention and management
of tool wear in milling is a critical factor to consider in ensuring the continuity and quality
of production. The study of cutting tool wear, particularly in milling machines, has been a
constant point of interest in the manufacturing industry and has advanced significantly
over time, encompassing everything from traditional monitoring and analysis methods to
the application of cutting-edge AI techniques. Each stage has contributed to improving the
accuracy and effectiveness of wear control.

Initially, cutting tool wear was assessed using rather rudimentary methods, such as
visual inspection and direct measurement of deterioration on inserts using microscopes and
high-resolution cameras [6]. While these techniques were useful for identifying evident
damage to the tools, they had significant limitations. First, the process was labor-intensive,
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as it required the removal of the tools from the machine for detailed inspection, which
disrupted production and increased downtime, thus reducing overall process efficiency.
Additionally, the subjectivity tied to visual inspection could lead to inconsistent results,
depending on the experience and judgment of the operator. In short, the need for constant
monitoring and the lack of predictive capability limited their effectiveness in large-scale
production scenarios. However, despite these limitations, these methods were fundamental
in the initial phase of wear study, providing a foundation for the development of more
advanced techniques that emerged over time.

As technology advanced and the need for improved production efficiency grew, more
precise and less intrusive methods for wear evaluation were introduced. Among these,
cutting force measurement became a popular technique, as it allowed for inference of
tool wear conditions by monitoring the stresses experienced during the milling process.
Similarly, vibration detection offered a way to identify anomalies in tool behavior that could
indicate excessive wear or impending failure [6]. Monitoring the temperature in the cutting
zone was also adopted as an indirect indicator of wear, given that an increase in temperature
is usually associated with higher friction and, consequently, greater deterioration of cutting
tools [7].

With the advent and improvement of advanced sensors and data acquisition systems,
tool wear control became more precise and automated. Force, acoustic, thermal, and
vibration sensors were integrated into milling machines to capture real-time data on
operational conditions and the state of the tools [8]. These control systems, working
alongside signal processing techniques, enabled earlier detection of wear and a better
understanding of the mechanisms that cause it without the need to stop the machine for
inspections. Despite these advances, the interpretation and analysis of the data remained
significant challenges due to the complexity of wear patterns and the multiple variables
involved.

However, these approaches had their limitations. Despite being more precise, they
were still essentially reactive, meaning they detected wear only after it had occurred rather
than predicting it before it manifested. Furthermore, they still required a high degree of
supervision, albeit less than before, which could pose a problem in large-scale production
scenarios where operating conditions vary considerably and resources for continuous
monitoring may be limited.

The need to overcome these limitations led to the development of predictive and
more integrated methods for wear evaluation, and this is where artificial intelligence (AI)
and Machine Learning techniques played a critical role. These technologies enabled the
development of models capable of predicting wear based on large volumes of real-time
data [9]. These models use Machine Learning algorithms to identify complex patterns that
would not be apparent through traditional methods. By analyzing data such as cutting
forces, vibrations, temperature, and other parameters, they can anticipate wear before it
occurs, allowing operators to take preventive measures to avoid failures and optimize the
performance of milling machines.

As a result, AI models have been successfully applied to predict cutting tool wear,
providing a more comprehensive and precise understanding of tool conditions to facilitate
wear prevention in inserts. In recent years, various predictive models have been explored
for cutting tool wear prediction, with approaches ranging from traditional Fuzzy Logic and
Genetic Algorithms to more advanced Random Forest, Gradient Boosting, and Long Short-
Term Memory networks. Each of these models offers distinct advantages and challenges,
choosing models dependent on factors like data complexity, computation time, and the
ability to predict wear patterns in real-time milling operations.

Fuzzy Logic has been a popular approach in systems where inputs are uncertain
or imprecise. It relies on fuzzy set theory to deal with partial truth values, making it
useful for decision-making in environments with vague or ambiguous data. However,
despite its strengths in modeling uncertainty, Fuzzy Logic struggles with the complexity
of modern predictive tasks. The challenge of dealing with high-dimensional, continuous
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data from milling processes makes fuzzy systems less effective in this context, as they
do not naturally capture the nonlinear, time-dependent relationships involved in tool
degradation [10]. This makes them less suitable for dynamic and real-time wear prediction
in complex manufacturing settings.

Genetic Algorithms are another traditional approach used for optimization tasks,
particularly in cases where the relationship between input variables is not easily defined.
These models evolve solutions over generations through selection, crossover, and mutation.
While they have proven effective for optimizing parameters like cutting speed and feed
rate, they are computationally expensive and time-consuming, especially when applied to
large datasets or real-time monitoring systems [11]. This limitation arises from the need
for repeated evaluations of possible solutions, which can delay the prediction process,
especially in environments where prompt wear detection is crucial.

Given the limitations of Fuzzy Logic and Genetic Algorithms, other Machine Learning
models like Random Forest, Gradient Boosting, and LSTM have gained prominence due
to their ability to handle complex, high-dimensional data, provide faster predictions, and
achieve higher accuracy in predictive maintenance tasks.

Random Forest is an ensemble learning technique that constructs multiple decision
trees and combines their outputs for robust predictions. It has become a widely used
method in predictive maintenance because of its efficiency in handling large datasets with
multiple variables [12]. The model’s strength lies in its ability to manage missing data,
provide feature importance, and avoid overfitting, making it particularly well-suited for
real-time monitoring of tool wear where data may be noisy or incomplete.

Gradient Boosting is another powerful Machine Learning method that builds models
sequentially, with each new tree attempting to correct the errors of the previous one. This
method is known for its high predictive accuracy and ability to model complex relationships
between variables [13]. Gradient Boosting is particularly useful when the data are noisy
or contain outliers, as it reduces both bias and variance in predictions, making it a solid
choice for tool wear forecasting where environmental conditions can vary.

Long Short-Term Memory networks are a type of recurrent neural network designed
to handle time-series data, making them particularly well-suited for applications where
wear evolves over time. Milling operations often involve continuous data streams, such
as cutting forces and temperatures, that need to be analyzed over time to predict tool
wear. The ability of LSTM to capture temporal dependencies is very relevant in tool
wear prediction, where past operational conditions influence future wear patterns. Unlike
traditional models, LSTM can detect subtle, time-dependent changes that may indicate
impending tool failure, enabling proactive maintenance measures [14].

However, despite advancements in monitoring and analyzing wear using Machine
Learning algorithms, challenges remain. For instance, the complexity of the generated
data, the need for more robust and generalizable models, and the effective integration of
these systems into real production environments are areas that require further research and
development to achieve even greater precision and efficiency.

This research was performed with data from insert milling tools, which are widely
used in industry today. With these approaches, more accurate and efficient results than in
previous studies are expected, optimizing both the relevance of the analyzed parameters
and the precision in wear prediction. An artificial intelligence pipeline was used to analyze
key parameters such as cutting speed, feed per tooth, and cutting depth, as its models are
widely accepted in the scientific field for their simplicity and effectiveness in translating
various signals into reliable wear forecasts [6]. The results can improve knowledge about
tool wear and lead to longer tool life, reducing downtime, tool costs, and, consequently,
overall process costs.
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2. Materials and Methods
2.1. Dataset

Data play a critical role in developing accurate models to predict tool wear and
lifespan, as without data, models cannot be created. Generally, studies on tool wear in
milling machines and other industrial equipment often rely on experimental data collected
in controlled environments. These datasets may include measurements of forces, vibrations,
and other operational parameters [15] that impact tool wear.

Researchers and professionals typically work with data obtained from internal experi-
ments, which can be costly and labor-intensive to gather. However, today, the availability
of public datasets provides a valuable alternative for research and development. These
datasets allow researchers to access pre-collected data, facilitating experimentation and
model development without the need to conduct new experiments from scratch. This
enables those without access to physical machines to conduct experiments and compare
results with other researchers.

In the search for a suitable dataset for predicting insert wear in milling machines,
several relevant public datasets are available. Among them, a dataset from the Katulu
project’s GitHub repository [16] was selected as the origin of data for this research. A dataset
called NUAA, extracted from NUAA Ideahouse, contains 24 variables and 234,902 rows
of data from orthogonal milling experiments using solid carbide inserts and titanium
parts (TC4).

Our research focuses on the NUAA dataset due to its greater number of variables,
making it a more comprehensive option for a thorough analysis.

2.2. Method

To predict tool wear accurately, this study employed a systematic approach utilizing
the NUAA dataset, which encompasses a wide range of inputs reflecting the complex
relationships influencing tool wear. This comprehensive dataset facilitated the imple-
mentation of models specifically designed to learn and model nonlinear relationships
between the input features and tool wear. The use of these models allowed us to capture
intricate dynamics that would otherwise be overlooked, thus enhancing the accuracy of
our predictions.

The analysis proceeded as follows:

1. Data Selection and Preprocessing: The dataset was carefully curated and prepro-
cessed to ensure consistency and relevance. This included cleaning the data, handling
missing values, and normalizing features to prepare them for analysis.

2. Pipeline Implementation: An AI pipeline consisting of ensemble models (Random
Forest and Gradient Boost) and a Long Short-Term Memory network was used to
compare the accuracy of tool wear prediction.

3. Evaluation Metrics: The models were evaluated using appropriate metrics, such as
the mean squared error (MSE), Mean Absolute Error (MAE), and Coefficient of Deter-
mination (R2 Score), to assess their predictive accuracy and generalization capabilities.

4. Visual Analysis: Different plots were generated to visually assess the distribution of
predictions against actual values, providing insights into the best model’s performance
and calibration. Additionally, a correlation matrix was implemented to explore
relationships between variables within the dataset. This algorithm analyzed how
different input features correlate with tool wear, aiming to uncover patterns that can
inform predictive modeling and enhance our understanding of tool wear mechanisms.

2.3. Data Analysis and Pipeline Creation

An excerpt of the code developed specifically for this task can be found in Appendix A.
To begin the analysis, the NUAA dataset was loaded. Then, it was cleaned and

reorganized by removing irrelevant columns and rearranging the remaining ones. With
the data prepared, an initial exploration was conducted to understand the structure of the
dataset. Figure 1 offers descriptive statistics that are reviewed to gain a better understanding
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of the data characteristics, Figure 2a,b remain as support images to help illustrate a generic
milling operation diagram to clarify milling parameters [17–19], and Figure 2c illustrates
the different types of tool wear, out of which flank wear is the focus of this article.
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Figure 2. General milling operation sketches. (a) depicts a bending moment in one axis, (b) depicts
general milling operation parameters, and (c) illustrates where flank wear occurs.

It can be seen (Figure 3) that out of the dataset, 149 rows are missing (null) values
for bending moment x, bending moment y, and torsion, which could introduce errors
during model training. To address this, we applied normalization to these rows instead of
removing them.

To gain a deeper understanding of the data, histograms were generated from the initial
data exploration of the dataset, illustrating the distribution of the different characteristics.
These graphs helped identify patterns and anomalies in the data (Figure 4). In the Y-axis,
the total count of data is plotted, whereas the X-axis shows the data range of each variable
in its respective units.
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From the data distribution graphs, it can be observed that most values have a wide
data range, except for the topmost three graphs, which have three columns, indicating that
the owners of the dataset employed three constant values to obtain the others. Furthermore,
while the Y-axis maintains consistent units across the graphs, the X-axis varies significantly.
For example, in the feed per tooth graph, the values range from 0.04 to 0.06, whereas in the
axial force graph, the range spans from −1000 to 1000. This disparity highlights the need
for data normalization to ensure that the models can process the data effectively. It must
be pointed out that those parameters can be negative, e.g., axial force can be physically
negative because it represents a directional force along an axis. A negative axial force, such
as −1000, indicates compression rather than tension, reflecting the direction in which the
force is applied: positive forces align with the axis, while negative forces act in the opposite
direction. In practical terms, a positive axial force pulls or stretches a structure, while a
negative axial force pushes or compresses it.

To properly predict tool wear, a well-structured pipeline was leveraged to predict tool
wear, employing a systematic approach to data preprocessing, model design, and validation.
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The process involved multiple steps, each critical to ensuring the models’ accuracy and
robustness. The steps can be summarized as follows:

1. Data Preparation and Preprocessing.

First, the dataset was processed to handle any potential inconsistencies. Any non-
numeric values in the dataset were coerced into a numerical format, and any rows con-
taining missing values were removed to ensure that the models only trained on clean and
complete data, reducing the risk of errors during training.

Next, the dataset was split into features and the target variable. The features, which
were various characteristics of the cutting tools, formed the input to the models, while
the target variable was the tool wear, which the models were supposed to predict. Then,
the data were divided into training and testing sets using an 80/20 ratio, meaning 80% of
the data was used to train the models, while the remaining 20% was reserved for testing
their performance.

Because different features can have different ranges and units, scaling was necessary.
A standard scaler was used to normalize the feature values. The scaler transformed the
data such that each feature had a mean of 0 and a standard deviation of 1. This step is
critical for neural networks because it ensures that all inputs are treated equally by the
model, helping to prevent any one feature from dominating the learning process.

2. Pipeline and Model Architecture Designs.

A comprehensive Machine Learning pipeline was developed incorporating ensemble
models and an LSTM (Long Short-Term Memory) network to enhance the accuracy of
tool wear prediction. The pipeline consisted of data preprocessing, ensemble modeling,
temporal modeling with LSTM, and model evaluation.

Two ensemble models—Random Forest and Gradient Boosting—were employed to
leverage the strength of multiple decision trees.

• Random Forest: Consisting of 100 decision trees, the model uses multiple random
samples and averages predictions to reduce variance.

• Gradient Boosting: This model sequentially improves predictions by focusing on
areas where previous models performed poorly, capturing complex data patterns.

Additionally, to capture temporal dependencies in the data, an LSTM network was
implemented to model time-series behavior, which is useful for sequential dependencies
like tool wear progression. A time window of 5 was set, allowing the model to predict tool
wear based on the previous five time steps.

• LSTM Architecture: The LSTM layer, containing 64 units, captures sequential data
patterns, while a dropout layer with a 20% rate helps prevent overfitting. The model’s
output layer consists of a single neuron, reflecting the regression task.

• Early Stopping: To avoid overfitting, early stopping was implemented, halting train-
ing once validation loss stopped improving.

3. Model Validation with Cross-Validation.

To evaluate the models’ generalization performance, K-Fold cross-validation with five
splits was used. This approach divided the training data into five equally sized subsets.
The models were iteratively trained on four of these subsets and validated on the remaining
one, cycling through each fold to ensure the models were tested on all portions of the data.
By doing so, every data point in the dataset was used for both training and validation,
providing a comprehensive assessment of the model’s performance. This method reduces
the variability that might result from relying on a single train–test split and ensures a more
reliable estimation of the model’s predictive capabilities.

The results from the cross-validation process were calculated using the MSE, which
measures how well the models fit the training data. The average MSE across the folds was
reported, along with the standard deviation, which gave an idea of how consistent the
models’ performances were across different subsets of the data.
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4. Early Stopping Mechanism.

To prevent overfitting, an early stopping mechanism was implemented during training.
Early stopping monitors the models’ losses during training and halts the process if the
losses fail to improve for a set number of epochs (in this case, 10). Additionally, the best
weights of the models are restored once training stops, ensuring the best possible model is
used for predictions.

5. Model Testing and Final Evaluation.

Once the models were trained and cross-validated, they were tested on the unseen
test set. The test data were scaled using the same scaler fitted on the training data to ensure
consistency. The model’s performances on the test set were evaluated using the MSE, which
provided an estimate of how well the models generalize to new, unseen data. This final
MSE score gave a clear indication of the model’s predictive accuracy.

3. Results

From the cross-validation training, the following cross-validated MSE values were
obtained for the Random Forest, Gradient Boosting, and LSTE models, respectively:
2.05 × 10−8, 8.14 × 10−5, and 5.88 × 10−3 with a standard deviation of 2.18 × 10−8,
4.56 × 10−6, and 5.22 × 10−5. Each fold of the training ran for a varying number of epochs,
a variability that shows that early stopping occurred at different times across the folds to
avoid overfitting.

After training on the complete training data, the following MSE values were obtained
for the test set predictions, in the same order aforementioned: 4.7 × 10−9, 7.4 × 10−5, and
5.6 × 10−3.

The Gradient Boosting model was chosen as the model to be implemented due to its
ability to capture complex, nonlinear relationships and its adaptability to smaller datasets
compared to Random Forest and LSTM. During cross-validation, Gradient Boosting demon-
strated competitive performance, with its mean squared error being higher than Random
Forest but still reasonable. Its ability to iteratively refine errors through its sequential
learning process makes it more suited to datasets with intricate patterns. Furthermore,
Gradient Boosting’s stepwise construction of decision trees provides valuable insights into
feature importance, improving the interpretability of its predictions. Although its standard
deviation was higher than that of Random Forest, the model still exhibited strong general-
ization on the test set. This combination of performance, interpretability, and adaptability,
particularly when hyperparameters are finely tuned, makes Gradient Boosting a robust
choice. As such, it will be referred to as “the model” throughout the remainder of this
study, representing the optimal approach for predictive tool wear analysis.

The first plot (Figure 5) compares actual and predicted tool wear values. This scatter
plot, with a regression line, shows how closely the model’s predictions align with the true
values. Each point represents a prediction, and the red line represents perfect predictions,
where actual equals predicted. Ideally, the points should be as close to this line as possible.
In this case, the points generally follow the regression line, indicating a strong positive
correlation between the actual and predicted values. However, the deviations observed at
medium tool wear levels, often referred to as outliers, suggest that the model faces some
difficulty in accurately predicting certain values. This does not necessarily indicate poor
model performance. It is often a positive sign that the model is not overly precise, as perfect
accuracy could imply overfitting. By not being excessively precise, the model demonstrates
a level of flexibility, suggesting it will generalize better to new, unseen data. Balancing
prediction accuracy with generalization is key to building a robust and reliable model.
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The second plot (Figure 6) visualizes the error distribution, showing the difference
between the actual and predicted values. The distribution should ideally be centered
around zero, indicating that the model’s errors are balanced and not consistently over- or
underestimating tool wear. The histogram shows a relatively symmetric error distribution
around zero, with a narrow spread. This suggests that most of the model’s predictions are
close to the actual values, with a few larger errors appearing in the tails of the distribution.
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The third plot (Figure 7) compares the overall distribution of the actual and predicted
tool wear values using density plots. The blue curve represents the actual tool wear, while
the orange curve represents the predicted values. The degree of overlap between these
curves shows how well the model captures the general pattern of the data. Here, the
predicted distribution follows the actual distribution quite well, especially for moderate
tool wear values, although the model seems to underperform in predicting extreme tool
wear, which leads to a slight mismatch at the higher values.
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The model’s performance on the test set was evaluated using three metrics: MAE,
MSE, and R2 Score. MAE measures the average magnitude of the errors between predicted
and actual values, indicating how much the predictions deviate from the actual values on
average. MSE squares the errors, giving more weight to larger errors, and is useful for
identifying significant prediction discrepancies. The R2 score indicates how well the model
explains the variance in the target variable. An R2 score of 1 means the model perfectly
predicts the target, whereas a value closer to 0 means the model performs no better than
simply predicting the mean of the target variable. An acceptable R2 for regression cases
generally falls between 0.5 and 0.99, according to Ozili [20], with a strong R2 score being
above 0.90.

After predicting the tool wear values with our test set, the following parameters
were obtained:

1. MAE: 5.7821 × 10−3 mm. This means, on average, the model’s predictions are off by
about that many units of tool wear.

2. MSE: 7.4263 × 10−5 mm. The low value indicates that the model makes a few
large errors.

3. R2 score: 0.9857. This suggests that the model explains 98.57% of the variance in the
tool wear values.

3.1. Correlation Matrix

In the analysis of complex data, especially when dealing with multiple variables, it is
important to identify patterns and relationships that may influence the desired outcome.
In the case of this research, there is an interest in seeing how different variables affect
tool wear. To facilitate this task, a correlation matrix can be used to quantify the linear
relationship between each pair of variables in the dataset. This allows for the evaluation
of how variables such as axial force, spindle speed, and vibrations correlate with tool
wear. Each value in the matrix represents the Pearson correlation coefficient, which ranges
from −1 to 1; values close to these limits indicate strong positive or negative correlations,
respectively, while values close to 0 suggest a weak relationship. By visualizing the matrix
(Figure 8) with a heat map, significant relationships and emerging patterns can be quickly
identified, allowing the analysis and modeling to focus on the variables that have the
greatest impact on wear [21] or even consider others that may have been overlooked.
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When analyzing the correlation matrix of the NUAA dataset (Figure 8), relationships
emerge that align with the initial expectations of this study. In particular, the last row
highlights a strong positive correlation between wear and time, which is consistent with
the notion that wear tends to increase as time passes. Moreover, a moderate negative
correlation is identified between wear and both cutting depth and spindle speed, suggesting
that increasing these variables significantly reduces wear. The lack of data could imply that
this might be due to factors such as energy dissipation or the distribution of stresses during
the cutting process, though it could also be attributed to a decrease in cutting depth. A
strong direct relationship is observed between vibrations on the X-axis and those on the
Y-axis, as well as a total correlation between axial force and force Z, probably indicating
that they have the same data with different variable names. Lastly, the feed per tooth shows
a positive correlation with wear, although it is not very high, thus establishing that as the
feed per tooth increases, wear also increases.

3.2. Remaining Useful Life (RUL) Prediction

RUL is a critical metric in predictive maintenance and reliability analysis, serving to
estimate the time remaining before a component or system experiences failure or necessi-
tates maintenance. In this analysis, predictive models are employed to forecast the future
wear of a tool based on various input characteristics, thus indirectly calculating the RUL by
predicting the expected wear that will occur over time. Rather than determining the RUL
directly, the focus is on predicting future tool wear, which can effectively serve as a proxy
for RUL if wear is recognized as an indicator of the time until failure.

To facilitate this analysis, the NUAA dataset is utilized due to its rich array of variables,
which are essential for accurate predictions. In this approach, fixed values are applied, and
a pre-trained Gradient Boosting model will assesses the tool’s wear, ultimately allowing
for the determination of the remaining useful life of the tool. This method harnesses the
dataset’s comprehensive features to enhance the reliability and accuracy of RUL predictions.

The graph presented in Figure 9 closely resembles the graph generated from Taylor’s
equation [22], with the Y-axis indicating the wear bandwidth as a function of time. It reveals
three distinct zones, each representing specific wear levels and their corresponding severity
for the cutting tool. The dataset demonstrates a wear range spanning from 0.049 mm to
0.31 mm, aligning well with the graph’s scale and enabling the extraction of meaningful
conclusions and physical interpretations from the mathematical results produced by the
recently trained Gradient Boosting model.
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From the analysis of the correlation matrix, two parameters that exhibit a relatively
somewhat strong relationship with tool wear are identified: spindle speed and feed per
tooth. These parameters are input into the Gradient Boosting model, using mean values for
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the other variables, to calculate the time required to achieve the target wear levels. This
analysis facilitates an approximate determination of the time it will take for the cutting tool
to reach the specified wear thresholds corresponding to the three zones identified in the
preceding graph (0.1 mm, 0.2 mm, and 0.3 mm).

Importantly, even with variations in parameters, the predictive model can be con-
tinuously updated with real-time data, allowing for adjustments to the expected time.
Consequently, operators will maintain precise awareness of when the cutting tool is pro-
jected to enter the dangerous wear zone, with a recommendation to replace the insert
when wear values fall between 0.25 mm and 0.3 mm to ensure a high-quality finish on the
machined product.

While the NUAA dataset is derived from a specific insert and tool material, the
findings can readily be extrapolated to other inserts if the materials are comparable. For
instance, consider the insert model 345R-13T5E-ML S30T (Sandvik Coromant, Sandviken,
Sweden) [23], which is coated with titanium and designed for use with solid carbide parts,
consistent with the materials specified in the chosen dataset. From its manufacturer’s
datasheet, the following values are obtained:

• Feed per Tooth (fz): 0.11 mm/rev; range: 0.07–0.20 mm/rev.
• Cutting Speed (vc): 140 m/min; range: 120–155 m/min.

The value for fz is directly incorporated into the code as a value. Subsequently, the
cutting speed formula is applied, assuming a DCap (cutting diameter at the depth of cut) of
0.03 m to calculate the spindle speed, which, after rounding, yields a result of 1485 rpm.
Upon inputting these parameters into the trained Gradient Boosting model, the following
times are obtained:

• For a wear value of 0.1 mm: Time: 0:06:40.
• For a wear value of 0.2 mm: Time: 0:13:20.
• For a wear value of 0.3 mm: Time: 0:48:20.

To interpret these results, it is of great importance to reference Taylor’s equation and
analyze the preceding graph. In the initial phase (initial wear), which spans from 0 to
0.1 mm, the wear exhibits a nonlinear function, indicating rapid degradation based on
the input parameters and the insert material. This phase is characterized by the tool’s
settling process, during which the cutting insert adjusts to the material being machined,
effectively eliminating surface irregularities and micro-defects. Physically, this phase may
reveal visible wear at the tool’s cutting edges, a slight increase in surface roughness, and
noticeable changes in cutting sounds and forces.

The second phase (middle wear), occurring within the wear range of 0.2 to 0.3 mm,
presents a more stable and predictable wear rate. By this point, the insert has transitioned
beyond the settling stage, resulting in more uniform wear. The relationship between time
and wear becomes increasingly linear, enabling interpolation to predict wear at intermediate
points, such as 0.25 mm. This threshold is critical, as it is the point at which tool replacement
should be considered to prevent issues like diminished cut quality, increased cutting forces,
and vibrations that could adversely impact the final product. During this phase, the tool’s
edge begins to round off more significantly, and while the cut quality starts to decline, it
remains within acceptable limits.

As wear approaches 0.3 mm, operators enter a critical zone where wear accelerates
again, marking the beginning of the third phase where severe wear occurs. At this stage, it
is imperative to replace the tool, as prolonging its use could result in severe failures, such as
tool breakage or damage to the workpiece. Operators may experience a marked increase in
cutting forces, elevated temperatures, and alterations in sound, all indicating that the tool
is under considerable stress. The quality of the machined surface may deteriorate rapidly,
displaying visible signs of wear such as rough edges or even deformation of the workpiece.
This phase is characterized by flank wear and potentially abrasive wear, making it essential
not to exceed the recommended wear limits for inserts (between 0.25 and 0.3 mm).
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4. Discussion

The objective of this investigation is to assess the tool wear of milling inserts through
Machine Learning algorithms and data analysis. Numerous studies have explored the
application of artificial intelligence techniques for monitoring wear in milling machines.
According to a systematic review by Munaro et al. [6], there has been a notable increase in
AI-related publications focused on machining operations since 2010, particularly concerning
tool wear and the remaining service life of cutting tools. These studies highlight various
Machine Learning algorithms, including artificial neural networks (ANNs), Fuzzy Logic
algorithms (FLs), support vector machines (SVMs), decision trees and Random Forests
(RFs), Bayesian networks (BNs), and convolutional neural networks (CNNs).

By turn, in their research, Kim et al. [24] proposed an innovative method for pre-
dicting tool wear using deep CNNs, known for their ability to learn hierarchical data
representations through multiple convolutional layers. This CNN model architecture uti-
lizes multi-scale convolutional kernels, which are crucial for capturing features of varying
sizes in the input data. This capability is particularly relevant for predicting tool wear in ma-
chining processes, as it enables the model to recognize patterns across different scales, thus
enhancing prediction accuracy. Additionally, Bayesian learning is introduced, incorporat-
ing principles of probability theory to manage uncertainty in predictions. By transforming
the CNN model into a probabilistic framework, it becomes possible to estimate the un-
certainty associated with wear predictions, which is vital for industrial applications. The
integration of Bayesian learning allows the model to provide not only point predictions
but also confidence estimates, making it especially valuable in processes like titanium
alloy milling, where conditions can fluctuate and tool wear is unpredictable. While this
model demonstrated a low mean square error and an R2 score exceeding 0.9, our model
achieved an R2 value of 0.9857, surpassing the performance of the most advanced models,
such as the Bayesian DMSCNN, which attained an average R2 of 0.96. Notably, our model
accomplished this with fewer cross-validation folds (5 vs. 10), fewer available data, and
a broader range of variables, resulting in a very low mean MAE and MSE. This indicates
that the model not only maintains competitive predictive accuracy but also demonstrates
robust performance under challenging conditions.

Meng et al. [25] proposed an advanced approach for feature selection in predictive
models by using singular value decomposition (SVD) combined with a voting scheme.
In their study, the authors applied this technique to reduce the dimensionality of the
dataset and then employed a voting scheme to select the most relevant features. This
approach was complemented by three feature classification methods: Random Forest,
Principal Component Analysis followed by Principal Component Regression (PCA + PCR),
and Pearson Correlation Coefficient (PCC). The combination of SVD with PCA + PCR
proved particularly effective, yielding the lowest mean square error [25]. This suggests
that integrating advanced decomposition and feature selection techniques can significantly
enhance the accuracy of predictive models by optimizing the relevance of the considered
variables. Although our dataset was thoroughly cleaned and the features were handpicked
to train the Gradient Boosting model, a careful examination of variables related to tool wear
was conducted, adopting the findings of authors like Meng et al. Their research highlighted
the significance of specific features in predicting tool wear, which can be corroborated by
their results through a correlation matrix. This matrix effectively validated their hypothesis,
demonstrating that the selected features have meaningful relationships with tool wear,
which further strengthened the predictive capability of our model.

For its part, Random Forest regression effectively combines filter and wrapper meth-
ods to select features, providing a detailed analysis of each feature’s importance in the
model [26]. This not only evaluates the relevance of the features but also organizes them
in descending order according to their impact on reducing model impurity. Feature se-
lection in RFR utilizes a low-variance filter, Spearman correlation, and Random Forest
regression [25]. The low-variance filter eliminates features with minimal variability, while
Spearman correlation measures the monotonic relationship between variables, and RF
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regression analyzes how each feature contributes to the overall accuracy of the model. This
allows the algorithm to manage complex data and provide a detailed assessment of each
parameter’s importance in the model’s performance, thereby ensuring greater accuracy and
generalization [25–28]. While Meng et al. achieved significant improvements with their
methods, the approach presented in this article simplifies the selection process by training
a Gradient Boosting model with all relevant variables that have a strong correlation with
tool wear—as seen in the correlation matrix—while still yielding competitive performance.

Compared to neural network models, SVMs often exhibit superior generalization
abilities, particularly when training data are limited. Gomes et al. [29] introduced a novel
method for monitoring tool wear in the micro-milling process using an SVM artificial
intelligence model combined with vibration and sound signals. This approach addresses
the limitations of traditional methods by integrating multiple types of sensory data, sig-
nificantly improving accuracy in detecting tool wear. The incorporation of vibration and
sound signals resulted in a richer dataset, enabling the SVM model to discern patterns
that may be obscured with a single type of signal. Building on this concept, Niu et al. [30]
developed a multi-stage SVM to identify tool wear based on selected features, allowing
for more precise identification by processing features through multiple analytical stages.
This method proved effective in managing the complexity of and variability in wear data.
However, the performance of the SVM model is heavily dependent on the selection of
penalty factors and Kernel function parameters. In their study, the maximum prediction
accuracies for BP neural networks, Bayesian networks, and SVM were 83%, 75%, and
72%, respectively—impressive performances, yet not the most precise. In contrast, our
model was trained with the same (and more) variables—vibrations, for instance—and
achieved a superior “accuracy” by obtaining lower MSE and MAE scores, thus improving
the predictive capabilities of previous models.

Furthermore, the Gradient Boosting model of this study had an impressive perfor-
mance given its relative simplicity, as shown by the obtained metrics; hence, there is no
immediate need to enhance the model for this task. However, should the decision be
made to pursue further improvements, several strategies could be considered to potentially
enhance its efficacy. While the proposed models demonstrate promising performance, it is
important to acknowledge the limitations associated with the dataset size. The training
dataset, although robust, may not fully capture the wide range of variations in machining
conditions and tool wear patterns encountered in real-world industrial settings. To mitigate
this limitation, we employed K-Fold cross-validation with five splits to rigorously evaluate
the generalization capacity of the models. While our current approach used standard
K-Fold cross-validation, future research could benefit from implementing stratified K-Fold
cross-validation to ensure a more consistent representation of tool wear characteristics
across all folds. Future studies should also prioritize expanding the dataset by incorpo-
rating additional data points or generating new experimental data to further enhance the
models’ robustness and applicability to diverse scenarios.

In addition to the existing dataset limitations, future studies should prioritize the
integration of environmental variables into the predictive modeling process. Factors such
as temperature and humidity, which can significantly influence tool wear behavior, are not
accounted for in the current dataset. To address this, we suggest the deployment of sensors
capable of measuring these parameters during machining processes. The data collected
from such sensors could serve as additional inputs for the predictive models, enabling them
to capture a more nuanced understanding of the tool wear mechanisms under varying
environmental conditions. Incorporating this layer of information would not only improve
model precision but also enhance its applicability to real-world industrial settings where
environmental fluctuations are prevalent.

Another limitation of this study lies in the reliance on pre-collected data from public
datasets, which, while convenient and robust, may introduce inherent biases or omit key
variables relevant to tool wear prediction. Factors such as variations in machining setups,
operational conditions, or even data collection methods can affect the generalizability of
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the findings. To address this, future research should prioritize the creation of tailored
experimental datasets that capture a broader range of tool wear scenarios, incorporating
diverse materials, machining environments, and operating parameters. Additionally,
leveraging advanced data preprocessing techniques, such as bias detection and correction
methods, can help mitigate the influence of such limitations, ensuring that predictive
models are both accurate and suited for various industrial applications.

Tool wear is a complex, dynamic process that is influenced by many variables, which
are not only interconnected but also fluctuate over time, complicating the task of accurately
modeling wear patterns. Current models, while valuable, are often limited in their ability
to fully capture these dynamic interactions. As a result, future research should explore
the application of advanced methodologies such as deep neural networks, which excel
at modeling nonlinear and high-dimensional relationships. Furthermore, reinforcement
learning offers the potential to continuously adapt to evolving wear conditions, providing
a dynamic framework for more accurate predictions. These advanced approaches, coupled
with transfer learning, could enable models to generalize more effectively across diverse
machining environments, improving their applicability to real-world industrial settings.

Future research could also consider the development of hybrid or ensemble models as
well that combine the strengths of different Machine Learning approaches, such as Gradient
Boosting and LSTM. These models could harness the complementary benefits of ensemble
techniques and sequential learning to improve predictive accuracy and robustness. Addi-
tionally, integrating these predictive models into existing manufacturing execution systems
would facilitate their practical implementation in industrial settings. Such integration could
enable real-time tool wear monitoring and adaptive decision-making.

Moreover, evaluating the model’s performance on alternative test sets can yield valu-
able insights into its reliability across different scenarios. This practice is essential to
ensure that the model is not overly fitted to a specific dataset, thus providing a more
comprehensive understanding of its predictive performance.

Additionally, implementing a grid search for hyperparameter optimization could
facilitate the identification of optimal model parameters. This methodical exploration of
parameter combinations allows for fine-tuning, which can lead to significant improvements
in accuracy and predictive capability. By rigorously refining the model in this manner, it can
be ensured that it remains both robust and adaptable to diverse datasets and operational
contexts. Such efforts would ultimately bolster the model’s applicability and effectiveness
in real-world applications.

While the NUAA dataset is based on solid carbide inserts and titanium parts, we
have further analyzed the extent to which the proposed methodology can be applied to
other materials and tools. By considering the fundamental properties that influence tool
wear (e.g., hardness, thermal conductivity, and cutting force resistance), we have identified
commonalities between the materials in the dataset and other industrial materials like high-
speed steel and certain ceramic inserts. Future studies could validate these observations
through experimental testing with diverse materials to confirm the robustness of the
proposed models.

5. Conclusions

This research provides a comprehensive analysis of tool wear in milling machines,
focusing on the precise prediction of remaining tool life through the implementation of
artificial intelligence algorithms. Throughout the development, the purpose of milling
machines and their cutting tools, particularly milling inserts, is thoroughly examined,
highlighting the advantages they offer over solid tools. The phenomenon of tool wear is
explained in detail, emphasizing its direct impact on product quality and process efficiency,
culminating in a direct application of Machine Learning models to accurately predict wear
in insert blades.

One of the key achievements of this work is the improvement in the accuracy of
predictive models compared to what has been previously reported in the literature. The use
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of a simple Gradient Boosting model enables a more accurate prediction of wear compared
to other models like neural networks and SVMs and is relatively close to that of more
deep learning models that require extensive tuning and large datasets. Furthermore, it
overcomes limitations observed in prior studies, where wear predictions relied on overly
complex methods and a greater number of variables, obtaining an even lower R2 score than
our model.

Additionally, a proper relationship between variables is established, explaining the
correlation between the different variables involved. Specifically, this work demonstrates
that AI models, when properly tuned (cross-validation, train–test splitting, and regulariza-
tion) and applied, can effectively capture the complex relationships among the involved
variables, thereby enhancing the accuracy and reliability of their predictions.

The proposed methodology not only addresses the challenges of tool wear prediction
but also provides valuable insights for future research in the field of machining. By
employing a data-driven approach that integrates advanced AI techniques, this study lays
the groundwork for developing more robust predictive models that can adapt to various
machining conditions and contribute to solving potential limitations that could appear in
these processes.

Moreover, the incorporation of uncertainty awareness in predictions paves the way
for more informed decision-making processes within manufacturing environments. As
industries increasingly shift towards smart manufacturing, the findings of this research
can significantly enhance operational efficiency and product quality, ultimately leading to
improved customer satisfaction as products will be affected by cost reduction.

The methodology employed in applying AI could be transferable to other manufactur-
ing processes by adapting the algorithms.

This study underscores the importance of harnessing AI algorithms in machining
processes to achieve reliable tool wear predictions. Future work could explore the applica-
bility of these models in different manufacturing contexts and investigate the integration of
real-time monitoring systems to further enhance predictive accuracy and reliability.

Finally, as previously noted, wear is a complex phenomenon influenced by numerous
factors, including forces, vibrations, temperature, and material properties. While this
model offers a reliable approximation, it could be significantly enhanced by integrating
more relevant parameters related to the process. Using sensors and other techniques to
collect real-time data thereby will improve input accuracy and ultimately enhance output
predictions with artificial intelligence techniques.
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Appendix A

Excerpt of the code used for the analysis.
# imports
import pandas as pd
import seaborn as sns
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import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.model_selection import cross_val_score, GridSearchCV, KFold,
train_test_split
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM
from tensorflow.keras.regularizers import l2
from tensorflow.keras.callbacks import EarlyStopping
from scikeras.wrappers import KerasRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from datetime import datetime, timedelta

# Data Preparation
url = ’https://raw.githubusercontent.com/katulu-io/uniwear-dataset/main/data/
nuaa_orthogonal_bundle_high_resolution.csv’

df = pd.read_csv(url)
df = df.drop(columns=[’Unnamed: 0’, ’vibration1’,
’vibration2’, ’experiment_csv_n’,
’dataset_tag’, ’tool_wear_increment’, ’wear_blade_1’, ’wear_blade_2’,
’wear_blade_3’, ’wear_blade_4’, ’experiment_tag’])

columns_order = [’timestamp’, ’spindle_speed’, ’axial_cutting_depth’, ’feed_per_tooth’,
’axial_force’,
’bending_moment_x’, ’bending_moment_y’, ’torsion’, ’spindle_power’,
’spindle_current’,
’force_z’, ’vibration_x’, ’vibration_y’, ’tool_wear’]
df = df[columns_order]
df2 = df.drop(columns=[’tool_wear’])

num_rows = df.shape [0]
print(“\n” + str(num_rows) + “ rows\n”)
print(df2.describe())
print(“\n” + “Missing values in each column:”)
print(df2.isnull().sum())

df.fillna({
’bending_moment_x’: df[’bending_moment_x’].mean(),
’bending_moment_y’: df[’bending_moment_y’].mean(),
’torsion’: df[’torsion’].mean()
}, inplace=True)

# Model Training
df = df.apply(pd.to_numeric, errors=’coerce’)
df = df.dropna()
X = df.drop(columns=’tool_wear’)
y = df[’tool_wear’]
scaler = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

https://raw.githubusercontent.com/katulu-io/uniwear-dataset/main/data/nuaa_orthogonal_bundle_high_resolution.csv
https://raw.githubusercontent.com/katulu-io/uniwear-dataset/main/data/nuaa_orthogonal_bundle_high_resolution.csv
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rf = RandomForestRegressor(n_estimators=100, random_state=42)
gb = GradientBoostingRegressor(n_estimators=100, random_state=42)

kfold = KFold(n_splits=5, shuffle=True, random_state=42)
ensemble_scores = cross_val_score(rf, X_train_scaled, y_train, cv=kfold,
scoring=’neg_mean_squared_error’, verbose=3)
print(f”Cross-validated MSE (Random Forest): {-ensemble_scores.mean():.12f} (std:
{ensemble_scores.std():.12f})”)
ensemble_scores = cross_val_score(gb, X_train_scaled, y_train, cv=kfold,
scoring=’neg_mean_squared_error’, verbose=3)
print(f”Cross-validated MSE (Gradient Boosting): {-ensemble_scores.mean():.12f} (std:
{ensemble_scores.std():.12f})”)

def create_sequences(X, y, time_window):
X_time, y_time = [], []
if hasattr(y, ’values’):
y = y.values
if hasattr(X, ’values’):
X = X.values

for i in range(len(X) − time_window):
X_time.append(X[i:(i + time_window)])
y_time.append(y[i + time_window])
return np.array(X_time), np.array(y_time)

time_window = 10
X_train_time, y_train_time = create_sequences(X_train_scaled, y_train, time_window)
X_test_time, y_test_time = create_sequences(X_test_scaled, y_test, time_window)

def create_lstm_model(input_shape):
model = Sequential()
model.add(LSTM(64, input_shape=input_shape))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(optimizer=’adam’, loss=’mean_squared_error’)
return model

def build_fn():
return create_lstm_model(input_shape=(time_window, X_train_scaled.shape [1]))

early_stopping = EarlyStopping(
monitor=’val_loss’,
patience=3,
min_delta=0.001,
restore_best_weights=True,
verbose=0
)

lstm_model = KerasRegressor(
model=build_fn,
epochs=100,
batch_size=32,
verbose=3,
validation_split=0.2
)
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kfold = KFold(n_splits=5, shuffle=True, random_state=42)
lstm_scores = cross_val_score(
lstm_model,
X_train_time,
y_train_time,
cv=kfold,
scoring=’neg_mean_squared_error’,
fit_params={’callbacks’: [early_stopping]}
)

print(f”Cross-validated MSE (LSTM Model): {-lstm_scores.mean():.12f}(std:
{lstm_scores.std():.12f})”)

# Model Evaluation (Test Set)
rf.fit(X_train_scaled, y_train)
rf_pred = rf.predict(X_test_scaled)
rf_test_mse = mean_squared_error(y_test, rf_pred)
print(f”Test MSE with Random Forest: {rf_test_mse:.12f}”)

gb.fit(X_train_scaled, y_train)
gb_pred = gb.predict(X_test_scaled)
gb_test_mse = mean_squared_error(y_test, gb_pred)
print(f”Test MSE with Gradient Boosting: {gb_test_mse:.12f}”)

lstm_model.fit(
X_train_time,
y_train_time,
callbacks=[early_stopping],
validation_split=0.2,
epochs=100,
batch_size=32,
verbose=3
)

lstm_pred = lstm_model.predict(X_test_time)
lstm_test_mse = mean_squared_error(y_test_time, lstm_pred)
print(f”Test MSE with LSTM Model: {lstm_test_mse:.12f}”)

# Flank Tool Wear Threshold Evaluations
model = gb

input_data = {
’timestamp’: int(df[’timestamp’].min()),
’spindle_speed’: 1485,
’axial_cutting_depth’: df[’axial_cutting_depth’].mean(),
’feed_per_tooth’: 0.11,
’axial_force’: df[’axial_force’].mean(),
’bending_moment_x’: df[’bending_moment_x’].mean(),
’bending_moment_y’: df[’bending_moment_y’].mean(),
’torsion’: df[’torsion’].mean(),
’spindle_power’: df[’spindle_power’].mean(),
’spindle_current’: df[’spindle_current’].mean(),
’force_z’: df[’force_z’].mean(),
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’vibration_x’: df[’vibration_x’].mean(),
’vibration_y’: df[’vibration_y’].mean(),
}

target_wears = [0.1, 0.2, 0.3]
results = {target_wear: None for target_wear in target_wears}

timestamp_min = int(df[’timestamp’].min())
timestamp_max = int(df[’timestamp’].max())

timestamp_range = range(timestamp_min, timestamp_max, 100)

for timestamp in timestamp_range:
input_data[’timestamp’] = timestamp
input_data_df = pd.DataFrame([input_data])

input_data_scaled = scaler.transform(input_data_df)
predicted_tool_wear = model.predict(input_data_scaled)
predicted_wear = predicted_tool_wear [0]

for target_wear in target_wears:
if predicted_wear >= target_wear and results[target_wear] is None:
results[target_wear] = (predicted_wear, timestamp)

for target_wear, result in results.items():
if result:
predicted_wear, timestamp = result
mean_time_predicted_wear =
datetime.fromtimestamp(timestamp).strftime(‘%H:%M:%S’)
print(f’For tool wear target {target_wear}mm:’)
print(f’Predicted Tool Wear: {predicted_wear:.4f}mm’)
print(f’Time when this wear occurs: {mean_time_predicted_wear}\n’)
else:
print(f’For tool wear target {target_wear}mm:’)
print(’Target wear not reached within the given timestamp ange.\n’)
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