000148165 001__ 148165
000148165 005__ 20250114175434.0
000148165 0247_ $$2doi$$a10.1016/j.energy.2019.04.078
000148165 0248_ $$2sideral$$a112434
000148165 037__ $$aART-2019-112434
000148165 041__ $$aeng
000148165 100__ $$0(orcid)0000-0003-4493-6540$$aÁbrego, J.$$uUniversidad de Zaragoza
000148165 245__ $$aHeat requirement for fixed bed pyrolysis of beechwood chips
000148165 260__ $$c2019
000148165 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148165 5203_ $$aThe evaluation of heat of pyrolysis reactions at conditions relevant to the industrial practice is of great importance from the point of view of reactor design. Here, the evolution of heat during the pyrolysis of beechwood chips was experimentally measured in a lab-scale fixed bed pyrolysis system. Wood was heated and pyrolyzed by means of heat transferred from a mass of surrounding inert material (sand) initially heated at temperatures between 400 and 800 °C. Monitoring the evolution of temperatures in the system allowed calculation of heat for pyrolysis (Q P ) as a function of wood bed temperature. At pyrolysis conditions where slow heating rates of the wood bed are realized, changes in Q P were clearly linked to the decomposition of the individual constituents of biomass (cellulose, hemicellulose and lignin), with consecutive exothermic and endothermic stages. When high temperature gradients were present, these stages were simultaneous and Q P continuously increased with temperature, reaching 550 kJ kg -1 . Under these circumstances, a correlation is provided for Q P (T) up to 556 °C. The enthalpy of the pyrolysis reactions (¿H P ) was also estimated. Results show good coincidence with previously reported literature values. The proposed experimental system could be useful for determining heat requirements of pyrolysis under different operational conditions. © 2019 Elsevier Ltd
000148165 536__ $$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2016-TEC-01
000148165 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000148165 590__ $$a6.082$$b2019
000148165 591__ $$aTHERMODYNAMICS$$b3 / 61 = 0.049$$c2019$$dQ1$$eT1
000148165 591__ $$aENERGY & FUELS$$b20 / 112 = 0.179$$c2019$$dQ1$$eT1
000148165 592__ $$a2.166$$b2019
000148165 593__ $$aBuilding and Construction$$c2019$$dQ1
000148165 593__ $$aCivil and Structural Engineering$$c2019$$dQ1
000148165 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1
000148165 593__ $$aManagement, Monitoring, Policy and Law$$c2019$$dQ1
000148165 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ1
000148165 593__ $$aFuel Technology$$c2019$$dQ1
000148165 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1
000148165 593__ $$aEnergy (miscellaneous)$$c2019$$dQ1
000148165 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000148165 700__ $$0(orcid)0000-0002-5047-5106$$aAtienza-Martínez, M.$$uUniversidad de Zaragoza
000148165 700__ $$aPlou, F.
000148165 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, J.$$uUniversidad de Zaragoza
000148165 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000148165 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000148165 773__ $$g178 (2019), 145-157$$pEnergy$$tEnergy$$x0360-5442
000148165 8564_ $$s743229$$uhttps://zaguan.unizar.es/record/148165/files/texto_completo.pdf$$yPostprint
000148165 8564_ $$s1505202$$uhttps://zaguan.unizar.es/record/148165/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000148165 909CO $$ooai:zaguan.unizar.es:148165$$particulos$$pdriver
000148165 951__ $$a2025-01-14-15:48:39
000148165 980__ $$aARTICLE