000148170 001__ 148170 000148170 005__ 20250114175434.0 000148170 0247_ $$2doi$$a10.1016/j.jaap.2019.104724 000148170 0248_ $$2sideral$$a115762 000148170 037__ $$aART-2020-115762 000148170 041__ $$aeng 000148170 100__ $$0(orcid)0000-0002-5047-5106$$aAtienza-Martínez, María 000148170 245__ $$aPyrolysis of dairy cattle manure: evolution of char characteristics 000148170 260__ $$c2020 000148170 5060_ $$aAccess copy available to the general public$$fUnrestricted 000148170 5203_ $$aLivestock manure management constitutes a major challenge at this time. Traditionally, this waste has been used as fertilizer. Excessive application of this residual organic matter on agricultural soils can cause soil quality degradation due to heavy metals accumulation, migration of pathogens to water sources and food, and generation of greenhouse gases. As a promising alternative to land application, pyrolysis of livestock manure allows to obtain biochar, bio-oil and syngas. The goal of this work is to study slow pyrolysis of digested dairy cattle manure (DM) both through one-step and multi-step pyrolysis at increasing temperature in the range 250-600 °C. The non-condensable gases composition was continuously analyzed by gas chromatography. Char properties were characterized by ultimate analysis, heavy metals content, ash content, higher heating value (HHV), pH, electrical conductivity (EC), water holding capacity (WHC), cation exchange capacity (CEC), textural properties (specific surface area, pore volume and average pore width) and Fourier Transform Infrared (FTIR) spectroscopy. The experimental results showed that both the product distribution and the properties of char depended on pyrolysis temperature. Char obtained after the last step of multi-step pyrolysis had similar properties to that obtained in one-step pyrolysis. Thus, the cooling and re-heating of the solid between steps did not have a significant effect on the pyrolysis pathway. Pyrolysis at between 400-550 °C allowed to reach a compromise between char pH and electrical conductivity for its potential use as soil amendment. 000148170 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2013-47260-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2016-76419-R 000148170 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000148170 590__ $$a5.541$$b2020 000148170 591__ $$aCHEMISTRY, ANALYTICAL$$b14 / 83 = 0.169$$c2020$$dQ1$$eT1 000148170 591__ $$aENGINEERING, CHEMICAL$$b26 / 143 = 0.182$$c2020$$dQ1$$eT1 000148170 591__ $$aENERGY & FUELS$$b39 / 114 = 0.342$$c2020$$dQ2$$eT2 000148170 592__ $$a1.185$$b2020 000148170 593__ $$aFuel Technology$$c2020$$dQ1 000148170 593__ $$aAnalytical Chemistry$$c2020$$dQ1 000148170 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000148170 700__ $$0(orcid)0000-0003-4493-6540$$aÁbrego, Javier$$uUniversidad de Zaragoza 000148170 700__ $$0(orcid)0000-0002-4364-2535$$aGea, Gloria$$uUniversidad de Zaragoza 000148170 700__ $$aMarías, Frédéric 000148170 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química 000148170 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente 000148170 773__ $$g145 (2020), 104724 [11 pp.]$$pJ. anal. appl. pyrolysis$$tJOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS$$x0165-2370 000148170 8564_ $$s729795$$uhttps://zaguan.unizar.es/record/148170/files/texto_completo.pdf$$yPostprint 000148170 8564_ $$s1416892$$uhttps://zaguan.unizar.es/record/148170/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000148170 909CO $$ooai:zaguan.unizar.es:148170$$particulos$$pdriver 000148170 951__ $$a2025-01-14-15:48:45 000148170 980__ $$aARTICLE