Identifying runtime libraries in statically linked linux binaries
Resumen: Vulnerabilities in unpatched applications can originate from third-party dependencies in statically linked applications, as they must be relinked each time to take advantage of libraries that have been updated to fix any vulnerability. Despite this, malware binaries are often statically linked to ensure they run on target platforms and to complicate malware analysis. In this sense, identification of libraries in malware analysis becomes crucial to help filter out those library functions and focus on malware function analysis. In this paper, we introduce MANTILLA, a system for identifying runtime libraries in statically linked Linux-based binaries. Our system is based on radare2 to identify functions and extract their features (independent of the underlying architecture of the binary) through static binary analysis and on the K-nearest neighbors supervised machine learning model and a majority rule to predict final values. MANTILLA is evaluated on a dataset consisting of binaries built for different architectures (MIPSeb, ARMel, Intel x86, and Intel x86-64) and different runtime libraries (uClibc, glibc, and musl), achieving very high accuracy. We also evaluate it in two case studies. First, using a dataset of binary files belonging to the binutils collection and second, using an IoT malware dataset. In both cases, good accuracy results are obtained both in terms of runtime library detection (94.4% and 95.5%, respectively) and architecture identification (100% and 98.6%, respectively).
Idioma: Inglés
DOI: 10.1016/j.future.2024.107602
Año: 2025
Publicado en: Future Generation Computer Systems-The International Journal of Grid Computing Theory Methods and Applications 164 (2025), 107602 [11 pp.]
ISSN: 0167-739X

Financiación: info:eu-repo/grantAgreement/ES/DGA/T21-23R
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131115A-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial.


Exportado de SIDERAL (2025-01-13-14:28:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2025-01-13, última modificación el 2025-01-14


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)