2	Quantitative determination of primary aromatic amines by cation-exchange solid-
3	phase extraction and ultra-high-performance liquid chromatographyMargarita
4	Aznar, Elena Canellas, Cristina Nerín*
5	Analytical Chemistry Department, GUIA Group, I3A, CPS
6	University of Zaragoza, Ma de Luna 3, 50018 Zaragoza, Spain
7	marga@unizar.es; elenac@unizar.es; cnerin@unizar.es
8	
9	*Corresponding author. Tel.: +34 976761873; fax: +34 976762388
10	e-mail address: cnerin@unizar.es (C. Nerín)
11	
12	Abstract
13	Primary aromatic amines (PAAs) have been broadly studied due to its high toxicity. In
14	this work a method for the analysis of 22 PAAs in aqueous simulants has been
15	developed. The method is based on a solid-phase extraction step using cation-exchange
16	cartridges and the subsequent analysis of the extracts by ultra-high-performance liquid
17	chromatography with mass spectrometry detection (MS). The recoveries obtained for all
18	the amines analyzed ranged between 81 and 109 %, linear range was between 0 and 75
19	$\mu g \; L^{1},$ with RSD values between 4.5 to 13.4% and an average value of 7.5% and limits
20	of detection at $\mu g \ L^{1}$ level. The method has been applied to two real samples obtained
21	from migration experiments of polyurethane based laminates to simulant B (aqueous
22	3% (w/v) acetic acid solution) which represents the worst case for migration of aromatic
23	amines. The main amines found were methylenedianiline isomers, coming from the

corresponding residual diisocyanate used during polyurethane adhesive polymerization.

The total amines quantity found was 26 and $6.3~\mu g$ of aniline equivalents per kg of food

Keywords

simulant.

24

25

26

- 28 PAAs, amines, SPE, cationexchange, ultra-high-performance liquid chromatography,
- 29 migration, food packaging

31

1. Introduction

- 32 Primary aromatic amines (PAAs), which are suspected to be carcinogenic compounds
- 33 [1], could be present in a wide variety of samples. For this reason, its presence in
- different matrix has been broadly studied, especially in those materials that have been in
- 35 contact with food [2,3].
- 36 PAAs can be produced by decomposition of azo dyes used in printing inks, as the
- 37 chromophoric azo group under certain conditions can be reduced to form aromatic
- 38 PAAs. Since the azo dyes are extensively used in commercial articles such as textiles,
- 39 cosmetics or plastics and also as food colorants [4,5], the determination of aromatic
- 40 PAAs coming from these dyes has been carried out previously by different methods of
- analysis, such as by GC-MS after derivatization with isobutyl chloroformate in hair
- 42 dyes samples [6], by HPLC with on-line post-column photochemical derivatization in
- 43 industrial dyes [7], by HPLC with electrospray ionization mode (ESI)-MS/MS detection
- 44 in industrial dyes [8] or by μ-HPLC with electrochemical detection [9] in some food
- 45 colorants.
- 46 PAAs appear as well as neoformed compounds from polyurethane (PU) adhesives,
- 47 commonly used for preparing multilayer laminates, which will be further used as food
- 48 contact materials. PU adhesives are formed by the polymerization of polyols and
- 49 diisocyanates monomers. In case the adhesive has not properly cured or if the
- 50 ingredients have been mixed wrongly, the polymerization reaction will not be efficient
- and the remaining unpolymerized aromatic isocyanates will come into contact with
- water producing primary aromatic amines. Although this risk is real and well known,
- 53 PU adhesives have been extensively used for different purposes. Apart from its use in
- laminates of food packagings, it has been used in the manufacture of biocompatible
- prosthesis and medical devices [10] or in household and filling materials (PU foams).
- As part of the ongoing investigations about the degradation of PU adhesives, several
- 57 methods have been developed to isolate and chemically analyze their degradation
- 58 products such as the primary aromatic amines. In biomaterials, the analysis have been

focused on toluenediamine (TDA) isomers, which have been carried out by HPLC-MS 59 [11] and also by GC-MS after derivatization with pentafluoropropionic anhydride 60 (PFPA) [12] [13]. For PU foams a comparison of different methods of analysis of 61 aromatic amines coming from toluendiisocyanate (TDI)-based PU foams has been 62 developed by Marand et al [14], that found a better sensitivity when the samples were 63 derivatized with PFPA and analyzed by GC-MS than when the samples were analyzed 64 by LC-MS. PU laminates used in food packagings are multilayered films cured with 65 polyurethane adhesives. Previous papers about the analysis of amines in aqueous 66 simulants in contact with food contact laminates have been previously published, using 67 GC-MS with derivatization [15] and LC-MS [16]. 68

According to the Directive of food contact materials (Commission Directive 69 70 2002/72/EC [17] and Directive 19/2007/EC [18]), the limit of PAAs released by the packaging material (expressed as aniline) must be below 10 µg aniline equivalents/kg of 71 72 food or food simulant (10ppb). The German Federal Institute of Consumers Health 73 Protection and Veterinary Medicine (BgVV) established some years ago a spectrophotometric method to determine the total content of PAAs in food packaging 74 75 materials. ("Photometric determination of Primary Aromatic Amines in Food Simulants" CEN/TC194/SC1/TG9). In this method the primary aromatic amines are 76 derivatized to an azo dye and quantified as aniline hydrochloride equivalents. Although 77 this colorimetric method reaches the required sensitivity, it has important drawbacks, 78 the most critical one is the absence of selectivity that does not allow the individual 79 80 quantification of the amine. This lack of selectivity can also lead to false positive results in the presence of other colorants likely present in the sample. For this reason it was 81 considered interesting to develop a method with low detection limits and a good 82 selectivity in order to be able to determine which individual PAAs are migrating from 83 the packaging to the foodstuff and in which concentrations. The method proposed in 84 this paper combines the solid-phase extraction (SPE) of the sample with the analysis of 85 86 the extract by ultra-high-performance liquid chromatography -MS. The SPE step allows the concentration of the analytes and the elimination of residual matrix components that 87 88 could induce to ionic suppression effects during the MS detection. Advantages of ultrahigh-performance liquid chromatography in terms of resolution and speed have been 89 broadly proved [19-21]. The combination of the SPE extraction with the ultra-high-90

- 91 performance liquid chromatography technology coupled to MS spectrometry, offers a
- 92 sensitive and accurate method for PAAs quantification.

94

2. Material and methods

- 95 2.1. Reagents and solutions
- 96 DSC-SCX cation-exchange cartridges (500 mg/ 3 mL) were purchased from Supelco
- 97 (Bellefonte, PA, USA) and the manifold system was from Waters (Milford, MA, USA).
- 98 PAAs were bought to Sigma-Aldrich (St Louis, MO, USA) and all of them had
- 99 analytical quality.
- 100 Supergradient HPLC-grade methanol, HPLC-grade acetic acid and ammonia (solution
- 32%) were purchased from Scharlau Chemie (Sentmenat, Spain), HPLC-grade acetone
- was acquired from Merk (Darmstadt, Germany) and water purified with a Milli-Q 185
- 103 Plus system (Millipore, Bedford, MA, USA) was used..
- The PAAs selected for this study are shown in table 1. Individual solutions of around
- 105 1000 mg L⁻¹ were prepared in methanol, except 4,4-DPE that was prepared in acetone.
- The solutions of p-PDA, 4MmPDA, 2,6-TDA and 1,5-DAN were prepared monthly
- because of possible amines degradation processes.

- 2.2. Ultra-high-performance liquid chromatography *separation*
- 110 Chromatography was carried out in an Acquity system using an Acquity UPLC BEH
- 111 C18 column of 1.7 µm particle size (2.1 x 100 mm), both from Waters (Milford, MA,
- 112 USA).
- 113 Ultra-high-performance liquid chromatography conditions were optimized in order to
- achieve a good chromatographic resolution and sensitivity. Several parameters were
- tested such as the mobile phase composition or the possibility of a post column addition.
- 116 Chromatography was carried out at 0.3 mL min⁻¹ column flow and 45°C column
- temperature. Methanol and water were used as mobile phases and the ultra-high-
- performance liquid chromatography gradient is shown in table 2.

- 2.3. Mass spectrometry detection
- 121 A Quattro micro atmospheric pressure ionization (API) tandem quadrupole mass
- spectrometer with an electrospray probe in positive mode (ESI+) from Micromass
- 123 (Beverly, MA, USA) was used. Acquisitions were carried out in SIR (selected ion
- recording) and MRM (multiple reaction monitoring) modes.
- For SIR detection, [MH⁺] ions were monitored. Cone voltages were optimized between
- 20 and 50 V. For MRM detection, transitions to daughter ions were monitored, collision
- energies were optimized from 15 to 30 V. Voltages optimization was carried out by the
- direct perfusion into the MS at 10 μL min⁻¹ of individual solutions of 10 mg L⁻¹ of each
- amine. Table 1 shows [MH⁺] ions, daughter ions, cone voltages and collision energies
- selected for each amine.
- 131 For the optimization of the tune MS parameters, 4 different desolvation gas
- temperatures ranging from 300 to 450°C and 4 different desolvation gas flows ranging
- from 450 to 700 L h⁻¹ were tested. Optimization was carried out by the injection of a
- mixture of 2 mg L⁻¹ of the 23 amines. Final MS parameters are shown in table 2.

- 136 2.4. SPE extraction
- For the SPE extraction, the loading and the elution volumes were optimized. The
- 138 loading solution contained around 100 μg L⁻¹ of the 22 selected PAAs and it was
- prepared in purified water 3% (w/v) acetic acid. Following the cartridge indications, the
- elution solvent was methanol 5% (v/v) NH₃. For the optimization of the loading and the
- elution volumes, sample volumes ranging from 20 to 100 mL were passed through the
- cartridges, and then, the cartridges were eluted. Consecutive 1 mL aliquots of the
- 143 elution solvent were collected and analyzed by ultra-high-performance liquid
- 144 chromatography -MS. The water dilution factor of the extract collected was also
- optimized.
- SPE final extraction protocol was as follows: The cartridges were conditioned with 2
- mL of methanol and equilibrated with 2 ml of purified water containing 3% (w/v) acetic
- acid. Afterwards, 80 mL of sample solution were passed through the cartridges at

around 1 to 1.5 mL min⁻¹. The cartridges were cleaned with 2 mL of purified water with 149 3% (w/v) acetic acid and dried with vacuum. Finally, they were eluted with methanol 150 containing 5% (v/v) NH₃. The first milliliter of the eluate was discarded and the second 151 one was collected for the ultra-high-performance liquid chromatography -MS analysis. 152 153 Before the analysis, the SPE extract collected (1 mL) was diluted 1/1.6 with water, and a 15 µL aliquot was injected into the ultra-high-performance liquid chromatography 154 155 system. 156 To check the reproducibility of the system, 4-aminoazobenzol was added as internal 157 standard to the extract before the analysis. 158 159 2.5. Calibration curves and analytical parameters 160 For building the calibration curves, solutions of the 22 PAAs with concentrations 161 ranging between 0 and 70 µg L⁻¹ were prepared in purified water with 3% (w/v) acetic 162 acid. Solutions were extracted following the SPE extraction protocol and the extracts 163 were analyzed by ultra-high-performance liquid chromatography -MS under the 164 165 conditions previously optimized. To calculate the reproducibility of the method, 3 solutions with the same concentration 166 (around 30 µg L⁻¹) were analyzed in different days and the results were compared. 167 Recovery of the method was checked by comparing the results obtained when a 30 µg 168 L-1 PAAs solution was passed through the SPE cartridge to those obtained when the 169 equivalent solution was directly analyzed by ultra-high-performance liquid 170 chromatography -MS. 171 172 2.6. Sample analysis 173 Two different laminates used in food packaging were analyzed. Materials used for 174 laminates elaboration are shown in table 4. The adhesive used for laminates was 175 polyurethane solvent based. The samples were collected and extracted just after its 176 manufacturing.

- A 10 x 10 cm piece of laminate was immersed in a 100 mL simulant solution, then the
- ratio of 2 dm² in contact with 100 ml of simulant was used. Simulant B (purified water
- 180 3% acetic acid) was chosen because it represents the worst case for migration of
- aromatic amines. These solutions were kept at 70°C during 2 hours.
- Due to the possible variability inside the samples, experiments were carried out by
- triplicate. Afterwards, an aliquot of 80 mL was SPE extracted and analyzed by ultra-
- high-performance liquid chromatography -MS with the conditions of the method
- proposed.

187

- 2.7. Softwares
- Toxicity was evaluated with the software Toxtree v1.51 (Ideaconsult, Sofia, Bulgary).

189

190

3. Results and discussion

- 191 The 24 PAAs used for this study are shown in table 1. They were selected on the basis
- of their origin, both PU adhesives and azo dyes, used in food packagings.
- 193 First of all, toxicity of the PAAs studied was evaluated following Cramer rules [22]
- with the software Toxtree. Cramer rules classify compounds in three groups depending
- on their toxicity: low toxicity (class I), intermediate toxicity (class II) and high toxicity
- 196 (class III). Toxicity is estimated from the molecule structure. All the PAAs studied
- belonged to class III, it meant a high toxicity. The presence of a nitro and a chlorine
- substituent in the amines 5-N-o-T and 4-CA, classified them directly in class III. BNZ,
- 4,4-DPE, 4,4-MDA, 3,3-DMB, 4-4-MdoT, 4-ABP, o-diASD, 4,4-thioANL, 1,5-DAN,
- 200 2-NA, 4-AAB were classified in class III for having one aromatic ring not readily
- 201 hydrolyzed. The amines p-PDA, m-PDA, 2,6-TDA, 4-m-M-PDA, 2,4-TDA, ANL, o-
- ASD, o-T, 22,4-DMA, 2,6-DMA, 2 (2-M-5-M-A were classified also in class III for
- 203 having an aromatic ring with complex substituents (amine group).
- According to the Directive 2007/19/CE [18] of food contact materials, the limit of
- 205 PAAs released (expressed as aniline) must be below 10µg aniline equivalents/kg food

simulant. The aim of the work was to design a method of analysis for these amines with high sensitivity and also the possibility of knowing the origin of the amines detected.

The method was designed for simulant B, purified water 3% (w/v) acetic acid, since this simulant was considered the most restrictive, that means the worst case, for food packaging migration of amines. The direct analysis of the simulant by ultra-high-performance liquid chromatography -MS did not provide enough sensitivity, as the sample amount injected into the system was very low. For this reason the SPE experiments were set out.

3.1. LC separation

- The first step was to get the efficient separation of all the amines in only one run using the Electrospray (ESI)-MS as detector.
 - Previous experiments had been carried out in the laboratory with an HPLC-MS system for the analysis of 8 PAAs. In these experiments, a conventional HPLC on C18 column of 4.6 mm of internal diameter and 3.5 μm of particulate diameter was used. In these analysis a volume of 50 μL was injected and a gradient of methanol/water was used. It was observed that a post-column addition of a formic acid solution of pH=3 (0.3 mL min⁻¹) drove to a clear increase of the amines sensitivity. This was related with a decrease of the mobile phase pH that enhanced the PAAs ionization in the mass spectrometer. Even though the sensitivity was improved achieving detection limits at the low ppb, it was not enough. In addition, to increase the number of amines from 8 to 23 would imply too long time analysis. In order to get a faster separation and better resolution, a ultra-high-performance liquid chromatography system was proposed.

For the ultra-high-performance liquid chromatography separation, methanol and acetonitrile were tested as organic phases. Both showed a similar separation ability but methanol provided a slight better sensitivity versus acetonitrile in the mass spectrometry detection. Therefore methanol was selected as organic phase. Different pH values of the aqueous phase were also checked (basic and acidic) but no improvements were observed. It could be because at neutral pH all the amines were already in their neutral form and in more acidic pH they protonized and retention in the column decreased. On the other hand, a more basic pH made more difficult the ionization in the mass

spectrometer and sensitivity decreased. The final gradient used is shown in table 2, and this gradient allowed the separation of the 23 amines in less than 9 minutes. It was checked if the post column addition of a formic acid solution of pH=3 in the ultra-high-performance liquid chromatography -MS system could improve the sensitivity of the analysis, but in this case, the flow addition caused a broadening of the amines peak bases. Even though different post-column flows and "T" addition systems were checked, it was not possible to avoid the peak base broadening, probably because the flow used in ultra-high-performance liquid chromatography was lower than that used in HPLC (0.3 vs. 0.6 mL min⁻¹) and for this reason, column flow was distorted by the post column addition flow. The post-column addition only improved the aniline signal that showed very low sensitivity in standard conditions, probably because it was unlikely to be ionized.

249

250

237

238

239

240

241

242

243

244

245

246

247

248

3.2. Mass spectrometry detection

- 251 All the PAAs, except 2,6-TDA, showed a maximum sensitivity at 450°C of desolvation
- 252 gas temperature and 700 L h⁻¹ of desolvation gas flow. Even though this amine did not
- reach the maximum sensitivity at these conditions, it showed a good sensitivity too,
- 254 with just a decrease of around 8% below the maximum, achieved at 350°C of
- desolvation gas temperature.
- 256 Figure 1 shows the behavior of 2-M-5-M-A intensity at different desolvation gas
- 257 temperatures and gas flows. All of the PAAs, except 2,6-TDA, followed the same
- 258 pattern. It was observed that both the increase of the temperature and the increase of the
- gas flow, enhanced amines sensitivity. The increase of the signal between the minimal
- tested conditions of gas flow and temperature (300°C and 450 L/h) and the maximum
- 261 conditions (450°C and 700 L/h) reached values of 450%, with an average value of
- increase of 200%. For 2,6-TDA the sensitivity was maximum at 350°C gas flow
- temperature, nevertheless the decrease showed at 450°C was just a 7% of the maximum
- signal.
- 265 It was not possible to detect the 5-N-o-T neither in positive or negative electrospray
- 266 mode and finally it was not included in the development of the method

- As the direct analysis of the simulant by ultra-high-performance liquid chromatography
- 270 -MS did not provide the required sensitivity for all the amines, SPE experiments were
- set out.
- Due to the positive nature of the PAAs in acidic solutions, cation-exchange cartridges
- 273 were used for the SPE extraction. The cartridges were benzene sulfonic acid
- 274 polymerically bonded. The sulfonic acid provided a selective extraction of cationic
- 275 compounds and the benzene group some hydrophobic interactions. For the elution,
- 276 methanol with 5% (v/v) NH₃ was used, as this solution had a basic character that
- 277 neutralized the PAAs allowing their elution, and due to the methanol, it had also an
- elution effect over the possible hydrophobic interactions.
- For all the sample volumes loaded in the SPE optimization, over a 98% of each amine
- 280 was collected in the second fraction. Therefore, it was decided to discard the first
- 281 milliliter of the eluate and collect the second one for the ultra-high-performance liquid
- 282 chromatography analysis. Results of the loading volume optimization for some
- representative PAAs are shown on Figure 2. Figure 2 shows for 7 PAAs, their relative
- area at the different loading volumes related to the area found at the minimum loading
- volume tested (20 mL). Results showed that as long as the loading volume increased,
- there was an almost linear increase of the signal that did not lay down for none of the
- amines. A final loading volume of 80 mL was selected thinking in real sample
- extractions, since the volume usually fixed in migration experiments was 100 mL.
- As it has been described, the elution solvent used for the SPE was methanol with 5%
- ammonia (v/v). Since a C18 column was used for the chromatography, the resolution
- obtained injecting the extract directly was quite poor. For this reason, water was added
- in different proportions to the SPE extract. Figure 3 shows the difference between the
- analysis of the extract (3a) and the extract diluted 1:1 with water (3b) for a loading
- solution of 8 representative PAAs. It was observed a clear improvement of the signal
- 295 without decreasing the sensitivity. In order to checked if higher water volumes would
- improve the chromatography the extract was also diluted 1:2, 1:3 and 1:4. For 1:3 and
- 297 1:4 dilutions a clear decrease of the signal was observed. Dilution 1:2 showed better
- results for the first peaks but no clear improvements for the rest of the peaks. Finally
- 299 SPE extracts (1 mL) were diluted with 1.6 mL of water

3.4. Calibration curves and analytical parameters

- Table 3 shows the results of the calibration curves and the analytical parameters of the method. Good regression coefficients were obtained, reaching values over 0.992 for all the amines. Linear range varied from 0-40 to 0-75 ppb depending on the amine. This range was appropriate since it was not expected to have concentrations over these values in real samples.
- 307 Analysis were carried out in SIR and MRM mode. Table 3 shows the limits of detection (LODs) of the 22 amines in SIR mode. Very low limits of detection were obtained, 15 308 out of the 22 amines had detection limits below 0.06 µg L⁻¹ and all of them below or 309 equal to 1 µg L⁻¹, except 4-CA that had a detection limit of 2.4 µg L⁻¹. The lowest 310 detection limit was obtained for 4,4-DPE (0.003 µg L⁻¹). When MRM mode was used, 311 312 only 5 amines decreased their detection limit with respect to SIR detection limits in a considerable mode: 1,5-DAN (LOD_{MRM}=0.05 µg L⁻¹), 4,4-MDA (LOD_{MRM}=0.002 µg L⁻¹ 313 ¹), 2-M-5-MA (LOD_{MRM}=0.01 μ g L⁻¹), 4,4'-MDoT (LOD_{MRM}=0.003 μ g L⁻¹) and 4-314 ABP (LOD_{MRM}=0.004 µg L⁻¹). Finally SIR mode was selected because better results 315 316 were obtained for most of the amines. Table 3 shows the limits of detection for the 22 PAAs analyzed expressed as µg of amine per liter of simulant solution and also 317 expressed as ug of aniline equivalents per kg of food simulant. For calculating the ug 318 319 of aniline equivalents per kg of food simulant next equation was used, taken into account the proportion of laminate/food simulant used in our experiments (2 dm² 320 laminate/ 100 mL food simulant) and the proportion established in the Directive 321 322 2007/19/CE (6 dm² laminate/ 1kg food simulant):

323
$$\frac{\mu g \text{ of aniline equivalents}}{kg} = \frac{\mu g \text{ of amine}}{L} x \frac{Mw_{aniline}}{Mw_{amine}} x \frac{6 \text{ dm}^2}{1 \text{ kg}} x \frac{0.1 \text{ L}}{2 \text{ dm}^2}$$

The LOD values for each amine expressed as µg of aniline equivalents per kg of food simulant were added, obtaining a total LOD of 1.56 µg/kg of food simulant. Therefore, the detection limit of the method was much lower than the quantity allowed by the Directive 2007/19/CE of food contact materials (10 µg/kg), that proved the suitability of the method for the migration study of PAAs to food.

- 329 Good reproducibilities of the method were also obtained, ranging from 4.5 to 13.4 with an average value of 7.5%. 330
- 331 The values obtained for the recovery of the extraction were very satisfactory, as all the
- amines reached values over 80% and 18 out of 22 were over 90%. 332

334

- 3.5. Sample analysis
- Table 5 shows the amines found in laminates migration experiments and their 335 concentrations. As expected, the main amines found were methylenedianiline (MDA) 336 isomers, coming from residual MDI used during PU adhesive polymerization. The 337 338 highest concentration of MDA isomers was found in laminate 1, releasing a total MDA concentration of 184.6 µg L⁻¹, corresponding to 26.0 µg of aniline equivalents/kg of 339 food simulant, after applying a 6 dm² to 1 kg food simulant conversion factor. The value 340 341 was higher than the allowed limits (10 µg /kg). On the other hand, laminate 2 showed a total MDA concentration of 6.3 µg L⁻¹, corresponding to 0.96 µg of aniline 342 equivalents/kg of food simulant, in this case, below the allowed limits (10µg/kg). These 343 results had sense since in laminate 1 polyethylene was used as support material, and 344 345 polyethylene has been described as a polymer in which the diffusion coefficients of 346 organic compounds are very high, what means that the amines can cross the

348

349

347

4. Conclusions

polyethylene barrier very quickly.

A method based on the selectivity and capacity for concentration of SPE and the 350 advantages of ultra-high-performance liquid chromatography -MS technology has been 351 352 designed for the analysis of PAAs in aqueous simulants. Very low detection limits, good linearity, reproducibility and high recoveries were obtained for the analysis of 22 354 primary aromatic amines and the application of the method to real samples was successful.

356

357

355

353

Acknowledgements

- 358 This work has been supported by the Spanish Ministry of Education and Science in the
- frame of PETRI projects (PET2006 0512 00). E. Canellas acknowledges her grant to
- 360 Gobierno de Aragón.

362

References

- T.S. Scott, Carcinogenic and Chronic Hazards of Aromatic Amines, Elsevier, Amsterdam, 1962.
- 365 [2] B. Brauer, T. Funke, Dtsch. Lebensmi. Rundsch. 98 (2002) 405.
- 366 [3] H.J. Kretzschmar, J. Kelm, K. Tobisch, J. Winskowski, Dtsch. Lebensmi. Rundsch. 95 (1999) 223.
- 368 [4] M. Ma, X.B. Luo, B. Chen, S.P. Sub, S.Z. Yao, J. Chromatogr. A 1103 (2006) 170.
- 370 [5] F. Tateo, M. Bononi, J. Agric. Food Chem. 52 (2004) 655.
- 371 [6] M. Akyuz, S. Ata, J. Pharm. Biomed. Anal. 47 (2008) 68.
- 372 [7] V. Andrisano, R. Gotti, A.M. DiPietra, V. Cavrini, Chromatographia 39 (1994) 138.
- 374 [8] R. Noguerol-Cal, J.M. Lopez-Vilarino, G. Fernandez-Martinez, L. Barral-375 Losada, M.V. Gonzalez-Rodriguez, J. Chromatogr. A 1179 (2008) 152.
- 376 [9] M. Shelke, S.K. Sanghi, A. Asthana, S. Lamba, M. Sharma, J. Chromatogr. A 1089 (2005) 52.
- 378 [10] V.L. Covolan, R. Di Ponzio, F. Chiellini, E.G. Fernandes, R. Solaro, E. Chiellini, in 16th Italian Meeting on Science and Technology of Macromolecules, Pisa, Italy, 2003, p. 273.
- 381 [11] G.B. Wang, J.P. Santerre, R.S. Labow, J. Chromatogr. B 698 (1997) 69.
- 382 [12] G. Skarping, M. Dalene, P. Lind, J. Chromatogr. A 663 (1994) 199.
- O. Sepai, D. Henschler, S. Czech, P. Eckert, G. Sabbioni, in International Symposium on Human Health and Environment: Mechanisms of Toxicity and Biomarkers to Assess Adverse Effects of Chemicals, Salsomaggiore Terme, Italy, 1994, p. 371.
- 387 [14] Å. Marand, D. Karlsson, M. Dalene, G. Skarping, Anal. Chim. Acta 510 (2004) 109.
- 389 [15] C. Brede, I. Skjevrak, H. Herikstad, J. Chromatogr. A 983 (2003) 35.
- 390 [16] S.K. Mortensen, X.T. Trier, A. Foverskov, J.H.S. Petersen, J. Chromatogr. A 1091 (2005) 40.
- Commission Directive 2002/72/EC of 6 August 2002 relating to plastic materials and articles intended to come into contact with food stuffs, Official Journal of the European Communities, L220, 2002, p.18
- Commission Directive 2007/19/EC of 2 April 2007 amending Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with food, OJ L 97, 12.4.2007, p. 50–69
- 398 [19] R. Batlle, P. Lopez, C. Nerin, C. Crescenzi, J. Chromatogr. A 1185 (2008) 155.
- 399 [20] K. Bentayeb, R. Batlle, J. Romero, C. Nerin, Anal. Bioanal. Chem. 388 (2007) 1031.
- 401 [21] K. Bentayeb, C. Rubio, R. Batlle, C. Nerin, Anal. Bioanal. Chem. 389 (2007) 1989.
- 403 [22] G.M. Cramer, R.A. Ford, R.L. Hall, J. Cosmet. Toxicol. 16 (1978) 255.

406 Captions List

407

- Figure 1: Intensity of the signal for 2-M-5-M-A at different desolvation gas
- 409 temperatures (°C) (x axis) and desolvation gas flows (L h⁻¹) (y axis). Experiments
- 410 carried out with the same desolvation gas temperature are circled.
- Figure 2: Evolution of the relative area (%) of 7 amines for different loading volumes
- 412 (mL) related to the area at the minimum loading volume: "●" m-PDA, "◆" 4,4-MDA,
- 413 "■" 2-NA, "▲" 1,5-DAN, "□" o-ASD, "+" 4-4-DPE, "×" 2,4-TDA
- 414 Figure 3: Chromatogram of the SPE extract of 8 amines at different conditions: a-
- Injection of the pure extract, b-injection of the extract diluted 1:1 with water