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ABSTRACT Food cooking process are complex dynamical systems to model. In the state of the art we find
that a good solution consists of physics-based finite element models (FEM). FEM models, although being
very accurate, have a high computational cost making them unfeasible for real-time applications. To solve
this problem, we consider neural networks (NN) trained from FEM simulations. Specifically, we propose a
Nonlinear AutoRegressive with eXogenous inputs Neural Network (NARX-NN). The main novelty is that
we define a novel training algorithm adapted to the modeling of real-time dynamical systems, allowing
a NARX-NN with a simple structure to obtain a negligible error compared to the results of the original
FEM model. The NARX-NN trained with the proposed training algorithm obtains an R-squared of more
than 0.99 in the test simulations, while the same NARX-NN trained with the standard training algorithm
obtains an R-squared of 0.78 in the same tests. The proposed NARX-NN achieves a speedup of 8 orders of
magnitude compared to the original FEMmodel. Moreover, the developed NN is able to predict the complete
cooking of the food in a few milliseconds without the need of external sensors. Alternatively, our approach
can also be used in real time with information captured with sensors. The presented methodology is highly
scalable and could be adapted to different types of food and cooking processes, as well as to other dynamical
systems in general.

INDEX TERMS Food modeling, neural network, real-time, sensors, simulation, training algorithm.

I. INTRODUCTION
A. BACKGROUND
The food industry is a sector that faces major challenges,
including adaptation to consumer demand, ensuring the
quality of food processing and sustainability. To achieve these
challenges by improving productivity and decreasing energy
expenditure, the industry needs to make a more intelligent
use of data across the entire supply chain [1]. This goal can
be achieved by providing simulations of the cooking process,
connecting it to the real world via IoT sensors and taking
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advantage of big data [2], [3], [4]. The main interest of accu-
rate real-time simulations of food processing is to optimize
processes and improve decision-making in the food industry.

The most accurate and robust models in food science
applications with respect to real physical processes are
physics-based models, such as the ones solved by the
finite element method (FEM) or the finite volume method.
However, complex physics-based models are hard to solve in
real time [5]. In this context, neural networks (NN) stand out
as a highly promising method for real-time applications [6].
The combination of NN with computer vision techniques has
been widely used in problems related to food quality and
safety detection [7], [8], [9], [10].
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B. RELATED WORK ON FOOD COOKING PROCESS
MODELING WITH NEURAL NETWORKS
Machine learning techniques and the use of NN have great
potential in the real-time simulation of food processing and
cooking [11], [12]. However, most of the problems are
tackled from a steady-state perspective and the problems that
simulate the whole transient process do not allow modifying
conditions during its execution. For example, we find an
adaptive neurofuzzy inference system, a hybrid model that
utilizes fuzzy logic and a multilayer perceptron (MLP),
to predict the convective heat transfer coefficient during
deep-fat frying of pantoa [13]. Their model relies on the
constant frying temperature and frying time as input, but
it cannot modify them during the deep-fat frying process.
In [14], a MLP is trained to obtain the oil uptake of rice
flour in a batter-coated fried system. The MLP presented
uses parameters obtained after finishing the food processing
as inputs, which makes it unsuitable for simulating the
evolution of food parameters during the cooking process.
Another paper uses AI-based reduced order models trained
on data obtained from physics-based FEM in the context of
convection oven heating processes [15]. However, no details
of the NN architecture used in the reduced order model or the
training algorithm employed are shown. The NN proposed
by the authors needs to receive real-time oven temperature,
preventing this method from being used offline or to simulate
the full cooking of the food. In [16] the authors propose
to use a MLP trained from data obtained from FEM. They
study the cooking of pancakes with frying pans on induction
hobs. The solution is computationally efficient, and can be
used in real time with pan temperature measurements using
external sensors. The main drawback is that the MLP is
trained as a feedforward network to make single time-step
predictions, which results in the model not capturing the real
dynamics of the problem and the increase of the error when
simulating the complete cooking of the food. The forecast
function presented in that paper needs to know the evolution
of the pan temperature for a few seconds in order to predict the
complete cooking of the food, making the simulation sensor-
dependent.

In summary, the main open challenge in the state of the
art of food cooking process modeling with NN is to develop
a NN model capable of simulating the complete cooking of
food, just to predict final result. The NN model must also be
able to be used in real time, adapting to unexpected changes.

C. RELATED WORK ON DYNAMICAL SYSTEMS MODELING
WITH NEURAL NETWORKS
In the previous subsection we highlighted relevant work on
modeling cooking process using NN. However, this problem
can also be generalized as the modeling of a dynamical
system. Therefore, in this subsection we describe related
work in modeling dynamical systems using NN.

In the modeling of dynamical systems using NN, the use of
Recurrent Neural Networks (RNN) stands out [17], [18]. For

example, control schemes have been improved by integration
of RNN, in cases such as the modeling of a motor [19] or
the prediction of the position and velocity of a vehicle [20].
In robotics we also find different approaches, such as the
use of RNN and MLP for the modeling and control of a
robot that manipulates food [21]. In the case of multistep
prediction applied to a quadrotor, the use of RNN also stands
out, improving the prediction of physical models [22], [23].
Another NN structure suitable and present in the state of

the art for the simulation of dynamic systems is Nonlinear
AutoRegressive with eXogenous inputs Neural Network
(NARX-NN) [24], [25], [26]. It can be found in many
applications, such as joint torque estimation [27], charge
estimation of lithium-ion batteries [28], groundwater level
prediction [29], health [30] or signal modeling [31].
In NARX structures, it is important to use appropriate

algorithms for system identification and simulation. A work
proposes a cascaded evolutionary algorithm for nonlinear
system identification, utilizing radial basis function NN
and correlation functions to improve input selection and
parameter estimation [32]. Their approach demonstrates the
ability to identify complex dynamical systems effectively,
showing the potential of evolutionary algorithms in this
context. The application of coevolutionary algorithms is
also promising in the field of black-box nonlinear system
identification using NARX models [33].

NARX-NN is a suitable structure to perform multi-step
prediction of nonlinear dynamical systems. However, the
development of novel training algorithms adapted to
multi-step predictions is still an open challenge [34], and in
particular to any prediction horizon.

D. CONTRIBUTIONS
In view of the challenges listed in the related work on
food cooking process modeling, as well as the related
work on dynamical systems modeling in general, our main
contributions are:

• A novel NN training algorithm adapted for modeling
dynamical systems with any prediction horizon and
receiving unexpected inputs in real time.

• We apply the novel training algorithm on a NARX-NN
to simulate food cooking. We present how to train a
data-driven NARX-NN from physics-based FEM data,
capturing the dynamics of the problem and minimizing
the size and complexity of the NN.

• The implemented NARX-NN can operate in real time by
receiving information from temperature sensors in the
kitchen, adapting to unexpected changes or user actions.
We have also developed a novel hybrid model using
analytical thermal models to simulate the behavior of
the cooktop-pan system and, together with the NARX-
NN, it can predict the complete cooking of food in
milliseconds, being able to make decisions in advance.

• The studied case is the cooking of pancakes on
induction hobs. We tested and compared our NARX-NN
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FIGURE 1. (a) Offline Mode, where the external inputs are estimated from
a thermal model; (b) Online Mode, where the external inputs are
measured in real time.

with the original FEM data, showing negligible error.
Additionally, its performance has been validated in
real cooking scenarios. It has also been verified that
the NARX-NN trained with this methodology not only
performs correctly in the ranges of values that appear in
the data used during training, but the out-of-distribution
generalization test indicates that the NARX-NN learns
the real dynamics of the problem and is not over-fitted.

E. PAPER STRUCTURE
The paper is divided as follows: Section II formulates the
problem, showing the notation to be used in the paper.
Section III motivates the use of NARX-NN in our context.
Section IV shows the main contribution of the paper, the
two-phase training algorithm. Section V shows experiments
and results of the NARX-NN trained with our training
algorithm, both with simulated data and in real scenarios. The
paper continues with a discussion in Section VI and ends with
conclusions in Section VII.

II. PROBLEM FORMULATION
Consider the state of a food, given for example by its
temperature or color at different points, at a time instant t by
yt ∈ Rm. The external inputs at t , for example the temperature
of the pan, are represented by ut ∈ Rn. The statics inputs,
assumed to be constant during the entire cooking process,
such as the initial thermal properties or the geometry of the
food, are represented by S ∈ Rp. Consider a function g that
estimates the state of the food at the next time instant ŷt+1
from S, ut and ŷt :

ŷt+1 = g(S, ut , ŷt ) (1)

Simulating food cooking aims to calculate over a time
period T its state evolution Y1,T ∈ Rm×T

Y1,T = [y1, y2, . . . , yT ]. (2)

If we know y0, and we know over the time period the
external inputs U0,T−1 ∈ Rn×T

U0,T−1 = [u0, u1, . . . , uT−1], (3)

we can iterate T times the function g until we get
Ŷ1,T ∈ Rm×T

Ŷ1,T = [ŷ1, ŷ2, . . . , ŷT ]. (4)

The first problem to address in this paper is to obtain a
function g using NN that minimizes the error between Y1,T
and Ŷ1,T .

The second problem is to obtain U0,T−1. For this, two
solutions are proposed in this paper: Online Mode, in which
we use the sensors available in the hob to obtain these
parameters in real time [35], and Offline Mode, in which we
use an analytical thermal model of the hob-pan system to
estimate these external variables and simulate the complete
cooking of the food [36]. A schematic of these two
approaches can be seen in Fig. 1. In Online Mode, the
function g that solves the NN is similar to (1), while in Offline
Mode the thermal model estimations are used in each time
step t as external inputs ût :

ŷt+1 = g(S, ût , ŷt ) (5)

III. SIMULATION OF FOOD COOKING WITH NARX-NN
For the problems and challenges we face in this paper, the
most suitable NN structure is NARX-NN. This architecture
allows to obtain executable models in real time, due to its
simple structure. Moreover, in each iteration of the model
only one time step is predicted, being this very flexible and
allowing us to adapt to unexpected changes. This architecture
allows us to iterate the model for any prediction horizon.

In NARX-NN there is a nonlinear function f that uses
buffers of size k , called tapped delay lines (TDL) and
MLP, to estimate ŷt+1 from external inputs and past state
estimations. By adding the static parameters S, we can write
the function f as g (5) using TDL:

ŷt+1 = f (S, ut , ut−1, . . . , ut−k , ŷt , ŷt−1, . . . , ŷt−k ) (6)

where ŷt+1 has a prediction error δt with respect to the actual
yt+1:

yt+1 = ŷt+1 + δt (7)

The objective of the NN training is to minimize δt . The
NARX-NN architecture used in this paper is shown in Fig. 2.
The NARX-NN architecture includes hyperparameters that
need to be optimized during training (Table 1).

IV. TWO-PHASE NARX-NN TRAINING ALGORITHM
There are two main approaches for training NARX-NN [37]:
Training with teacher forcing (TF) and training without
teacher forcing (no-TF). These methods are also known as
series-parallel architecture and parallel architecture, respec-
tively [38]. In the TF approach, the model uses the actual
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TABLE 1. Hyperparameters of a NARX-NN, including those related to architecture and training. The subscripts f and nf indicate the first and second
training phases, respectively.

FIGURE 2. Schematic of NARX-NN architecture. The model estimate ŷt+1
from static inputs S, k past external inputs u and k past state
estimations ŷ . The architecture consists of using TDL buffers,
MLP and autoregressive connections.

FIGURE 3. (a) Training NARX-NN with TF, where yt is the actual state of
the previous time step; (b) Training NARX-NN with no-TF, where ŷt is the
NARX-NN previous estimate.

states of the k previous time steps as input during training:

ŷt+1 = f (S, ut , ut−1, . . . , ut−k , yt , yt−1, . . . , yt−k ) (8)

The no-TF approach involves using the model state
estimations from the k previous time steps as input,
as in (6). A schematic of these two approaches is shown
in Fig. 3.

Algorithm 1 Proposed Two-Phase Training Algorithm
1: Input: Model M , Epochs nf , nnf , Batch Size Bf , Bnf ,

Early Stop E , Learning Rate η, Minimum Learning Rate
Minη, Decay Factor α, Training set DT , Validation set
DV

2: Output: Trained modelM
3: // First training phase (with TF):
4: for nf epochs do
5: for each subset i of Bf series of DT do
6: Feedforward inM with TF on i
7: Compute Jf on i
8: Backpropagation inM
9: Update weights and bias ofM
10: end for
11: Feedforward inM with no-TF on DV
12: Compute Jnf on DV
13: if Jnf did not improve in the last E epochs then
14: break
15: end if
16: end for
17: // Second training phase (with no-TF):
18: for nnf epochs do
19: for each subset i of Bnf series of DT do
20: Feedforward inM with no-TF on i
21: Compute Jnf on i
22: Backpropagation inM
23: Update weights and bias ofM
24: end for
25: Feedforward inM with no-TF on DV
26: Compute Jnf on DV
27: if Jnf did not improve in the last E epochs then
28: if η ≥ minη then
29: Reduce η by a factor α

30: else
31: break
32: end if
33: end if
34: end for
35: return M

NARX-NN uses the previous state estimations to get the
next predictions during inference. However, during training
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the actual states yt are available. This allows training the NN
with TF as if it were a feedforward NN. Training the model
with TF allows faster convergence and training. However,
in problems where the behavior of a dynamical system is
going to be simulated, training the model with TF actually
optimizes it for single-step predictions [22], [39]. In this
way, the training of the NN converges quickly but does not
really learn the complete dynamics of the problem, obtaining
models that do not generalize correctly.

In the state-of-the-art solutions using NARX-NN, the
models are trained with TF, due to the numerical instabilities
in the calculation of the gradients caused by training directly
with no-TF. To solve this, in this paper we propose a two-
phase NARX-NN training algorithm: A first phase in which
the model is trained with TF, and a second phase in which the
model is trained with no-TF. This contribution allows to take
advantage of TF to quickly initialize the weights of the NN
as accurately as possible and then train the model with no-TF,
getting a more robust model during inference. This avoids the
slow convergence and the numerical instabilities that would
result from training only with the no-TF approach.

In Algorithm 1, the proposed method for NARX-NN
training is shown in pseudo-code. The hyperparameters used
in both training phases are described in Table 1. In addition,
the parameters DT and DV refer to the subset of the
dataset used during training and validation respectively. The
early stop algorithm avoids overfitting and overtraining [40].
The learning rate decay algorithm is also used to improve
convergence and generalization.

In the first training phase the model is trained with TF
as if it were a non-recurrent NN, where for each instant t ,
the input of the model is {S, ut , yt } ∈ DT . This training
can be performed with high-level functions from APIs such
as Keras [41] with Tensorflow [42]. As a novelty, after
each training epoch, the model M performs the feedforward
algorithm with no-TF on DV , computing Jnf . If during E
epochs Jnf does not improve, or the nf epochs are performed,
the first training phase is completed.

The key in the second training phase is that the model is
trained with no-TF, where for each instant t , the input of the
model is {S, ut , ŷt }, where {S, ut } ∈ DT and ŷt is obtained
from the previous estimation. To achieve this, model M
processes each series of DT sequentially, calculating ŷt+1 for
each time instant t . Since we cannot parallelize the processing
of a series as in the case of a non-recurrent network, training
with no-TF is computationally more expensive.

V. EXPERIMENTS AND RESULTS
A. CASE STUDY: PANCAKE COOKING
The dataset of simulations of pancake cooking in frying pans
on induction hobs from [16] has been used to train, validate
and test the NN. That physics-based model uses transient
heat transfer as well as mass transfer to simulate pancake
cooking. The model takes into account the changes in thermal
properties of the food during the cooking, which increases

TABLE 2. Pancake cooking parameters saved in the database. External
inputs and states are saved every second.

the non-linearity and complexity of the problem. Moreover,
this model not only allows to simulate the thermodynamics
of the system, but it is also able to obtain the pancake
weight loss as well as to estimate the color evolution on
both sides of the pancake. The main reason for choosing this
case study is that there are several previous works in the
development of the physics-based FEMmodel in this context,
which has generated a complex, computationally expensive
model, validated with real experiments, that can accurately
simulate the cooking of pancakes [43]. This model was
used to simulate pancake cooking under different conditions
chosen randomlywithin pre-defined ranges, in order to obtain
a dataset with a variety of different cooking situations. The
recipe for the pancake batter is invariant in all simulations,
and can be found at [44].

All simulations have 2 steps: A first step in which the pan
is preheated between 80 and 150 s, and a second step in
which the pancake cooking is simulated, with initial batter
weight B ∈ [60, 120]g. Each side of the pancake is cooked
between 30 and 90 s. Therefore, each cooking simulation
takes between 140 and 330 s considering both steps.

During the preheating of the frying pan, a target tempera-
ture Ttarget ∈ [120, 220] ◦C is set. This target temperature is
used with the PI control algorithm [45] to calculate in each
instant of the simulation the power applied to the frying pan,
with Papp ∈ [0, 2200] W. In addition, Ttarget can be randomly
modified, within the described temperature range, up to two
times during the cooking simulation.

The properties of the pan used in the model are the follow-
ing: specific heat cp ∈ [300, 450] J g−1 K−1, conductivity
κ ∈ [50, 220] W m−1 K−1, thermal contact conductance
hc ∈ [50, 100] W m−2 K−1, emissivity ϵ ∈ [0.5, 1], density
ρ = 7800 kg m−3. The geometry of the pan is constant in
all simulations, consisting of 180 mm diameter and 5 mm
thickness.

A total of 1400 pancake cookings have been simulated
with the model. A database that is suitable for the training
of NNs has been generated from these simulations. For
this purpose, during the simulations, the values corresponding
to the parameters shown in Table 2 were stored for each
second of cooking. The NN trained on this dataset should be
capable of predicting the parameters that describe the cooking
state of the pancake: Percentage of weight loss with respect
to the initial batter Wloss, average temperature of both sides
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of the pancake Ta, Tb, power absorbed from the pan by the
pancake Pabs and average lightness L∗ of the standard color
space (CIELAB) of both sides of the pancake. We consider
as external input the temperature of the frying pan Tpan as
well as the power of the induction hob Papp. Another external
input is the side of the pancake being currently cooked, where
Side ∈ [0, 1]. The only static input is the batter weight B.

Although the pan in each of the simulations has random
thermal properties within the ranges described above, these
parameters are not included in the database since the NN will
have Tpan and Papp as input parameters for each instant. The
goal is to train a NN capable of predicting the evolution of
pancake cooking regardless of the pan properties.

B. METRICS AND COST FUNCTION
It is necessary to select appropriate metrics, both to choose a
loss function ℓ used in the cost function J during NARX-NN
training, and to evaluate N predictions made by the proposed
models Ŷ1,N = [ŷ1, ŷ2, . . . , ŷN ] with respect to N ground
truth samples Y1,N = [y1, y2, . . . , yN ]. A metric typically
used as ℓ in NN training is the mean squared error (MSE),
which for each parameter j (Note that each state yi has m
parameters) can be computed as:

MSE(Y j1,N , Ŷ j1,N ) =
1
N

N∑
i=1

(yji − ŷji)
2 (9)

However, MSE is not a normalized measure with respect to
the variance of the data, which makes this metric sensitive to
the evaluation dataset, as well as sensitive to outliers that can
be caused by noise in the database. For these reasons, we have
found it more appropriate to use R2:

R2(Y j1,N , Ŷ j1,N ) = 1 −

∑N
i=1(y

j
i − ŷji)

2∑N
i=1(y

j
i − Ȳ j1,N )

2
(10)

where Ȳ j1,N is the mean of parameter j of the N ground truth
samples, given by:

Ȳ j1,N =
1
N

N∑
i=1

yji (11)

R2 can be considered as a normalized version of MSE,
where the predictive ability of the model is measured with
respect to a model that always predicts Ȳ j1,N . This metric
varies in the range (−∞, 1] where 1 is a perfect prediction.

We use R2 as a performance metric, but for the cost
function J we choose−R2 as loss function. We average them
parameters predicted by the model, in order to have a single
metric to minimize during training:

J (Y1,N , Ŷ1,N ) =
1
m

m∑
j=1

−R2(Y j1,N , Ŷ j1,N ) (12)

In addition to R2 we use root mean squared error (RMSE)
and mean absolute error (MAE) as performance metrics
instead ofMSE as they are more robust to outliers and respect

TABLE 3. Final hyperparameters of the NARX-NN, together with the
values explored during the grid search.

the original units of the parameters, making the metrics easy
to interpret:

RMSE(Y j1,N , Ŷ j1,N ) =

√√√√ 1
N

N∑
i=1

(yji − ŷji)
2 (13)

MAE(Y j1,N , Ŷ j1,N ) =
1
N

N∑
i=1

∣∣∣yji − ŷji

∣∣∣ (14)

C. ARCHITECTURE AND TRAINING HYPERPARAMETERS
The training of the NN was performed with 1400 simulations
of pancake cooking. A total of 1100 simulations have been
used as training set, 200 simulations as validation set and
100 simulations have been reserved as test set. This division
ensures that the model is evaluated for overfitting and
generalization.

The values of the final hyperparameters chosen are shown
in Table 3, with the values at which the hyperparameters have
been searched. A range of possible values for each of the
hyperparameters has been defined to reduce the complexity
of the search. To find the best values, the hyperparameters
related to the NN architecture have been fixed (L = 3,
H = 256, σ =ReLU and k = 5) in order to have amodel that
can be trained relatively quickly but obtaining good metrics,
and allows to try different configurations of hyperparameters
related to the training algorithm. The strategy followed was
to perform a random search [46] over the hyperparameters,
with a total of 30 iterations. After completing the random
search, the hyperparameters were fine-tuned sequentially.
Specifically, each hyperparameter was optimized iteratively
by testing all its possible values while keeping the rest fixed
at the values obtained from the random search. The chosen
optimizer has been Adam [47].

The next step was to optimize the hyperparameters related
to the NN architecture. First, the activation function was
chosen, obtaining the best results with ReLU. The Sigmoid
and Tanh activation functions were also tested with worse
results.

To optimize the number of neurons in the hidden
layers H and the number of past external inputs and states
k , a grid search was performed, where L = 3, H ∈

{64, 128, 256, 512, 1024} and k ∈ {1, 2, 5, 10, 15}. In this
search, we measured the performance of the model with the
training, validation and test sets, calculating the cost function
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TABLE 4. Grid search results for optimizing the number of neurons in the
hidden layers H and the TDL buffer size k . The metrics shown are R2,
calculated with no-TF, in the training, validation and test sets.

FIGURE 4. Summary of the final NARX-NN architecture for pancake
cooking. The parameters used as input (S, ut and ŷt ) and output (ŷt+1),
as well as the hyperparameters related to the architecture, are depicted.

with no-TF Jnf . The results are shown in Table 4, where the
model with H = 1024 and k = 10, obtains the best metrics
for all three sets (0.9993, 0.9991, 0.9953). As can be seen,
these metrics show that there is no overfitting, obtaining
good results also in the test cases. The metrics obtained in
all models are very good, being the worst the model with
H = 64 and k = 1 where we still get acceptable R2 (0.9934,
0.9943, 0.9658). These results allow the number of neurons
and of past external inputs and states to be adapted according
to the availability of previous data and the computational
capacity available, with the certainty that the performance of
the model will be good. As a general trend, it is observed that
as H increases, accuracy improves, although at 1024 neurons
and above the trend begins to change. As k increases up to
10, performance improves too.

A summary of the final NARX-NN architecture for
pancake cooking can be found in Fig. 4, where the parameters
used as static inputs, external inputs and past outputs are also

FIGURE 5. (a) J obtained in the first phase of training. Training and
validation Jf converge quickly, while Jnf diverges from epoch 7; (b) J
obtained in the second phase of training where both training and
validation Jnf converge.

detailed. L has been set to 3, since testing other values resulted
in worse metrics.

D. TRAINING METRICS
As detailed in Section IV, a two-phase training algorithm
has been developed. In order to show the importance of our
training algorithm, we show the cost function J performance
in both training phases, calculating it both with teacher
forcing (Jf ) and without teacher forcing (Jnf ). Fig. 5a shows
the cost function J obtained during the first phase of training.
Note that we use−R2 as J , so the minimum value is−1. This
training has been performed with the hyperparameters and
architecture detailed in the previous section. As can be seen,
training and validation cost function with teacher forcing
Jf converge rapidly to values close to −0.99. Meanwhile,
if we calculate the performance of the model with no-TF,
we observe how validation Jnf converges to values close
to −0.97 in epoch 7, and in the following epochs this
value starts to diverge. Note that Jnf calculates the model
performance using its own predictions, in the same way
that the model is then used in inference. While validation
Jnf diverges, training and validation Jf continue to improve
slightly. Similar behavior has been observed for all models
trained with TF, confirming that training these models only
with TF does not give the best performance when used in
inference. This shows that training with TF overfit the models
to predict only one time step, making their performanceworse
when we predict various time steps.

Fig. 5b shows the metrics obtained during the second
training phase. Jnf , both during training and validation,
converges fast in 2 epochs to values below -0.99. The metrics
continue to improve slightly until the end of the training
algorithm. These results on Jnf cannot be obtained by training
only with TF.

E. TEST METRICS
In addition to analyzing the NN during training, metrics
were obtained from 100 test simulations. These metrics
evaluate and compare how the NARX-NN trained with the
first phase, and the architecture trained with the two phases,
predict each parameter related to the pancake state. Table 5
shows the MAE, RMSE and R2 for each of the parameters
predicted by the NN. These metrics are calculated for each
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TABLE 5. Mean and standard deviation of MAE, RMSE and R2 for each of the six parameters predicted by the NARX-NN, calculated in the 100 test
simulations. The results of the NARX-NN trained with the two training phases (with TF and with no-TF) outperform those obtained with the NARX-NN
trained only with the first phase (with TF).

cooking scenario simulation and the table shows the mean
and standard deviation obtained. The NN is used with no-
TF, using at each instant the k estimations previously made.
We start from the initial conditions of each test and set the
static variables. At each iteration of the NN, the state of
the pancake is calculated for the next time instant, using the
external variables (Side, Papp and Tpan) that are read for each
time instant directly from the test data. In the real environment
in which this model is used, Papp and Tpan are obtained
directly from the measurements of the hob sensors or are
calculated analytically.

As can be seen in Table 5, the metrics obtained with the
NN trained with both training phases, with TF and with no-
TF, outperforms the metrics obtained with the NN trained
only with TF. The model trained with both phases get mean
R2 > 0.99 for all six target variables, while the model
trained only with the first phase only obtains values close to
0.99 in the calculation of Wloss and Ta, with a mean R2 of
0.9859 and 0.9753 respectively. ForMAE andRMSEmetrics,
lower mean values and standard deviations are obtained for
the NN trained with both phases.

Fig. 6 shows the error histograms obtained for each of the
parameters predicted by the NN. The error is calculated for all
the time instants of the 100 test simulations. Each time instant
is predicted with no-TF, and the actual value is subtracted
from the value predicted by the NN. The error histograms for
the NN trained only with the first phase show bigger error
dispersion than the model trained with both phases, whose
error is close to 0 in all parameters.

F. TEST PLOTS
In addition to analysing the previous metrics, it is important
to visualize the performance of the trained models when
predicting at each cooking time instant the six target
variables. The following tests are performed in the same
way as in the previous section using no-TF, simulating the
behavior of the network in a real environment: At each time
instant, the static variables of the pancake and the k external
inputs are read directly from the test data, and the k previous
state estimations of the NN are used as input to the NN.

Fig. 7 shows the plots of the first two test simulations,
A and B, with the purpose of visualizing the comparison of
the prediction performance with the model trained only with
the first phase and with the model trained with both phases.

FIGURE 6. Error histograms with the NN trained only with first phase,
with TF (a); and with both training phases, with TF and no-TF (b). The
error shown is for the 100 test simulations. The NN trained with both
phases outperforms the model trained with only the first phase, with an
error close to 0 for all parameters.

The information from these two specific tests can be found in
Table 8, where the static variables of the pancake, the thermal
parameters of the pan used in that simulations, as well as
the target temperature of the pan are detailed. The seconds
used to preheat the pan and to cook both sides of the pancake
are also detailed. The metrics obtained for both tests can be
found in Table 6. As can be seen again in the metrics and
plots, the model trained with both phases outperforms the
model trained only with TF. The most evident difference of
training only with the first phase or with both phases can be
observed especially in the estimation of La and Lb, where in
the calculation of these parameters in Fig. 7a and Fig. 7c, the
discrepancy between the real values of the simulation and the
predictions of the NN grow as the iterations increase. This

VOLUME 12, 2024 175873



J. Fañanás-Anaya et al.: Food Cooking Process Modeling With Neural Networks

TABLE 6. Metrics obtained for each of the six parameters in test A and B, with the NARX-NN trained only with the first phase and with both phases. The
results obtained with the architecture trained with the two phases have negligible error. Plots with the actual data of these tests and the estimations of
the NARX-NN are shown in Fig. 7.

FIGURE 7. Plots of all inputs and states in test A and B, with the model trained only with the first phase and with both phases. The prediction is
performed with no-TF, and the estimations of the model trained with both phases have negligible error.

is because by training only with TF, the model does not learn
the real dynamics of the problem since in each iteration of the

training actual data is used instead of using the estimations
of the model. In Fig. 7b and Fig. 7d however, it is observed
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TABLE 7. Metrics obtained for each of the six parameters in 4 tests, with the NARX-NN trained with both phases. The results of the architecture with the
proposed training algorithm have negligible error. Plots with the actual data of these tests and the prediction are shown in Fig. 8.

FIGURE 8. Plots of all inputs and states in 4 tests, with the NARX-NN trained with both phases. These tests visualize the performance of the proposed
architecture in cooking cases where the target temperature of the pan is changed unexpectedly. The model has negligible error for all the six state
parameters.

how themodel predicts almost perfectlyLa and Lb, preventing
the error from increasing over time. A similar effect can
be observed in the calculation of Ta and Tb. Pabs, in the

case where the model is trained only with the first phase,
fails to predict the first few seconds. These first seconds in
the calculation of Pabs are very important since they show
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TABLE 8. Static parameters of the pan and pancake, cooking times and target temperature of the pan in simulated test A and B. Plots with the actual data
of these tests and the estimations of the NN are shown in Fig. 7.

TABLE 9. Static parameters of the pan and pancake, cooking times and target temperature of the pan in 4 test simulations. In these tests the target
temperature of the pan changes during cooking (Change Target). Plots with the actual data of these tests and the prediction of the NN are shown in Fig. 8.

how much power is being absorbed by the food at ambient
temperature when it is added to the preheated frying pan.
The prediction of Wloss is good in both models, however, the
model trained with both phases minimizes the error.

After evaluating and visualizing the comparison of training
the model with one or both phases, the performance of the
model trained using both phases is demonstrated in more
complex cooking scenarios. To this end, four simulations
from the test data have been selected, with details provided
in Table 9. Unlike the previous examples, during simulation
the target temperature of the pan can change, so the table
specifies the seconds in which these changes occur from the
moment the pancake batter is placed in the pan. In Fig. 8
the prediction of the NN in these 4 tests is shown, together
with the original values of the simulations. Table 7 shows the
metrics obtained in these 4 tests. As can be seen, the pancake
cooking prediction is robust to changes in target temperature
during cooking, to different cooking times and to pans with
different thermal properties.

G. GENERALIZATION TEST
All the parameters of the data from which the model has
been trained, detailed in Section V-A, have a range of
values including the values between which typical pancake
cooking is found. For example, in the case of the amount
of batter, between 60 and 120 grams, and maintaining the
pan temperature during cooking between 120 and 220 ◦C.
When the data are divided into training, validation and test
set, all of them have the same range of values. Therefore,
although the test cooking simulations are different than those
of the training and validation subsets, the range of values
of the sets is the same. We have performed different out-of-
distribution generalization tests with the goal of ensuring that
the architecture does not overfit to the range of values of the
sets.

To perform these out-of-distribution generalization tests,
the model with the best hyperparameters described in
Section V-C has been trained, using the simulations that meet
a condition for training and validation, and reserving the rest

TABLE 10. Out-of-distribution generalization tests. NARX-NN shows
generalization capability in scenarios where higher batter amounts
appear than those seen during training (G1 and G2). It also generalizes
well in scenarios with pan temperatures different from those seen in
training (G3 and G4).

of the simulations for testing. This condition changes for each
of the generalization tests that have been performed, and this
can be consulted in Table 10.

In G1, the model is trained and validated with simulations
where B ∈ [60, 105) and tested with simulations where B ∈

[105, 120]. The mean R2 obtained during training, validation
and testing exceeds 0.99. In G2, the same test is repeated but
decreasingmore the range of values in training and validation,
where only the simulations where B ∈ [60, 95) are going to
be used, and the test is performed on the simulations where
B ∈ [95, 120]. In this second case, an average of R2 of more
than 0.99 is obtained in the training and validation sets, and
a value of 0.9893 is obtained in the case of the test data,
being this a very high value considering that the number of
simulations used during the training has been considerably
reduced and they are mass quantities that the model has not
learned during the training.

In G3 and G4, a test similar to the previous ones
is performed but studying the impact of cooking with
temperatures higher than those used by the model during
training and validation. Therefore, the model is trained in
both tests with the simulations where Tpan ∈ [0, 190) and
Tpan ∈ [0, 180), respectively. Obtaining an R2 of more
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TABLE 11. Execution time of a 240 seconds pancake cooking simulation
with the NN. H shows the number of neurons per layer, the parameters
are the weights and bias of the NN and the speedup value is with
respect to the original FEM model.

than 0.99 during training and validation. G3 is tested with
the simulations where Tpan ∈ [190, 220], obtaining an
R2 of 0.9931 and G4 is tested with the data where Tpan ∈

[180, 220], obtaining an R2 of 0.9868. Again, in this last test,
the R2 drops below 0.99 but it is still good result, especially
considering that the model has been trained with less data
(785 training simulations and 150 validation simulations,
versus the 1300 used if we have all the data) and is tested in
cooking situations where the pan and pancake exceed 180 ◦C,
which is the maximum observed by the NN during training.

With the metrics obtained in these generalization tests,
it can be verified that the model trained with this method
does not overfit to the range of values used during training
and is able to learn the real dynamics of the problem and to
generalize. This is an especially useful capability, since the
NN will be robust to cooking situations that were not taken
into account during training.

H. COMPUTATIONAL COST
One of the problems addressed in this paper is that the
cooking simulations must be run in real time. Not only to
adapt instantly to external changes, but also to predict at once
how the system will evolve over time and make decisions
based on this prediction. In the case of pancake cooking,
the FEM model with a denser mesh presented in [43] takes
25 minutes to perform a simulation of a 240 second pancake
cooking. The FEM model with the most optimized mesh
presented in that paper takes about one minute to perform the
same simulation. These times are obtained on an Intel Core i5
2.70 GHz. Running a 240 s simulation in one minute allows
to simulate every second in real time. However, this approach
does not allow to predict the complete cooking of the food
in real time. It would take one minute to simulate the entire
cooking, and for each change or alteration that occurs during
cooking, it would take another minute.

In Table 11, the execution times of a 240 seconds pancake
cooking simulation, with different numbers of neurons per
layer H , on an AMD Ryzen 7 3750H 2.30 GHz can be
observed. The speedup value shown is with respect to the
minute that the optimized FEM model would take. The
presented NNs have k = 10 and L = 3, which as seen in
Section V-C, are the best performing architecture. Different
numbers of H have been tested since it is the hyperparameter
that has the most impact on the number of operations and
execution time of the NN.

FIGURE 9. Cooking setup used during experimental validation. It consists
of a PIF675DC1E induction hob y and a Balay 00570366 frying pan,
an 18/10 stainless steel frying pan of 21 cm diameter.

As can be seen, the NN models can simulate 240 seconds
of pancake cooking in few milliseconds, obtaining very high
speedup values with respect to the original FEM model.
In addition to meeting the requirements of being able to run in
real time and predict the complete cooking of the food, these
NN are light enough to be run on devices with less powerful
CPUs such as smartphones or tablets, and still obtain good
execution times. Especially the versions where H ≤ 512,
where the state estimations still obtain a R2

≥ 0.99.

I. EXPERIMENTAL VALIDATION IN REAL SCENARIOS
So far, our proposal has been validated by comparing
the results with simulations of the original FEM model
of pancake cooking. This FEM model has already been
positively validated with real experiments, so the NN trained
from these data should also accurately simulate pancake
cooking in real scenarios. To validate this accuracy, a series of
pancakes have been cooked in real cooking scenarios, and an
image of the pancake has been captured at the end of cooking
on both sides. The most important parameter for predicting
the cooking of a pancake is the color, or in this case the
average L* obtained on each side, so this is measured in
these tests. These experiments in real scenarios also help us
to visualize that the model is not overfitted to the simulated
data used during training.

The setup used (Fig. 9) is the Bosh PIF675DC1E induction
cooktop, in particular its 21 cm cooking zone has been used
with the frying sensor for the temperature control of the
frying pan. Balay 00570366 is the frying pan used, an 18/10
stainless steel frying pan of 21 cm diameter. To extract the
lightness value of the pancake sides after each cooking,
an image is captured with similar light conditions to those
used in [44]. The cooked pancakes are captured with a white
background, so to extract the pixels that form the pancake,
the OpenCV library in Python has been used: The image
is converted from RGB to CIELAB color space, a mask is
generated that eliminates the white pixels of the background
(L∗ = 100, a∗ = 0, b∗ = 0), and finally the L* channel
is averaged with the remaining pixels, corresponding to the
pancake.
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TABLE 12. Absolute Error (AE) in the calculation of the average lightness of the two sides of the pancake, in the case of using the Offline mode or the
Offline mode. In each test, the target temperature of the induction cooktop is shown (Ttarget ), how long each side has been cooked (Side A and Side B),
and what was the lightness value obtained for both sides (La and Lb). The Online mode outperforms the Offline alternative, with less AE on both sides.

FIGURE 10. Image obtained with the mean L* value of both sides of the
pancake after being cooked with the R5 (a) and R9 (b) test conditions.

The information and results of the tests performed can
be consulted in Table 12, where for each test the target
temperature at which the pan is preheated, the time that each
side of the pancake is cooked and the value of the average
lightness obtained in each of the sides are shown. As a result,
the absolute error of the mean lightness for each of the sides is
shown, with the Offline andOnlinemodes. An introduction to
these two approaches has been made in Section II. In Fig. 10
the images obtained for both sides of the pancake after being
cooked with the R5 and R9 test conditions can be seen. The
side that is cooked first presents a much more uniform color
over its surface, while the side that is cooked later presents
a much more rough and irregular surface. This is due to the
bubbles that are generated in the mass when the first side is
being cooked.

In the 9 tests we have cooked pancakes in different
conditions, with the purpose of obtaining more toasted and
more raw results, and pancakes cooked for longer and shorter
times. In all the tests, the pan was preheated to a target
temperature, in this case 180 ◦C for the first 7 tests and
160 ◦C for the last two, since these temperatures are the
most common in the cooking of pancakes. Once the pan is
preheated, the pancake batter is added, where for these tests
95 g of batter has been used and each side is cooked for a
specific time. During the cooking of the pancake, through
one of the functionalities of the induction hob, the power
that the induction hob is applying to the pan as well as the
estimated temperature of the pan is obtained every second.
This information can be used as input for our NN and test the
Online mode, receiving this information in real time.

The Offline mode does not receive real-time information
from the induction hob, but uses an analytical thermal model
of the pan-hob system, particularly the state-space model
developed in [36]. Using this thermal model, the heating of a
frying pan on an induction cooktop is calculated if its thermal
properties are known. This model was designed to simulate
the behavior of the empty frying pan, and for this reason, the
NN also predicts howmuch power the food absorbs. Knowing
the power absorbed by the food at each time instant, the power
applied to the pan can be estimated by subtracting the power
estimated in the thermal model from the power absorbed by
the food. In this way, it is possible to calculate Papp and Tpan
and to predict the full cooking of the pancake with the NN
in few milliseconds, without the need to use real sensors or
communication with the induction cooktop.

As can be seen in Table 12, both modes obtain very good
results calculating the mean L* of both sides at the final
moment of cooking. Calculating the MAE for the 9 tests, it is
obtained 3.30 L* and 2.15 L* for La and Lb respectively in
the Offline mode and 2.22 L* and 2.30 L* for La and Lb
respectively in the Online mode. For all tests, the error in
La decreases in the Online mode with respect to the Offline
mode, while the error in Lb in some cases increases and in
others gets worse, obtaining a slightly higher average error.
Fig. 11 shows the prediction of L* for both sides of the

pancake during cooking in the R5 test, using the Offlinemode
and the Onlinemode. In the plot of the lightness evolution, the
L* value measured after processing the images obtained from
each side of the pancake after cooking is shown with a dot.
There is a difference in the temperature of the pan and the
power applied between the two modes, despite running the
same test. In the case of the Offline version, as Papp and Tpan
are calculated, it can be seen how these values are in an ideal
cooking case where there is no noise. In the Online mode,
the induction hob estimation of the pan temperature as well
as the value of the power being applied is used directly. The
Papp and Tpan values are more noisy, but are closer to reality.
The temperature of the pan can vary a lot by the actions of
the user, for example, if the pan is not positioned correctly
or if it is separated from the hob while cooking. It is always
more accurate to measure Papp and Tpan and use these values
as input. In the case of Fig. 11, the Online mode predicts more
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FIGURE 11. Test R5 performed in the Offline mode (a) and in the Online
mode (b). The inputs of each time instant (Tpan and Papp) and the output
of the NN being monitored in this test (La and Lb) are shown. In the
Online case, La and Lb end at a value closer to the one measured in the
real experiment (M. La and M. Lb ) than in the Offline case.

accurately the value of L*, since the final values of La and Lb
are closer to themeasured values. However, the error obtained
in the Offline mode is not very large considering the noise of
the inputs in the real cooking in this particular test.

VI. DISCUSSION
In this paper, we have shown the methodology to develop
models for simulating food cooking in real time using a data-
driven NARX-NN. Physics-based FEM models accurately
simulate food cooking, but using these models in real time is
unfeasible due to their high computational cost. This prevents
them from simulating the complete cooking of the food in
real time and from being able to adapt to external changes.
A FEM model that simulates pancake cooking on induction
hobs has been used to generate a database to train a NARX-
NN. If the NARX-NN is trained with the standard algorithm
used for NARX-NN training, i.e. training with TF, we obtain
an NN that predicts with a mean R2 of 0.78 for the six state
parameters being estimated, in the 100 simulations used in
test. Training the NARX-NN with the proposed two-phase
training algorithm, we obtain a mean R2 of more than 0.99 for
the state parameters in the test simulations.

We have trained a data-driven NN model that almost
replicate the accuracy of the original physics-based FEM
model. The NN model that obtains the best metrics, with
3 hidden layers of 1024 neurons, has a speedup of ≈ 5.37 ×

102 with respect to the original FEM model. NN with fewer
neurons have also been presented, where for example an NN
with 3 hidden layers of 128 neurons, still has an R2 > 0.99 for
all target variables in the test data, and has a speedup of
≈ 3.02 × 104 with respect to the original FEM model.

In addition, it has been shown that the models trained
with our algorithm are not overfitted to the training data.
For this, it has been shown that the predictions made by

the model in situations where the input data are outside the
ranges used during training are still accurate. Therefore, the
trained NN has generalization capability and really captures
the dynamics of the problem.

In simulating food cooking with NN, external inputs such
as pan temperature are used. In previous works, these external
variables are either measured directly with sensors, or their
calculation is included in the NN. Measuring these variables
in real time allows us to simulate the cooking of the food
in real time but does not allow us to simulate the complete
cooking in advance and make decisions based on it.

In our proposal, the NN also uses external inputs, but
it has been decided that the NN does not estimate these
parameters, since simulating the heating of the frying pan
is a problem that can be solved with real-time analytical
thermal models. This strategy allows the function of the NN
to predict the cooking evolution of the food, avoiding learning
the behavior of the pan. Otherwise, each of the different food
models that would be developed with this technique would
have to learn the behavior of the frying pans with which
they are cooked, limiting the adaptability. Our approach has
allowed the development of the Offline mode and the Online
mode. The Offline mode uses the NARX-NN developed with
the thermal model of the hob-pan system. This allows to
simulate complete food cooking in a few milliseconds, with
different frying pans, induction hobs, cooking times, etc.
In the case of Online mode, the temperature measurements
of the frying pan as well as the power applied to the pan are
used directly. In this case, it would be executed in real time
and would allow to monitor the cooking status, reacting in
real time to the changes that may occur in the frying pan.
Since they are models with low computational cost, the ideal
in a real scenario is to use both: An initial prediction with the
Offline mode, and updating the cooking state when the data is
received in real time with the Online mode. Both approaches
have been validated with real experiments.

VII. CONCLUSION
The main requirements presented in this paper for modeling
a food process are to simulate the complete cooking of food,
to perform in real time and to be robust to external changes.
We may consider as solution to simulate food processing in
real time with NN. The main limitation observed is that the
NNs presented in the state-of-the-art use standard training
algorithms that may not adapt correctly to the problem of
simulating a dynamic system such as food cooking. The few
details given of the NN architectures available also limit the
application of the solution to other cooking processes.

The main contribution of this paper is a methodology for
the implementation and training of NARX-NN that meets
all the requirements presented. The case study chosen to
validate the proposal is the cooking of pancakes on induction
hobs. The architecture and training method used have been
detailed, both optimized to make our NN computationally
efficient and adapted to the dynamics of the problem. Our
design yields the NN to have a negligible error compared to
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the simulated data. In addition, the performance of the NN
has been positively validated both with and without external
sensors in experiments in real scenarios.

The methodology shown is highly versatile and can be
adapted to different cooking processes. As future work,
it would be interesting to test this methodology with
different foods and cooking processes. We also note that
the use of RNN with this methodology is promising for
enabling real-time simulation of dynamical systems from
other domains.
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