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This work considers the numerical approximation of linear and nonlinear singularly perturbed 
initial value coupled systems of first-order, for which the diffusion parameters at each equation 
of the system are distinct and also they can have a different order of magnitude. To do that, 
we use two efficient discretization methods, which combine the backward differences and an 
appropriate splitting by components. Both a priori and a posteriori error estimates are proved for 
the proposed discretization methods. The developed numerical methods are more computationally 
efficient than those classical methods used to solve the same type of coupled systems. Extensive 
numerical experiments strongly cofirm in practice the theoretical results and corroborate the 
superior performance of the current approach compared with previous existing approaches.

1. Introduction

In the last years, the numerical treatment of singularly perturbed differential equations (SPDEs) has received much interest among 
applied mathematicians, because of its many applications in the frontier fields of science and engineering, such as fluid dynamics, 
quantum mechanics, chemical reactor theory, elasticity and porous gas electrodes theory. Mathematically, one or more of the highest

order derivative terms appearing in these problems are multiplied by a small positive parameter, popularly known as the perturbation 
parameter. When the parameter is very small, the solution exhibits thin layers, often adjacent to the boundaries of the domain 
of interest, where it varies rapidly. These regions are usually referred as boundary layers in fluid mechanics, edge layers in solid 
mechanics, skin layers in electrical applications and shock layers in solid mechanics. Suppose an analytic solution is sought in the 
form of an asymptotic expansion; in that case, different asymptotic expansions are needed in different parts of the domain, with no 
single expansion being uniformly valid everywhere [1]. Further, when attempting to approximate such solutions using well-known 
finite difference or finite element techniques on a uniform mesh, large oscillations may contaminate the numerical solution across 
the domain [2,3]. This situation worsens when dealing with coupled systems of two or more equations with distinct perturbation 
parameters, as their solutions contain overlapping and interacting layers, thus increasing the stiffness of the problem. Due to this 
complexity, developing appropriate numerical methods and conducting numerical analysis for the system of SPDEs becomes highly 
challenging. To this end, in this paper, we address an efficient numerical approximation of linear and nonlinear coupled systems 
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of first-order SPDEs with prescribed initial conditions. Such systems are frequently exploited in the modeling of various real-life 
problems, such as the predator-prey model [4], the Alley model in population dynamics [5], dynamical systems [6], enzyme kinetics 
model in Biochemistry [7,8], the Lotka-Volterra population model or the host-parasitoid population dynamical model.

Several attempts have been made in the literature to approximate the solution of systems of first-order linear (see [9--13]) and 
nonlinear (see [7,8,14--20]) SPDEs. First, we present a review of the literature on works solving the system of first-order linear SPDEs. 
In [11], a system of two equations was considered in which the first equation is singularly perturbed, and the other equation is a 
non-perturbed differential equation. An almost first-order uniform convergence was shown on a piecewise uniform Shishkin mesh. In 
their analysis of a system of two SPDEs with distinct perturbation parameters, Rao and Kumar [12] achieved uniform convergence on 
a Shishkin mesh. The authors in [9,10] considered the linear system of SPDEs comprising an arbitrary number of equations, where in 
one case, all perturbation parameters are equal, while in another, they are distinct. They obtained an almost first-order convergence 
on a piecewise uniform Shishkin mesh. In [13], the system of an arbitrary number of SPDEs with distinct perturbation parameters was 
studied, and parameter uniform convergence was established on Shishkin and Bakhvalov meshes. Subsequently, the same problem 
was considered in [21], where they showed the convergence of a finite difference scheme on adaptive meshes. We now provide 
the literature review of works related to the system of first-order nonlinear SPDEs. In [14], the nonlinear system of two equations 
was considered in which the first equation is first-order nonlinear SPDE while the other equation is a second-order non-perturbed 
differential equation. Using a finite difference scheme, a first-order convergence was achieved on a Shishkin mesh. For a system of 
two nonlinear SPDEs, a first-order convergent numerical method on a Shishkin mesh was given in [7]. Moreover, authors in [17] 
developed a general error analysis framework on both Shishkin and Bakhvalov meshes. In [18,19], uniformly convergent methods 
based on adaptive meshes were developed.

Observe that the authors in [7,9--17] used a priori meshes, such as Shishkin and Bakhvalov meshes, to resolve the layer phenomena. 
Such meshes appear to be an appealing choice due to their ease of generation, lower computational cost and ability to handle a wide 
range of SPDEs. However, the construction of a priori meshes is highly dependent on a priori knowledge of the behavior of the exact 
solution and its derivatives. Typically, the information needed about the solution is not always available in advance. It is well known 
that a posteriori mesh (or adaptive moving mesh) is a better alternative than a priori meshes because, unlike a priori meshes, it does 
not require a priori knowledge of the behavior of the exact solution and their derivatives. In general, such meshes are generated using 
a suitable monitor function and the equidistribution principle [22,23]. A critical aspect of such methods is selecting an appropriate 
monitor function. Some papers considered the arc-length monitor functions [21] and some considered a suitable monitor function 
based on the bounds of the a posteriori error analysis [20].

It is worth mentioning here that all of the above papers require a significant amount of computing time (or computational cost) to 
solve linear or nonlinear systems with an arbitrary number of equations because the components of the discrete solution are coupled. 
Numerical analysts are often interested in developing numerical schemes that provide good approximations with a low computational 
cost [24--27]. To the best of our knowledge, no researcher has attempted to reduce the computational cost for approximating first

order linear and nonlinear coupled systems of SPDEs. Further, it is important to note that the previous works on nonlinear systems 
of first-order SPDEs are restricted to two equations. Thus, the main contribution of the present paper is as follows:

• To develop efficient discretization methods for solving linear and nonlinear coupled systems of first-order singularly perturbed 
initial value problems with distinct perturbation parameters.

• To derive a priori and a posteriori error estimates for the proposed efficient discretization methods.

• To address nonlinear coupled systems of first-order SPDEs with an arbitrary number of equations.

The paper is organized into two major sections. Section 2 addresses a linear coupled system and its stability. The discretization of 
the linear system is given in Subsection 2.1. Afterwards, a priori and a posteriori error analysis is given in the Subsections 2.2 & 2.3, 
respectively. In a similar fashion, we analyze a nonlinear coupled system in Section 3. In section 4 we perform some numerical 
experiments to validate in practice the theoretical results. Finally, we finish this work with a short section of conclusions.

Notations: Throughout the paper, we use 𝐶 to denote a generic positive constant independent of all the perturbation and 
discretization parameters. Dfine 𝒗 ≤ 𝒘 if 𝑣𝑘 ≤ 𝑤𝑘, 𝑘 = 1,… ,𝓁, and |𝑣| = (|𝑣1|,… , |𝑣𝓁|)𝑇 . For any function 𝑔 ∈ 𝐶(Ω), dfine 
𝑔𝑗 = 𝑔(𝑥𝑗 ); if 𝒈 ∈ 𝐶(Ω)𝓁 then 𝒈𝑗 = 𝒈(𝑥𝑗 ) =

(
𝑔1,𝑗 ,… , 𝑔𝓁,𝑗

)𝑇
. The continuous maximum norm is denoted by ‖𝑔‖∞ = max

𝑥∈Ω
|𝑔(𝑥)| and 

‖𝒈‖∞ = max
𝑗=1,…,𝓁

‖𝑔𝑗‖∞. The analogous discrete maximum norm on the mesh Ω
𝑁

is denoted by ‖ ⋅ ‖
Ω
𝑁 .

2. A coupled system of linear SPIVPs

We consider the following class of SPDEs, which consists of a system of 𝓁 first-order linear differential equations of the form{
𝒚(𝑥) ∶= 𝒚′(𝑥) +(𝑥)𝒚(𝑥) = 𝒈(𝑥), 𝑥 ∈Ω= (0,1], (a)

𝒚(0) = 𝜸, (b)
(2.1)

where the solution 𝒚 =
(
𝑦1,… , 𝑦𝓁

)𝑇
, the right hand side function 𝒈 =

(
𝑔1,… , 𝑔𝓁

)𝑇
and the initial condition 𝜸 =

(
𝛾1,… , 𝛾𝓁

)𝑇
are 

column vectors; =diag(𝜖1,… , 𝜖𝓁) is a diagonal matrix with small distinct perturbation parameters 0 < 𝜖𝑖 ≤ 𝜖𝑗 ≪ 1 for 1 ≤ 𝑖 < 𝑗 ≤ 𝓁, 
(𝑥) =

(
𝑎𝑖𝑗 (𝑥)

)
1≤𝑖,𝑗≤𝓁 , and 𝒚 =

(1𝒚,… ,𝓁𝒚
)𝑇

with
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𝑖𝒚(𝑥) ∶= 𝜖𝑖𝑦
′
𝑖(𝑥) +

𝓁∑
𝑗=1

𝑎𝑖𝑗 (𝑥)𝑦𝑗 (𝑥) = 𝑔𝑖(𝑥), 1 ≤ 𝑖 ≤ 𝓁. (2.2)

Furthermore, we assume that the elements of the matrix  satisfy the following conditions for all 𝑥 ∈Ω=Ω∪ {0}∶{
𝑎𝑖𝑖(𝑥) > 0, 𝑖 = 1,… ,𝓁, (a)∑𝓁

𝑚=1
𝑚≠𝑖

‖ 𝑎𝑖𝑚
𝑎𝑖𝑖

‖∞ < 𝜁 < 1, 𝑖 = 1,… ,𝓁, (b) (2.3)

for an arbitrary number 𝜁 . It is well established in [13] that the system (2.1a)--(2.1b) has a unique solution 𝒚 ∈ 𝐶2(Ω)𝓁 under the 
above assumptions. Note that, from the positivity conditions (2.3a)--(2.3b), in general, it does not follow that the differential operator 
 satifies a maximum principle; still it is maximum norm stable, as given below.

Lemma 2.1. Under the assumptions (2.3a)--(2.3b), the continuous solution vector 𝒚 of (2.1a)--(2.1b) satifies

‖𝑦𝑖‖∞ ≤
𝓁∑

𝑚=1
(𝚲−1)𝑖𝑚max

{‖ 𝑔𝑚
𝑎𝑚𝑚

‖∞, |𝛾𝑚|} , 𝑖 = 1,… ,𝓁, (2.4)

where 𝚲 =
(
𝜂𝑖𝑗

)
1≤𝑖,𝑗≤𝓁 is a 𝓁 × 𝓁 matrix such that 𝜂𝑖𝑖 = 1 and 𝜂𝑖𝑗 = −‖𝑎𝑖𝑗

𝑎𝑖𝑖
‖∞ for 𝑖 ≠ 𝑗.

Proof. The proof of this lemma follows from [13, Lemma 2.2]. □

Using the above Lemma, we can establish the following corollary, which is crucial for the posterior analysis of our numerical 
schemes.

Corollary 2.1. Consider any two continuous vector functions 𝒖 and 𝒗 satisfying

𝒖(𝑥) −𝒗(𝑥) = (𝑥), 𝒖(0) = 𝒗(0),

where  is a bounded piecewise continuous vector function. Then, it holds

‖𝒖− 𝒗‖∞ ≤ 𝐶1‖𝒖−𝒗‖∞. (2.5)

Proof. For simplicity, we denote 𝝍 = 𝒖− 𝒗. Observe that 𝝍(𝑥) =(𝒖(𝑥) − 𝒗(𝑥)) =𝒖(𝑥) −𝒗(𝑥). Consequently, we have{
𝝍(𝑥) ∶= 𝝍 ′(𝑥) +(𝑥)𝝍(𝑥) = (𝑥), 𝑥 ∈Ω= (0,1],
𝝍(0) = 𝟎.

Clearly, the above system of equations is of the form of (2.1a)--(2.1b). Therefore, using Lemma 2.1, we get

‖𝜓𝑖‖∞ = ‖𝑢𝑖 − 𝑣𝑖‖∞ ≤
𝓁∑

𝑚=1

(
𝚲−1)

𝑖𝑚
max

{‖ 𝑚
𝑎𝑚𝑚

‖∞, |0|} , 𝑖 = 1,… ,𝓁.

Hence, using vector notation, the above inequality gives the required estimate (2.5). □

Next, we provide the derivative bounds of the continuous solution, which will be helpful to obtain the a priori error estimates in 
later subsections.

Lemma 2.2. Let 𝒚𝑟 and 𝒚𝑏 denote the regular and singular components of the continuous solution 𝒚. Then, 𝒚𝑟 and 𝒚𝑏 satisfy the following 
derivative estimates⎧⎪⎪⎨⎪⎪⎩

‖𝑦(𝑠)
𝑟,𝑖
‖∞ ≤ 𝐶, 𝑠 = 0,1, 𝜖𝑖‖𝑦(2)𝑟,𝑖 ‖∞ ≤ 𝐶, (a)|𝑦(𝑠)

𝑏,𝑖
(𝑥)| ≤ 𝐶

∑𝓁
𝑚=𝑖 𝜖

−𝑠
𝑚 exp

(
−𝛼𝑥
𝜖𝑚

)
, 𝑠 = 0,1, (b)

𝜖𝑖|𝑦(2)𝑏,𝑖 (𝑥)| ≤ 𝐶
∑𝓁

𝑚=1 𝜖
−1
𝑚 exp

(
−𝛼𝑥
𝜖𝑚

)
, (c)

(2.6)

for 𝑖 = 1,… ,𝓁 and 𝛼 ∶= (1 − 𝜁) min
𝑚=1,…,𝓁

min
𝑥∈Ω

𝑎𝑚𝑚(𝑥).

Proof. Consider the decomposition of continuous solution as 𝒚 = 𝒚𝑟+𝒚𝑏, where the regular component 𝒚𝑟 and the singular component 
𝒚𝑏 satisfy the following problems
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𝒚𝑟 = 𝒈 in Ω, 𝒚𝑟(0) =(0)−1𝒈(0), (a)

𝒚𝑏 = 𝟎 in Ω, 𝒚𝑏(0) = 𝒚(0) − 𝒚𝑟(0). (b)
(2.7)

From Lemma 2.1, it follows that ‖𝒚𝑟‖∞ ≤ 𝐶 . From (2.7a), we observe that 𝜖𝑖𝑦′𝑟,𝑖(0) = 0, 𝑖 = 1,… ,𝓁, and therefore, it holds

𝒚′𝑟 = 𝒈
′ −′𝒚𝑟 in Ω, 𝒚′𝑟(0) = 𝟎. (2.8)

After applying Lemma 2.1 and the bound on 𝒚𝑟 to (2.8), we get ‖𝒚′𝑟‖∞ ≤ 𝐶 . Finally, making use of (2.8) along with bounds on 𝒚𝑟
and 𝒚′𝑟, we get 𝜖𝑖‖𝑦(2)𝑟,𝑖 ‖∞ ≤ 𝐶 , for 𝑖 = 1,… ,𝓁.

Next, the bounds on the singular part 𝒚𝑏 can be derived by imitating the arguments presented in [13]. □

2.1. The discrete problem

We consider an arbitrary nonuniform grid Ω
𝑁

∶= {𝑥𝑘 | 0 = 𝑥0 < 𝑥1 <⋯ < 𝑥𝑁 = 1} that discretizes the continuous domain Ω
into 𝑁 + 1 grid points with nonuniform step-sizes ℎ𝑘 = 𝑥𝑘 − 𝑥𝑘−1 for all 1 ≤ 𝑘 ≤𝑁 . We denote the set of interior grid points with 
Ω𝑁 =Ω

𝑁
⧵ {0}. We propose the following splitting schemes based discretization for the continuous problem (2.1a)--(2.1b) on Ω

𝑁
:{

𝑁𝒀 (𝑥𝑘) ∶= −𝒀 (𝑥𝑘) +(𝑥𝑘)𝒀 (𝑥𝑘) −(𝑥𝑘)𝒀 (𝑥𝑘−1) = 𝒈(𝑥𝑘), 𝑥𝑘 ∈Ω𝑁, (a)

𝒀 0 = 𝜸, (b)
(2.9)

where 𝒀 is the approximation of 𝒚, 𝑁 =
(𝑁

1 ,… ,𝑁
𝓁

)𝑇
, − is the backward difference operator dfined as

−𝑾 (𝑥𝑘) ∶=
𝑾 (𝑥𝑘) −𝑾 (𝑥𝑘−1)

ℎ𝑘
, 1 ≤ 𝑘 ≤𝑁, (2.10)

for any mesh vector function 𝑾 , and (𝑥𝑘) = (𝑥𝑘) −(𝑥𝑘).
Here, the matrix  has three possibilities. The above discretization reduces to the backward Euler scheme for  =  which is 

considered in [13], where only a priori error analysis of the scheme was given. The rest two other possibilities can be chosen from 
the set  =

{diag,ltr

}
, where

diag =
(
𝑎𝑖𝑗

)
with 𝑎𝑖𝑗 =

{
𝑎𝑖𝑖, for 𝑖 = 𝑗,

0, for 𝑖 ≠ 𝑗,
ltr =

(
𝑎𝑖𝑗

)
with 𝑎𝑖𝑗 =

{
𝑎𝑖𝑗 , for 𝑖 ≥ 𝑗,

0, for 𝑖 < 𝑗.

Consequently, the matrix  can be computed by subtracting  to . Further, we rewrite the discretization scheme (2.9a)--(2.9b) 
corresponding to diag and ltr as follows.

Case 1 : If  = diag, then

𝑁
𝑖 𝒀 (𝑥𝑘) ∶= 𝜖𝑖−𝑌𝑖(𝑥𝑘) + 𝑎𝑖𝑖(𝑥𝑘)𝑌𝑖(𝑥𝑘) +

𝓁∑
𝑚=1
𝑚≠𝑖

𝑎𝑖𝑚(𝑥𝑘)𝑌𝑚(𝑥𝑘−1) = 𝑔𝑖(𝑥𝑘), 𝑖 = 1,… ,𝓁. (2.11)

Case 2 : Similarly, if  = ltr, then

𝑁
𝑖 𝒀 (𝑥𝑘) ∶= 𝜖𝑖−𝑌𝑖(𝑥𝑘) +

𝑖∑
𝑚=1

𝑎𝑖𝑚(𝑥𝑘)𝑌𝑚(𝑥𝑘) +
𝓁∑

𝑚=𝑖+1
𝑎𝑖𝑚(𝑥𝑘)𝑌𝑚(𝑥𝑘−1) = 𝑔𝑖(𝑥𝑘), 𝑖 = 1,… ,𝓁. (2.12)

To ease the calculations in subsequent subsections, we provide the following general form of the above cases

𝑁
𝑖 𝒀 (𝑥𝑘) ∶= 𝜖𝑖−𝑌𝑖(𝑥𝑘) + 𝑎𝑖𝑖(𝑥𝑘)𝑌𝑖(𝑥𝑘) +

𝑖−1∑
𝑚=1

𝑎𝑖𝑚(𝑥𝑘)𝑌𝑚(𝑥𝑘−𝜎) +
𝓁∑

𝑚=𝑖+1
𝑎𝑖𝑚(𝑥𝑘)𝑌𝑚(𝑥𝑘−1)

= 𝑔𝑖(𝑥𝑘), 𝑖 = 1,… ,𝓁, (2.13)

𝑌𝑖(𝑥0) = 𝛾𝑖, (2.14)

where 𝜎 can be 0 or 1; when 𝜎 = 1, then the above scheme corresponds to Case 1 ( = diag), and for 𝜎 = 0, it corresponds to Case 2 
( = ltr).

2.2. A priori error analysis

In this subsection, we present the a priori error analysis of the discrete scheme (2.9a)--(2.9b). Before we proceed further, we first 
provide the stability estimate of the discrete scheme dfined in the previous subsection. This requires the following result.
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Lemma 2.3. For 𝜖 > 0, 𝑐(𝑥) > 0 and 𝛷 ∈ℝ𝑁+1, if 𝜖−𝛷(𝑥𝑘) + 𝑐(𝑥𝑘)𝛷(𝑥𝑘) = 𝑔(𝑥𝑘), 𝑘 = 1,… ,𝑁 , the following result holds

‖𝛷‖
Ω
𝑁 ≤max

{‖𝑔
𝑐
‖Ω𝑁 , |𝛷0|} . (2.15)

Proof. The proof of this lemma can be readily proven using the arguments similar to [13, Lemma 2.1]. □

Lemma 2.4 (Stability estimate). Under the assumptions on coupling matrix  given in (2.3a)--(2.3b), the discrete solution 𝒀 of (2.9a)--(2.9b) 
satifies the following stability estimate ∀ 𝑖 = 1,… ,𝓁,

‖𝑌𝑖‖Ω𝑁 ≤
𝓁∑

𝑚=1
(𝚲−1)𝑖𝑚max

{‖ 𝑔𝑚
𝑎𝑚𝑚

‖Ω𝑁 , |𝛾𝑚|} . (2.16)

Proof. Let us decompose the discrete solution as 𝒀 =𝑼 + 𝑽 , where the 𝑖th-component of 𝑼 and 𝑽 are the solutions of the discrete 
problems

𝜖𝑖−𝑈𝑖(𝑥𝑘) + 𝑎𝑖𝑖(𝑥𝑘)𝑈𝑖(𝑥𝑘) = 𝑔𝑖(𝑥𝑘), 𝑈𝑖(𝑥0) = 𝛾𝑖,

and

𝜖𝑖−𝑉𝑖(𝑥𝑘) + 𝑎𝑖𝑖(𝑥𝑘)𝑉𝑖(𝑥𝑘) = −
𝑖−1∑
𝑚=1

𝑎𝑖𝑚(𝑥𝑘)𝑌𝑚(𝑥𝑘−𝜎) −
𝓁∑

𝑚=𝑖+1
𝑎𝑖𝑚(𝑥𝑘)𝑌𝑚(𝑥𝑘−1), 𝑉𝑖(𝑥0) = 0,

respectively, where we have used (2.13)-(2.14).

By virtue of Lemma 2.3, we can obtain

‖𝑈𝑖‖Ω𝑁 ≤max
{‖ 𝑔𝑖

𝑎𝑖𝑖
‖Ω𝑁 , |𝛾𝑖|} and ‖𝑉𝑖‖Ω𝑁 ≤

𝓁∑
𝑚=1
𝑚≠𝑖

‖𝑎𝑖𝑚
𝑎𝑖𝑖

‖Ω𝑁 ‖𝑌𝑚‖Ω𝑁 .

Using the triangle inequality, we get

‖𝑌𝑖‖Ω𝑁 ≤ ‖𝑈𝑖‖Ω𝑁 + ‖𝑉𝑖‖Ω𝑁 ≤ ‖𝑈𝑖‖Ω𝑁 +
𝓁∑

𝑚=1
𝑚≠𝑖

‖𝑎𝑖𝑚
𝑎𝑖𝑖

‖Ω𝑁 ‖𝑌𝑚‖Ω𝑁 .

Consequently, it holds

‖𝑌𝑖‖Ω𝑁 −
𝓁∑

𝑚=1
𝑚≠𝑖

‖𝑎𝑖𝑚
𝑎𝑖𝑖

‖Ω𝑁 ‖𝑌𝑚‖Ω𝑁 ≤max
{‖ 𝑔𝑖

𝑎𝑖𝑖
‖Ω𝑁 , |𝛾𝑖|} , 𝑖 = 1,2,… ,𝓁.

Finally, using the inverse monotonicity of 𝚲, we obtain the required result (2.16). □

Theorem 2.1. If 𝒚 is the solution of (2.1a)--(2.1b) and 𝒀 is the approximate solution of (2.9a)--(2.9b) obtained on an arbitrary nonuniform 
mesh Ω

𝑁
, then we have the following a priori error estimate

‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤ 𝐶𝜗(Ω𝑁 ), (2.17)

where 𝜗(Ω𝑁 ) ∶= max
1≤𝑘≤𝑁

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑠
𝜖𝑚

))
𝑑𝑠.

Proof. Let us consider an error vector for the discrete scheme (2.13)--(2.14) as 𝝃 = 𝒚−𝒀 , where 𝜉𝑖(𝑥𝑘) = 𝑦𝑖(𝑥𝑘)−𝑌𝑖(𝑥𝑘),1 ≤ 𝑖 ≤ 𝓁,1 ≤ 
𝑘 ≤𝑁 . Now we introduce a new operator dfined by

̂𝑁
𝑖 𝒀 (𝑥𝑘) ∶= 𝜖𝑖−𝑌𝑖(𝑥𝑘) + 𝑎𝑖𝑖(𝑥𝑘)𝑌𝑖(𝑥𝑘),

and we divide the error into two parts 𝝃 = 𝝃𝟏 + 𝝃𝟐, such that ∀ 1 ≤ 𝑖 ≤ 𝓁, it holds{ ̂𝑁
𝑖
𝝃𝟏(𝑥𝑘) =𝑁

𝑖
𝝃(𝑥𝑘), 𝜉1,𝑖(0) = 0, (a)

̂𝑁
𝑖
𝝃𝟐(𝑥𝑘) = −

∑𝑖−1
𝑚=1 𝑎𝑖𝑚(𝑥𝑘)𝜉𝑚(𝑥𝑘−𝜎) −

∑𝓁
𝑚=𝑖+1 𝑎𝑖𝑚(𝑥𝑘)𝜉𝑚(𝑥𝑘−1), 𝜉2,𝑖(0) = 0, (b)

(2.18)

for all 1 ≤ 𝑘 ≤𝑁 .
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The triangle inequality together with Lemma 2.4 yields

‖𝜉𝑖‖Ω𝑁 ≤ ‖𝜉1,𝑖‖Ω𝑁 + ‖𝜉2,𝑖‖Ω𝑁 ≤ ‖𝜉1,𝑖‖Ω𝑁 +
𝓁∑

𝑚=1
𝑚≠𝑖

‖𝑎𝑖𝑚
𝑎𝑖𝑖

‖Ω𝑁 ‖𝜉𝑚‖Ω𝑁 .

Hence, we get

‖𝜉𝑖‖Ω𝑁 −
𝓁∑

𝑚=1
𝑚≠𝑖

‖𝑎𝑖𝑚
𝑎𝑖𝑖

‖Ω𝑁 ‖𝜉𝑚‖Ω𝑁 ≤ ‖𝜉1,𝑖‖Ω𝑁 , 1 ≤ 𝑖 ≤ 𝓁.

Now, appealing to inverse monotonicity of 𝚲−1, it follows

‖𝜉𝑖‖Ω𝑁 = ‖𝑦𝑖 − 𝑌𝑖‖Ω𝑁 ≤ 𝐶‖𝜉1,𝑖‖Ω𝑁 , 𝑖 = 1,… ,𝓁. (2.19)

We observe that the components of 𝝃𝟏 are the solutions of the problems

̂𝑁
𝑖 𝝃𝟏(𝑥𝑘) ∶= 𝜖𝑖

(−𝑦𝑖(𝑥) −
𝑑

𝑑𝑥
𝑦𝑖(𝑥)

)||||𝑥=𝑥𝑘 +
𝑖−1∑
𝑚=1

𝑎𝑖𝑚(𝑥𝑘)
(
𝑦𝑚(𝑥𝑘−𝜎) − 𝑦𝑚(𝑥𝑘)

)

+
𝓁∑

𝑚=𝑖+1
𝑎𝑖𝑚(𝑥𝑘)

(
𝑦𝑚(𝑥𝑘−1) − 𝑦𝑚(𝑥𝑘)

)
, 1 ≤ 𝑘 ≤𝑁,

with 𝜉1,𝑖(0) = 0 ∀ 1 ≤ 𝑖 ≤ 𝓁, since it satifies (2.18a) and also

̂𝑁
𝑖 𝝃𝟏(𝑥𝑘) =𝑁

𝑖 𝝃(𝑥𝑘) = 𝑁
𝑖 𝒚(𝑥𝑘) −𝑁

𝑖 𝒀 (𝑥𝑘) = (𝑁
𝑖 −𝑖)𝒚(𝑥𝑘)

= 𝜖𝑖

(−𝑦𝑖(𝑥) −
𝑑

𝑑𝑥
𝑦𝑖(𝑥)

)||||𝑥=𝑥𝑘 +
𝑖−1∑
𝑚=1

𝑎𝑖𝑚(𝑥𝑘)
(
𝑦𝑚(𝑥𝑘−𝜎) − 𝑦𝑚(𝑥𝑘)

)

+
𝓁∑

𝑚=𝑖+1
𝑎𝑖𝑚(𝑥𝑘)

(
𝑦𝑚(𝑥𝑘−1) − 𝑦𝑚(𝑥𝑘)

)
.

Therefore, it follows

|̂𝑁
𝑖 𝝃𝟏(𝑥𝑘)| ≤ 𝜖𝑖| (−𝑦𝑖(𝑥) −

𝑑

𝑑𝑥
𝑦𝑖(𝑥)

)||||𝑥=𝑥𝑘 |+ | 𝑖−1∑
𝑚=1

𝑎𝑖𝑚(𝑥𝑘)

𝑥𝑘

∫
𝑥𝑘−𝜎

𝑦′𝑚(𝑠)𝑑𝑠|
+| 𝓁∑

𝑚=𝑖+1
𝑎𝑖𝑚(𝑥𝑘)

𝑥𝑘

∫
𝑥𝑘−1

𝑦′𝑚(𝑠)𝑑𝑠|
≤ 𝜖𝑖

𝑥𝑘

∫
𝑥𝑘−1

|𝑦′′𝑖 (𝑠)|𝑑𝑠+𝐶

𝑥𝑘

∫
𝑥𝑘−𝜎

𝑖−1∑
𝑚=1

|𝑦′𝑚(𝑠)|𝑑𝑠+𝐶

𝑥𝑘

∫
𝑥𝑘−1

𝓁∑
𝑚=𝑖+1

|𝑦′𝑚(𝑠)|𝑑𝑠
≤ 𝐶

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑠
𝜖𝑚

))
𝑑𝑠,

where we have used the Taylor expansion with the integral form of remainder and we made use of derivative bounds of 𝒚 given in 
Lemma 2.2. Further, a direct application of Lemma 2.3 gives

‖𝜉1,𝑖‖Ω𝑁 ≤ 𝐶 max
1≤𝑘≤𝑁

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑠
𝜖𝑚

))
𝑑𝑠, 𝑖 = 1,… ,𝓁 (2.20)

Finally, plugging the bounds of (2.20) in (2.19) gives the required estimate (2.17). □

The general convergence result of Theorem 2.1 provides the means to guarantee the uniform convergence of discrete scheme 
(2.9a)--(2.9b) on a variety of special layer-adapted meshes; nevertheless, here we cofine ourselves to Shishkin and Bakhvalov meshes.

Shishkin meshes: These meshes are special piecewise uniform meshes that resolve the layer phenomena of the problem. To construct 
them, we dfine the transition parameters as follows (see [28]):
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𝜏0 = 0, 𝜏𝑚 =min
{𝑚𝜏𝑚+1
𝑚+ 1

,
𝜇𝜖𝑚
𝛼

ln𝑁
}
, 𝑚 = 𝓁,… ,1, and 𝜏𝓁+1 = 1, (2.21)

where 𝜇 is a positive constant to be dfined later on.

Corollary 2.2. Let 𝒚 denote the solution of (2.1a)--(2.1b) and 𝒀 represent the approximate solution of (2.9a)--(2.9b) obtained on Shishkin 
mesh, as dfined in (2.21). Then, the following estimate holds

‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤ 𝐶𝑁−1 ln𝑁, if 𝜇 ≥ 1.

Proof. Assuming that 𝑁 is divisible by 𝓁+1, the transition parameters partition the interval [0,1] as [0, 𝜏1] ∪ [𝜏1, 𝜏2]⋯∪ [𝜏𝓁 ,1] with 
1+𝑁∕(𝓁+1) equidistant mesh points on each subinterval. For what follows, we assume that 𝜏𝑚 = 𝜇𝜖𝑚

𝛼
ln𝑁,𝑚 = 𝓁,… ,1, as otherwise 

𝑁−1 is exponentially small compared to 𝜖𝑖, 𝑖 = 1,… ,𝓁 and the analysis can be done in a classical way. It is straightforward to deduce 
that it holds

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑠
𝜖𝑚

))
𝑑𝑠 ≤ ℎ𝑘 +

1
𝛼

𝓁∑
𝑚=1

| exp(−
𝛼𝑥𝑘−1
𝜖𝑚

)
− exp

(
−
𝛼𝑥𝑘
𝜖𝑚

)|. (2.22)

Now, we consider the region [0, 𝜏1]. Using the mean value theorem, there exists 𝜈 ∈ (𝑥𝑘−1, 𝑥𝑘), such that

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑠
𝜖𝑚

))
𝑑𝑠 ≤ ℎ𝑘

{
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝜈
𝜖𝑚

)}
≤ 𝐶𝑁−1 ln𝑁,

where we have used that ℎ𝑘 ≤ 𝜖1𝑁
−1 ln𝑁 holds.

Next, we consider the region [𝜏𝓁 ,1]. The condition 0 < 𝜖𝑖 ≤ 𝜖𝑗 ≪ 1 for 1 ≤ 𝑖 < 𝑗 ≤ 𝓁, implies that exp
(
−
𝛼𝑥𝑘−1
𝜖𝑖

)
≤ exp

(
−
𝛼𝑥𝑘−1
𝜖𝓁

)
and exp

(
−
𝛼𝑥𝑘
𝜖𝑖

)
≤ exp

(
−
𝛼𝑥𝑘
𝜖𝓁

)
for 𝑖 = 1,… ,𝓁. Further, 𝑥𝑘−1 ≤ 𝑥𝑘 implies that exp

(
−
𝛼𝑥𝑘
𝜖𝓁

)
≤ exp

(
−
𝛼𝑥𝑘−1
𝜖𝓁

)
. Hence, from (2.22) 

we can obtain

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑠
𝜖𝑚

))
𝑑𝑠 ≤ ℎ𝑘 +

𝐶

𝛼
exp

(
−
𝛼𝑥𝑘−1
𝜖𝓁

)
≤ 𝐶

(
𝑁−1 ln𝑁 +𝑁−𝜇) ,

where we have used the definition of 𝜏𝓁 . Finally, we consider the region [𝜏𝑖, 𝜏𝑖+1] for 𝑖 = 1,2,… ,𝓁 − 1. Using (2.22), we have

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑠
𝜖𝑚

))
𝑑𝑠

≤ ℎ𝑘 +
1
𝛼

𝑖∑
𝑚=1

| exp(−
𝛼𝑥𝑘−1
𝜖𝑚

)
− exp

(
−
𝛼𝑥𝑘
𝜖𝑚

)|+ 1
𝛼

𝓁∑
𝑚=𝑖+1

| exp(−
𝛼𝑥𝑘−1
𝜖𝑚

)
− exp

(
−
𝛼𝑥𝑘
𝜖𝑚

)|
≤ ℎ𝑘 +

𝐶

𝛼
exp

(
−
𝛼𝑥𝑘−1
𝜖𝑖

)
+ ℎ𝑘

𝓁∑
𝑚=𝑖+1

𝜖−1𝑚 exp
(
−𝛼𝜈
𝜖𝑚

)
≤ 𝐶

(
𝑁−1 ln𝑁 +𝑁−𝜇) , (2.23)

where we have used the previous arguments and also that it holds ℎ𝑘 ≤ 𝐶𝜖𝑖+1𝑁
−1 ln𝑁 .

Finally, combining the estimates obtained for all regions, on this mesh, we obtain

𝜗(Ω𝑁 ) ≤ 𝐶(𝑁−𝜇 +𝑁−1 ln𝑁).

Consequently, Theorem 2.1 gives

‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤ 𝐶𝑁−1 ln𝑁, if 𝜇 ≥ 1. □

Bakhvalov meshes: These meshes are graded in nature and superior to the Shishkin meshes. To discretize the problem, we construct 
the Bakhvalov meshes using the idea of the equidistribution principle for the monitor function (see [28])

𝐵𝑀 (𝑥) ∶= max
{
1,
𝜍1
𝜖1
𝑒−𝛼𝑥∕𝜇𝜖1 ,… ,

𝜍𝓁
𝜖𝓁
𝑒−𝛼𝑥∕𝜇𝜖𝓁

}
, (2.24)
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where 𝜍𝑖 > 0, 𝑖 = 1,… ,𝓁 is a user-chosen constant.

Corollary 2.3. Let 𝒚 denote the solution of (2.1a)--(2.1b) and 𝒀 represent the approximate solution of (2.9a)--(2.9b) obtained on Bakhvalov 
mesh, as dfined in (2.24). Then, the following estimate holds

‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤ 𝐶𝑁−1, if 𝜇 ≥ 1,

Proof. From the equidistribution principle, it follows that

𝑥𝑘

∫
𝑥𝑘−1

𝐵𝑀 (𝑥)𝑑𝑥 = 1
𝑁

1

∫
0

𝐵𝑀 (𝑥)𝑑𝑥, 𝑘 = 1,… ,𝑁.

Clearly, ∫ 1
0 𝐵𝑀 (𝑥)𝑑𝑥 ≤ 𝐶 . Further, for 𝜇 ≥ 1 and arbitrary 𝜍𝑖 > 0, 𝑖 = 1,… ,𝓁, there exists a constant 𝐶 such that

1 +
𝓁∑

𝑚=1
𝜖−1𝑚 exp

(
−𝛼𝑥
𝜖𝑚

)
≤ 𝐶max

{
1,
𝜍1
𝜖1
𝑒−𝛼𝑥∕𝜇𝜖1 ,… ,

𝜍𝓁
𝜖𝓁
𝑒−𝛼𝑥∕𝜇𝜖𝓁

}
= 𝐶𝐵𝑀 (𝑥).

Hence, we have

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
−𝛼𝑥
𝜖𝑚

))
𝑑𝑥 ≤ 𝐶

𝑥𝑘

∫
𝑥𝑘−1

𝐵𝑀 (𝑥)𝑑𝑥,

and therefore it holds

𝜗(Ω𝑁 ) ≤ 𝐶

𝑁

1

∫
0

𝐵𝑀 (𝑥)𝑑𝑥 ≤ 𝐶𝑁−1.

Thereby, Theorem 2.1 gives

‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤ 𝐶𝑁−1, if 𝜇 ≥ 1,

which proves the first order of uniform convergence when the Bakhvalov mesh is used. □

2.3. A posteriori error analysis

We now give the a posteriori error analysis corresponding to the linear discrete problem (2.9a)--(2.9b). For this, we assume a 
piecewise linear interpolant vector 𝒀 (𝑥) corresponding to the discrete solution vector 𝒀 (𝑥𝑘) ∀𝑘 = 1,… ,𝑁 . Clearly, 𝒀 (𝑥) is continuous 
on Ω, linear on each sub-intervals [𝑥𝑘−1, 𝑥𝑘] and dfined by

𝒀 (𝑥) = 𝒀 (𝑥𝑘) + (𝑥− 𝑥𝑘)−𝒀 (𝑥𝑘). (2.25)

The above equation implies that 𝒀 (𝑥𝑘) = 𝒀 (𝑥𝑘) and 
[
𝒀 (𝑥)

]′
=−𝒀 (𝑥𝑘).

Theorem 2.2. Let 𝒚 be the continuous solution of (2.1a)--(2.1b), 𝒀 be the discrete solution of (2.9a)--(2.9b). Assuming 𝒀 (𝑥) as the piecewise 
linear interpolation of 𝒀 (𝑥𝑘), the following inequality holds

‖𝒀 − 𝒚‖∞ ≤ 𝐶1(𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5), (2.26)

where 𝜆𝑗 ∶= max
1≤𝑘≤𝑁𝜆𝑗,𝑘, 𝑗 = 1,… ,5,

𝜆1,𝑘 ∶= ℎ𝑘 max
1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

|𝑞𝑖𝑗 (𝑥𝑘)||−𝑌𝑗 (𝑥𝑘)|) , 𝜆2,𝑘 ∶= ℎ𝑘 max
1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

|𝑎𝑖𝑗 (𝑥𝑘)||−𝑌𝑗 (𝑥𝑘)|) ,

𝜆3,𝑘 ∶= ℎ𝑘 max
1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

‖𝑎′𝑖𝑗‖∞|𝑌𝑗 (𝑥𝑘)|) , 𝜆4,𝑘 ∶= ℎ2
𝑘
max
1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

‖𝑎′𝑖𝑗‖∞|−𝑌𝑗 (𝑥𝑘)|) ,

𝜆5,𝑘 ∶= ℎ𝑘‖𝒈′‖∞,
with 𝑞𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝓁) the entries of the matrix .
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Proof. For any 𝑥∈ (𝑥𝑘−1, 𝑥𝑘), 𝑘 = 1,2,… ,𝑁 , we have

𝒀 (𝑥) −𝒚(𝑥) =  [
𝒀 (𝑥)

]′
+(𝑥)𝒀 (𝑥) − 𝒈(𝑥)

= −𝒀 (𝑥𝑘) +
⎛⎜⎜⎝(𝑥𝑘) +

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠
⎞⎟⎟⎠
(
𝒀 (𝑥𝑘) + (𝑥− 𝑥𝑘)−𝒀 (𝑥𝑘)

)
−
(
𝒈(𝑥𝑘) +

𝑥

∫
𝑥𝑘

𝒈′(𝑠)𝑑𝑠
)

=
{
−𝒀 (𝑥𝑘) +(𝑥𝑘)𝒀 (𝑥𝑘) − 𝒈(𝑥𝑘)

}
+(𝑥𝑘)(𝑥− 𝑥𝑘)−𝒀 (𝑥𝑘) +

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠 × 𝒀 (𝑥𝑘)

+ (𝑥− 𝑥𝑘)

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠−𝒀 (𝑥𝑘)−

𝑥

∫
𝑥𝑘

𝒈′(𝑠)𝑑𝑠

=
{
−𝒀 (𝑥𝑘) +(𝑥𝑘)𝒀 (𝑥𝑘) −(𝑥𝑘)𝒀 (𝑥𝑘−1) − 𝒈(𝑥𝑘)

}
−(𝑥𝑘)

{
𝒀 (𝑥𝑘) − 𝒀 (𝑥𝑘−1)

}

+(𝑥𝑘)(𝑥− 𝑥𝑘)−𝒀 (𝑥𝑘) +

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠𝒀 (𝑥𝑘) + (𝑥− 𝑥𝑘)

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠−𝒀 (𝑥𝑘)−

𝑥

∫
𝑥𝑘

𝒈′(𝑠)𝑑𝑠

= −ℎ𝑘(𝑥𝑘)−𝒀 (𝑥𝑘) +(𝑥𝑘)(𝑥− 𝑥𝑘)−𝒀 (𝑥𝑘) +

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠𝒀 (𝑥𝑘) + (𝑥− 𝑥𝑘)

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠

×−𝒀 (𝑥𝑘)−

𝑥

∫
𝑥𝑘

𝒈′(𝑠)𝑑𝑠, (2.27)

where we have used (2.9a) and (2.25) in the above calculations.

Now, we proceed as follows to evaluate each term of (2.27) one by one. First, we have

|ℎ𝑘(𝑥𝑘)−𝒀 (𝑥𝑘)| ≤ ℎ𝑘 max
1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

|𝑞𝑖𝑗 (𝑥𝑘)||−𝑌𝑗 (𝑥𝑘)|) , (2.28)

where 𝑞𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝓁) are the entries of . Similarly, it follows that

|(𝑥𝑘)(𝑥− 𝑥𝑘)−𝒀 (𝑥𝑘)| ≤ ℎ𝑘 max
1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

|𝑎𝑖𝑗 (𝑥𝑘)||−𝑌𝑗 (𝑥𝑘)|) , (2.29)

and

| 𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠𝒀 (𝑥𝑘)| ≤ max
1≤𝑖≤𝓁

⎛⎜⎜⎝
𝓁∑
𝑗=1

| 𝑥

∫
𝑥𝑘

𝑎′𝑖𝑗 (𝑠)𝑑𝑠𝑌𝑗 (𝑥𝑘)|⎞⎟⎟⎠
≤ max

1≤𝑖≤𝓁
⎛⎜⎜⎝

𝓁∑
𝑗=1

‖𝑎′𝑖𝑗‖∞
𝑥

∫
𝑥𝑘

𝑑𝑠 |𝑌𝑗 (𝑥𝑘)|⎞⎟⎟⎠
≤ ℎ𝑘 max

1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

‖𝑎′𝑖𝑗‖∞|𝑌𝑗 (𝑥𝑘)|) . (2.30)

Following the above arguments, we have the following bound for the next term

|(𝑥− 𝑥𝑘)

𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠−𝒀 (𝑥𝑘)| ≤ ℎ𝑘| 𝑥

∫
𝑥𝑘

′(𝑠)𝑑𝑠−𝒀 (𝑥𝑘)|
≤ ℎ2

𝑘
max
1≤𝑖≤𝓁

(
𝓁∑
𝑗=1

‖𝑎′𝑖𝑗‖∞|−𝑌𝑗 (𝑥𝑘)|) . (2.31)

Lastly, we have
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| 𝑥

∫
𝑥𝑘

𝒈′(𝑠)𝑑𝑠| ≤ ℎ𝑘‖𝒈′‖∞. (2.32)

Consequently, the required estimate (2.26) can be obtained by combining all these findings from (2.27)--(2.32) in (2.27), and using 
(2.5). □

3. A nonlinear coupled system

3.1. The continuous problem and its stability

We consider the following class of SPDEs, which consists of a system of 𝓁 first-order nonlinear differential equations of the form{
 𝒚 ∶= 𝒚′(𝑥) + 𝒃(𝑥,𝒚(𝑥)) = 𝟎, 𝑥 ∈Ω= (0,1], (a)

𝒚(0) = 𝜸⋆, (b)
(3.1)

where the solution vector is 𝒚(𝑥) =
(
𝑦1,… , 𝑦𝓁

)𝑇
,𝒃(𝑥,𝒚(𝑥)) =

(
𝑏1(𝑥,𝒚(𝑥)),… , 𝑏𝓁(𝑥,𝒚(𝑥))

)𝑇 ∈ (𝐶2(Ω ×ℝ𝓁))𝓁 and 𝜸⋆ is a given 𝓁

column constant vector. Furthermore,  = (1,… ,𝓁)𝑇 with 𝑖𝒚 ∶= 𝜖𝑖𝑦
′
𝑖
(𝑥) + 𝑏𝑖(𝑥,𝒚(𝑥)) = 0, 𝑖 = 1,… ,𝓁, and for all (𝑥,𝒚) ∈ Ω ×ℝ𝓁 , 

we assume that⎧⎪⎨⎪⎩
𝜕𝑏𝑚
𝜕𝑦𝑖

≤ 0, 𝑚 ≠ 𝑖; 𝜕𝑏𝑚
𝜕𝑦𝑖

> 0, 𝑚 = 𝑖; 𝑚, 𝑖 ∈ {1,… ,𝓁}, (a)∑𝓁
𝑖=1

𝜕𝑏𝑚
𝜕𝑦𝑖

> 𝛽 > 0, 𝑚 = 1,… ,𝓁. (b)
(3.2)

The implicit function theorem and assumptions (3.2a)--(3.2b) guarantee that there is a unique solution 𝒚 to the nonlinear problem 
(3.1a)--(3.1b) and also that the reduced problem is given by 𝒃(𝑥,𝒚0) = 𝟎, 𝑥 ∈Ω.

Let us dfine the Jacobian matrix 𝑱 (𝑥,y) ∶=
(
𝜕𝑏𝑚
𝜕𝑦𝑖

(𝑥,y)
)

∀ 1 ≤ 𝑖,𝑚 ≤ 𝓁. It is clear from the conditions (3.2a)--(3.2b) that 𝑱 is an 

M-matrix for all (𝑥,y) ∈ Ω ×ℝ𝓁 . For any vector valued functions 𝒖 and 𝒗, we dfine

 [𝒖;𝒗](𝑥) ∶=

1

∫
𝑠=0

𝑱
(
𝑥,𝒗(𝑥) + 𝑠(𝒖(𝑥) − 𝒗(𝑥)

)
𝑑𝑠.

An application of the mean value theorem gives

𝒃(𝑥,𝒖(𝑥)) − 𝒃(𝑥,𝒗(𝑥)) =

1

∫
𝑠=0

𝑑

𝑑𝑠

(
𝒃(𝑥,𝒗(𝑥) + 𝑠(𝒖(𝑥) − 𝒗(𝑥))

)
𝑑𝑠 =  [𝒖;𝒗](𝑥)(𝒖− 𝒗).

Now, we dfine the following linear operator

̃ [𝒖;𝒗]𝒚 ∶= 𝒚′(𝑥) +  [𝒖;𝒗](𝑥)𝒚(𝑥), 𝑥 ∈Ω. (3.3)

The operator ̃ [𝒖;𝒗] satifies the following continuous maximum principle.

Lemma 3.1 (Continuous maximum principle). Suppose that 𝒚 =
(
𝑦1,… , 𝑦𝓁

)𝑇
satifies 𝒚(0) ≥ 𝟎 and ̃ [𝒖;𝒗]𝒚(𝑥) ≥ 𝟎 ∀ 𝑥 ∈Ω. Then 𝒚(𝑥) ≥ 

𝟎 ∀ 𝑥 ∈Ω.

Proof. Let 𝑦𝑖(𝑟𝑖) = min
𝑥∈Ω

{
𝑦𝑖(𝑥)

}
, for 1 ≤ 𝑖 ≤ 𝓁. Without any loss of generality, we can consider that 𝑦1(𝑟1) ≤ 𝑦𝑖(𝑟𝑖), for 2 ≤ 𝑖 ≤ 𝓁. If 

𝑦1(𝑟1) ≥ 0, then nothing needs to be proved. On the contrary, we assume that 𝑦1(𝑟1) < 0. Clearly it implies that 𝑟1 ≠ 0 and 𝑦′1(𝑟1) = 0. 
Under the problem assumptions (3.2a)--(3.2b), for 𝑚 = 1, we observe that

𝜕𝑏1
𝜕𝑦1

+
𝜕𝑏1
𝜕𝑦2

+⋯+
𝜕𝑏1
𝜕𝑦𝓁

> 0.

Hence, we have

𝜕𝑏1
𝜕𝑦1

⋅ 𝑦1(𝑟1) < −
𝜕𝑏1
𝜕𝑦2

⋅ 𝑦1(𝑟1) −⋯−
𝜕𝑏1
𝜕𝑦𝓁

⋅ 𝑦1(𝑟1) (∵𝑦1(𝑟1) < 0)

≤ −
𝜕𝑏1
𝜕𝑦2

⋅ 𝑦2(𝑟2) −⋯−
𝜕𝑏1
𝜕𝑦𝓁

⋅ 𝑦𝓁(𝑟𝓁) (∵𝑦1(𝑟1) ≤ 𝑦𝑖(𝑟𝑖), ∀ 2 ≤ 𝑖 ≤ 𝓁).

Thus, it holds
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𝜕𝑏1
𝜕𝑦1

⋅ 𝑦1(𝑟1) +
𝜕𝑏1
𝜕𝑦2

⋅ 𝑦2(𝑟1) +⋯+
𝜕𝑏1
𝜕𝑦𝓁

⋅ 𝑦𝓁(𝑟1) ≤ 0, (3.4)

where we have used the fact that 𝑦𝑖(𝑟𝑖) ≤ 𝑦𝑖(𝑟1). Thus, it follows from (3.3) and (3.4) that 
(
̃ [𝒖;𝒗]𝒚1(𝑟1)

)
< 0, which leads to a 

contradiction and thereby yields the required result. □

After subtracting 𝒃(𝑥,𝟎) from both sides of (3.1a) and using (3.3) with 𝒖 ≡ 𝒚,𝒗 ≡ 𝟎, we get the linearized form of (3.1a) as follows

̃ 𝒚 ∶= ̃ [𝒚;𝟎]𝒚 = 𝒚′(𝑥) +  [𝒚;𝟎](𝑥)𝒚(𝑥) = −𝒃(𝑥,𝟎), 𝑥 ∈Ω. (3.5)

Clearly, the operator ̃ also satifies the maximum principle (Lemma 3.1). Next, we prove the following result, which will be used 
in a later subsection for the a posteriori error analysis of the considered nonlinear problem.

Corollary 3.1. Consider a bounded piecewise vector function ℵ such that  𝒚 −  𝒚 =ℵ where 𝒚 =
(
𝑦1,… , 𝑦𝓁

)𝑇
and 𝒚 =

(
𝑦1,… , 𝑦𝓁

)𝑇
are any two functions satisfying the initial condition 𝒚(0) = 𝒚(0). Then, we have

‖𝒚 − 𝒚‖∞ ≤ 𝐶2‖ 𝒚 −  𝒚‖∞. (3.6)

Proof. Note that (𝒚 − 𝒚)(0) = 𝟎. Using the standard linearization technique, it is not hard to see that ℵ =  𝒚 −  𝒚 = ̃ [𝒚;𝒚]
(
𝒚 − 𝒚

)
, 

where the operator ̃ is dfined in (3.3). Now, we assume the following vector barrier function

𝜣±(𝑥) = 1
𝛽
‖̃ [𝒚;𝒚]

(
𝒚 − 𝒚

)‖∞ ±
(
𝒚 − 𝒚

)
(𝑥), 𝑥 ∈Ω.

Clearly, 𝜣±(0) ≥ 𝟎 and ̃ [𝒚;𝒚]𝜣
±(𝑥) ≥ 𝟎 for 𝑥 ∈Ω. Then, Lemma 3.1 yields 𝜣±(𝑥) ≥ 𝟎 for 𝑥 ∈Ω. Thus,

‖𝒚 − 𝒚‖∞ ≤ 1
𝛽
‖̃ [𝒚;𝒚]

(
𝒚 − 𝒚

)‖∞ = 𝐶2‖ 𝒚 −  𝒚‖∞. □

In order to deduce the a priori error estimate of the nonlinear continuous problem (3.1a)--(3.1b), we require the derivative bounds 
of 𝒚. For this purpose, we decompose the continuous solution 𝒚 as 𝒚 = 𝒗+𝒘, where 𝒗 and 𝒘 are the regular and the singular parts, 
respectively. Further, the regular part 𝒗 satifies

𝒗′ + 𝒃(𝑥,𝒗) = 𝟎 in Ω, 𝒗(0) = 𝒚0(0), (3.7)

while the singular part 𝒘 is the solution of

𝒘′ + 𝒃(𝑥,𝒗+𝒘) − 𝒃(𝑥,𝒗) = 𝟎 in Ω, 𝒘(0) = 𝒚(0) − 𝒗(0). (3.8)

Let the matrix 𝑘 be the zero matrix except that on the main diagonal (𝑘)𝑖𝑖 = 𝜖𝑖, 𝑖 ≥ 𝑘. With this notation, note that 1 =  . Let e𝑘
be the 𝑘th vector of the canonical basis.

To obtain appropriate bounds on the regular component v, we follow the ideas given in [29,30]. Now, we assume the further 

decomposition of v as v =
𝓁∑
𝑘=1

𝜼[𝑘], where 𝜼[𝑘] are the solutions of the problems

𝓁 𝑑𝜼
[𝓁]

𝑑𝑥
+ b(𝑥,𝜼[𝓁]) = 𝟎 in Ω, 𝜂[𝓁]𝓁 (0) = 𝑣𝓁(0), (3.9)

𝑖 𝑑𝜼
[𝑖]

𝑑𝑥
+ b

(
𝑥,

𝓁∑
𝑘=𝑖
𝜼[𝑘]

)
− b

(
𝑥,

𝓁∑
𝑘=𝑖+1

𝜼[𝑘]

)
= −𝜖𝑖

𝓁∑
𝑘=𝑖+1

𝑑𝜂[𝑘]
𝑖

𝑑𝑥
e𝑖 in Ω, (3.10)

𝜂[𝑖]
𝑘
(0) = 0, 𝑖 ≤ 𝑘 ≤ 𝓁, 1 ≤ 𝑖 < 𝓁. (3.11)

Lemma 3.2. The regular part v satifies

‖v(𝑚)‖∞ ≤ 𝐶, for 𝑚 = 0,1, ‖𝑣(2)
𝑘

‖∞ ≤ 𝐶𝜖−1
𝑘
, for 𝑘 = 1,… ,𝓁.

Proof. Assumptions (3.2a)--(3.2b) imply that 𝜼[𝓁](0) = v(0), and 𝜼[𝑖](0) = 𝟎, 1 ≤ 𝑖 < 𝓁. Letting 𝝓 = 𝜼[𝓁] − y0, we see that 𝝓 is the 
solution of

𝓁𝝓′ +  [𝜼[𝓁];y0](𝑥)𝝓 = −𝓁y′
0 in Ω, 𝝓(0) = 0.

Assumptions (3.2a)--(3.2b) ensure that the above system satifies the maximum principle. Consequently ‖𝝓‖∞ ≤ 𝐶𝜖𝓁 and hence ‖𝜙′
𝓁‖∞ ≤ 𝐶 . Using 𝜼[𝓁] = 𝝓+ y0, we get
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‖𝜼[𝓁]‖∞ ≤ 𝐶 and

‖‖‖‖‖‖
𝑑𝜂[𝓁]𝓁

𝑑𝑥

‖‖‖‖‖‖∞ ≤ 𝐶.

Now we use that 𝑏1(𝑥,𝜼[𝓁]) = ⋯ = 𝑏𝓁−1(𝑥,𝜼[𝓁]) = 0, to get ‖ 𝑑𝜂
[𝓁]
𝑘

𝑑𝑥
‖∞ ≤ 𝐶, 1 ≤ 𝑘 < 𝓁. Differentiating the 𝓁𝑡ℎ equation of (3.9) and 

using the bounds for lower-order derivatives of 𝜼[𝓁], we get ‖ 𝑑2𝜂[𝓁]
𝓁

𝑑𝑥2
‖∞ ≤ 𝐶𝜖−1𝓁 . Now we use the first 𝓁 − 1 equations of (3.9) to get 

‖ 𝑑2𝜂[𝓁]
𝑘

𝑑𝑥2
‖∞ ≤ 𝐶𝜖−1𝓁 , 1 ≤ 𝑘 < 𝓁. Next, we estimate 𝜼[𝑖], 1 ≤ 𝑖 < 𝓁, which is the solution of the problem

𝑖 𝑑𝜼
[𝑖]

𝑑𝑥
+  [

∑𝓁
𝑘=𝑖 𝜼

[𝑘];
∑𝓁
𝑘=𝑖+1 𝜼

[𝑘](𝑥)] 𝜼
[𝑖] = −𝜖𝑖

𝓁∑
𝑘=𝑖+1

𝑑𝜂[𝑘]
𝑖

𝑑𝑥
e𝑖 in Ω,

𝜂[𝑖]
𝑘
(0) = 0, 𝑖 ≤ 𝑘 ≤ 𝓁.

On applying the maximum principle, we get ‖𝜼[𝑖]‖∞ ≤ 𝐶𝜖𝑖.

Hence, it holds ‖ 𝑑𝜂
[𝑖]
𝑘

𝑑𝑥
‖∞ ≤ 𝐶(𝜖𝑖𝜖−1𝑘 ), 𝑖 ≤ 𝑘 ≤ 𝓁. Consequently ‖ 𝑑𝜂

[𝑖]
𝑘

𝑑𝑥
‖∞ ≤ 𝐶, 1 ≤ 𝑘 ≤ 𝑖 − 1 (if 𝑖 > 1). Differentiating (3.10) and 

using the previous estimates, we get ‖ 𝑑2𝜂[𝑖]
𝑘

𝑑𝑥2
‖∞ ≤ 𝐶𝜖−1

𝑘
, 𝑘 = 1,… ,𝓁. On combining the bounds of 𝜼[𝑖], 𝑖 = 1,… ,𝓁, we get the required 

estimate for v. □

Lemma 3.3. The singular part 𝒘 satifies

|𝑤𝑖(𝑥)| ≤ 𝐶 exp
(
−𝛽𝑥
𝜖𝓁

)
, |𝑤′

𝑖(𝑥)| ≤ 𝐶

𝓁∑
𝑘=𝑖

𝜖−1
𝑘

exp
(
−𝛽𝑥
𝜖𝑘

)
, 𝜖𝑖|𝑤′′

𝑖 (𝑥)| ≤ 𝐶

𝓁∑
𝑘=1

𝜖−1
𝑘

exp
(
−𝛽𝑥
𝜖𝑘

)
,

for 𝑖 = 1,… ,𝓁.

Proof. Using the mean-value theorem in (3.8), we can get

̃ [𝒗+𝒘;𝒗]𝒘 ∶= 𝒘′ + [𝒗+𝒘;𝒗]𝒘 = 𝟎 in Ω, 𝒘(0) = 𝒚(0) − 𝒗(0). (3.12)

We consider the barrier function 𝜳±(𝑥) = 𝑪 exp
(
−𝛽𝑥
𝜖𝓁

)
±𝒘(𝑥), where the constant vector 𝑪 is chosen sufficiently large such that 

𝜳±(0) ≥ |𝒘(0)|. Clearly, 𝜳±(0) ≥ 𝟎, and we have

̃ [𝒗+𝒘;𝒗]𝜳
±(𝑥) =

(
− 𝛽

𝜖𝓁
 +  [𝒗+𝒘;𝒗]

)
𝑪 exp

(
−𝛽𝑥
𝜖𝓁

)
.

Thus, for the 𝑖𝑡ℎ component, it holds

(
̃ [𝒗+𝒘;𝒗]𝜳

±
)
𝑖
= 𝐶

(
𝓁∑
𝑘=1

𝜕𝑏𝑖
𝜕𝑦𝑘

− 𝛽
𝜖𝑖
𝜖𝓁

)
exp

(
−𝛽𝑥
𝜖𝓁

)
≥ 0, (from (3.2b)).

Therefore, from Lemma 3.1, it follows that 𝜳±(𝑥) ≥ 0. Consequently, we obtain the following bound on the components 𝑤𝑖(𝑥), 𝑖 = 
1,… ,𝓁

|𝑤𝑖(𝑥)| ≤ 𝐶 exp
(
−𝛽𝑥
𝜖𝓁

)
, 𝑖 = 1,… ,𝓁. (3.13)

Next, we derive the first-derivative bound of 𝒘. For this, we consider the last equation of (3.12), i.e.

𝜖𝓁𝑤
′
𝓁(𝑥) +

𝓁∑
𝑘=1

⎛⎜⎜⎝
1

∫
0

𝜕𝑏𝓁
𝜕𝑦𝑘

(𝑥,𝒗+ 𝑠𝒘)𝑑𝑠 ⋅𝑤𝑘

⎞⎟⎟⎠ = 0.

After using (3.13) in the above equation, we get the following first-derivative bound of the 𝓁𝑡ℎ component of 𝒘

|𝑤′
𝓁(𝑥)| ≤ 𝐶𝜖−1𝓁 exp

(
−𝛽𝑥
𝜖𝓁

)
. (3.14)

Now, we establish the bound of 𝑤′
𝑖

for 1 ≤ 𝑖 ≤ 𝓁 − 1. For this, we consider the following system of equations in matrix form

̃ [𝒗+𝒘;𝒗]𝒘̂ ∶= ̂𝒘̂′ + ̂ [𝒗+𝒘;𝒗]𝒘̂ = 𝒇 , 𝒘̂(0) = 𝒚(0) − 𝒗(0), (3.15)
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where the matrices ̂ and ̂ [𝒗+𝒘;𝒗] are obtained by removing the last row and column of  and  [𝒗+𝒘;𝒗], respectively. Further, 
𝒘̂ =

(
𝑤1,… ,𝑤𝓁−1

)
and the entries of 𝒇 are given by 𝑓𝑖 = − ∫ 1

0
𝜕𝑏𝑖
𝜕𝑦𝓁

(𝑥,𝒗+ 𝑠𝒘)𝑑𝑠 ⋅𝑤𝓁 for 1 ≤ 𝑖 ≤ 𝓁 − 1. Using the bounds (3.13) and 
(3.14), we get

|𝑓𝑖(𝑥)| ≤ 𝐶|𝑤𝓁(𝑥)| ≤ 𝐶 exp
(
−𝛽𝑥
𝜖𝓁

)
,

|𝑓 ′
𝑖 (𝑥)| ≤ 𝐶|𝑤′

𝓁(𝑥)| ≤ 𝐶𝜖−1𝓁 exp
(
−𝛽𝑥
𝜖𝓁

)
,

for 𝑖 = 1,… ,𝓁. Now, we consider the decomposition of 𝒘̂ = 𝒘̂𝑟 + 𝒘̂𝑠, into regular and singular components, where

⎧⎪⎨⎪⎩
̃ [𝒗+𝒘;𝒗]𝒘̂𝑟 = 𝒇 , 𝒘̂𝑟(0) =

(
̂ [𝒗+𝒘;𝒗]

)−1
𝒇 ,

̃ [𝒗+𝒘;𝒗]𝒘̂𝑠 = 𝟎, 𝒘̂𝑠(0) = 𝒘̂(0) − 𝒘̂𝑟(0).

We take another barrier function dfined by 𝜳±(𝑥) =𝑪 exp
(
−𝛽𝑥
𝜖𝓁

)
± 𝒘̂𝑟(𝑥). Clearly, 𝜳±(0) ≥ 𝟎 and ̃ [𝒗+𝒘;𝒗]𝜳

±(𝑥) > 𝟎. Thus, from 

Lemma 3.1 and using the bound on 𝑓𝑖 we obtain 𝜳±(𝑥) ≥ 𝟎, and therefore, it holds

|𝑤̂𝑟,𝑖(𝑥)| ≤ 𝐶 exp
(
−𝛽𝑥
𝜖𝓁

)
, 𝑖 = 1,… ,𝓁. (3.16)

By following a similar argument for the barrier function 𝜽±(𝑥) =𝑪𝜖−1𝓁 exp
(
−𝛽𝑥
𝜖𝓁

)
± 𝒘̂′

𝑟 and using the bound on 𝑓 ′, we get

|𝑤̂′
𝑟,𝑖(𝑥)| ≤ 𝐶𝜖−1𝓁 exp

(
−𝛽𝑥
𝜖𝓁

)
, 𝑖 = 1,… ,𝓁. (3.17)

Now we use the mathematical induction. We suppose that the first-derivative bounds hold for all systems with 𝓁 − 1 equations. 
Consequently, we can have the following result for 𝒘̂𝑠

|𝑤̂′
𝑠,𝑖(𝑥)| ≤ 𝐶

𝓁−1∑
𝑘=𝑖

𝜖−1
𝑘

exp
(
−𝛽𝑥
𝜖𝑘

)
, 𝑖 = 1,… ,𝓁 − 1. (3.18)

Combining the bounds (3.17) and (3.18) we get

|𝑤̂′
𝑖(𝑥)| ≤ 𝐶

𝓁∑
𝑘=𝑖

𝜖−1
𝑘

exp
(
−𝛽𝑥
𝜖𝑘

)
,

and recalling the definition of 𝒘̂ we have

|𝑤′
𝑖(𝑥)| ≤ 𝐶

𝓁∑
𝑘=𝑖

𝜖−1
𝑘

exp
(
−𝛽𝑥
𝜖𝑘

)
. (3.19)

We have thus proved that the first derivative bound is true for the system with 𝓁 equations. Therefore, we can conclude by the 
mathematical induction that the first derivative bound is true for any system with 𝓁 > 1 equations. At last, the second derivative 
bound is proved by differentiating (3.12) and using the previous bounds obtained for 𝒘 and 𝒘′. □

3.2. The discrete problem

We propose two splitting difference schemes for the nonlinear system (3.1a)--(3.1b) on an arbitrary grid Ω
𝑁

as follows{ [

𝑁
𝒀
]
𝑘
∶=

([ 𝑁
1 𝒀

]
𝑘
,
[ 𝑁

2 𝒀
]
𝑘
,… ,

[ 𝑁
𝑁
𝒀
]
𝑘

)𝑇
= 𝟎, (a)

𝒀 0 = 𝜸⋆, (b)
(3.20)

where the operator − is given in (2.10), and for 1 ≤ 𝑖 ≤ 𝓁, the operators  𝑁
𝑖

are dfined by

Scheme I ∶ [ 𝑁
𝑖 𝒀

]
𝑘
∶= 𝜖𝑖−𝑌𝑖(𝑥𝑘) + 𝑏𝑖(𝑥𝑘, 𝑌1(𝑥𝑘−1),… , 𝑌𝑖−1(𝑥𝑘−1), 𝑌𝑖(𝑥𝑘), 𝑌𝑖+1(𝑥𝑘−1),… , 𝑌𝓁(𝑥𝑘−1)). (3.21)

Scheme II ∶ [ 𝑁
𝑖 𝒀

]
𝑘
∶= 𝜖𝑖−𝑌𝑖(𝑥𝑘) + 𝑏𝑖(𝑥𝑘, 𝑌1(𝑥𝑘),… , 𝑌𝑖−1(𝑥𝑘), 𝑌𝑖(𝑥𝑘), 𝑌𝑖+1(𝑥𝑘−1),… , 𝑌𝓁(𝑥𝑘−1)). (3.22)
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To ease the analysis in subsequent subsections, we provide the following general form of the proposed schemes[ 𝑁
𝑖 𝒀

]
𝑘
∶= 𝜖𝑖−𝑌𝑖(𝑥𝑘) + 𝑏𝑖(𝑥𝑘, 𝑌1(𝑥𝑘−𝜚),… , 𝑌𝑖−1(𝑥𝑘−𝜚), 𝑌𝑖(𝑥𝑘), 𝑌𝑖+1(𝑥𝑘−1),… , 𝑌𝓁(𝑥𝑘−1)), (3.23)

where 𝜚 can be 0 or 1. Thus, when 𝜚 = 1, the above equation corresponds to Scheme I and for 𝜚 = 0, it corresponds to Scheme II.

3.3. A priori error analysis

We now prove the a priori error estimate of the nonlinear discrete scheme dfined by (3.23). For this purpose, let 𝒁 = 𝒚 − 𝒀 be 
the error vector corresponding to the discrete scheme given by (3.23). Then, the 𝑖th-component of the error function 𝑍𝑖 will be the 
solution of the problem

𝜖𝑖−𝑍𝑖(𝑥𝑘) + 𝑏𝑖(𝑥𝑘, 𝑦1(𝑥𝑘),… , 𝑦𝓁(𝑥𝑘))−𝑏𝑖(𝑥𝑘, 𝑌1(𝑥𝑘−𝜚),… , 𝑌𝑖−1(𝑥𝑘−𝜚), 𝑌𝑖(𝑥𝑘), 𝑌𝑖+1(𝑥𝑘−1),… , 𝑌𝓁(𝑥𝑘−1))

= 𝜖𝑖

(−𝑦𝑖(𝑥) −
𝑑

𝑑𝑥
𝑦𝑖(𝑥)

)||||𝑥=𝑥𝑘 , 𝑍𝑖(0) = 0, 1 ≤ 𝑘 ≤𝑁,

which can be rewritten as

𝜖𝑖−𝑍𝑖(𝑥𝑘) + 𝑎̄𝑖,𝑖(𝑥𝑘)𝑍𝑖(𝑥𝑘) +
𝑖−1∑
𝑚=1

𝑎̄𝑖,𝑚(𝑥𝑘)𝑍𝑚(𝑥𝑘−𝜚) +
𝓁∑

𝑚=𝑖+1
𝑎̄𝑖,𝑚(𝑥𝑘)𝑍𝑚(𝑥𝑘−1) = 𝜒𝑖(𝑥𝑘), 𝑍𝑖(0) = 0,

where the coefficients are given by

𝑎̄𝑖,𝑚(𝑥𝑘) =
𝜕𝑏𝑖
𝜕𝑢𝑚

(
𝑥𝑘, 𝜈1,𝑘,… , 𝜈𝑖−1,𝑘, 𝜈𝑖,𝑘, 𝜈𝑖+1,𝑘,… , 𝜈𝓁,𝑘

)
,

and 𝜈𝑚,𝑘 are the intermediate values. The remainder term is given by

𝜒𝑖(𝑥𝑘) = 𝜖𝑖

(−𝑦𝑖(𝑥) −
𝑑

𝑑𝑥
𝑦𝑖(𝑥)

)||||𝑥=𝑥𝑘 −
𝑖−1∑
𝑚=1

̃𝑖,𝑚(𝑥𝑘)(𝑦𝑚(𝑥𝑘) − 𝑦𝑚(𝑥𝑘−𝜚))

−
𝓁∑

𝑚=𝑖+1
̃𝑖,𝑚(𝑥𝑘)(𝑦𝑚(𝑥𝑘) − 𝑦𝑚(𝑥𝑘−1)), (3.24)

where, for Scheme I, ̃𝑖,𝑚(𝑥𝑘) = 𝑎̃𝑖,𝑚(𝑥𝑘) with

𝑎̃𝑖,𝑚(𝑥𝑘) =
𝜕𝑏𝑖
𝜕𝑢𝑚

(
𝑥𝑘, 𝜈̃1,𝑘,… , 𝜈𝑖−1,𝑘, 𝑦𝑖(𝑥𝑘), 𝜈̃𝑖+1,𝑘,… , 𝜈̃𝓁,𝑘

)
,

where 𝜈̃𝑚,𝑘 are the intermediate values, while for Scheme II, ̃𝑖,𝑚(𝑥𝑘) = 0,𝑚 = 1,… , 𝑖 − 1, and ̃𝑖,𝑚(𝑥𝑘) = 𝑎̃𝑖,𝑚(𝑥𝑘),𝑚 = 𝑖 + 1,… ,𝓁, 
with

𝑎̃𝑖,𝑚(𝑥𝑘) =
𝜕𝑏𝑖
𝜕𝑢𝑚

(
𝑥𝑘, 𝑦1(𝑥𝑘),… , 𝑦𝑖−1(𝑥𝑘), 𝑦𝑖(𝑥𝑘), 𝜈̃𝑖+1,𝑘,… , 𝜈̃𝓁,𝑘

)
,

where 𝜈̃𝑚,𝑘 are the intermediate values. Note that for Scheme II the middle term in (3.24) will be absent.

Now, we dfine a linear discrete operator [̂
𝑁
𝚿]𝑘 ∶= ([̂ 𝑁

1 𝚿]𝑘,… , [̂ 𝑁
𝓁 𝚿]𝑘)𝑇 , where

[̂ 𝑁
𝑖 𝚿]𝑘 ∶= 𝜖𝑖−Ψ𝑖(𝑥𝑘) + 𝑎̄𝑖,𝑖(𝑥𝑘)Ψ𝑖(𝑥𝑘) +

𝑖−1∑
𝑚=1

𝑎̄𝑖,𝑚(𝑥𝑘)Ψ𝑚(𝑥𝑘−𝜚) +
𝓁∑

𝑚=𝑖+1
𝑎̄𝑖,𝑚(𝑥𝑘)Ψ𝑚(𝑥𝑘−1), 1 ≤ 𝑘 ≤𝑁.

The discrete operator ̂
𝑁

satifies the following discrete maximum principle.

Lemma 3.4 (Discrete Maximum Principle). For any vector mesh function 𝚿= (Ψ1,… ,Ψ𝓁)𝑇 satisfying 𝚿0 ≥ 𝟎 and [̂
𝑁
𝚿]𝑘 ≥ 𝟎,1 ≤ 𝑘 ≤𝑁 , 

we have 𝚿𝑘 ≥ 𝟎 for 𝑘 = 0,1,… ,𝑁 .

Proof. Let  be the matrix associated to the discrete operator ̂
𝑁

. Then

𝚿 =
(
Ψ1,0, [̂ 𝑁

1 𝚿]1,… , [̂ 𝑁
1 𝚿]𝑁,Ψ2,0, [̂ 𝑁

2 𝚿]1,… , [̂ 𝑁
2 𝚿]𝑁,… ,Ψ𝓁,0, [̂ 𝑁

𝓁 𝚿]1,… , [̂ 𝑁
𝓁 𝚿]𝑁

)𝑇
.

From the assumption (3.2a), it can be observed that 𝑎̄𝑖,𝑖 > 0 and 𝑎̄𝑖,𝑚 ≤ 0. Thus, one can easily deduce that the matrix  is diagonally 
dominant and has non-positive off-diagonal entries. Consequently,  is an 𝑀 -matrix and has positive inverse, i.e., −1 ≥ 0 ([31]). 
Using this with 𝚿0 ≥ 𝟎, and [̂

𝑁
𝚿]𝑘 ≥ 𝟎 for 𝑘 = 1,… ,𝑁 , we get 𝚿𝑘 ≥ 𝟎 for 𝑘 = 0,… ,𝑁 . □

Applied Numerical Mathematics 208 (2025) 123–147 

136 



C. Clavero, S. Kumar and S. Kumar

Theorem 3.1. Let 𝒚 be the solution of (3.1a)--(3.1b) and 𝒀 be the solution of (3.20a)--(3.20b). Then we have the following a priori error 
estimate

‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤ 𝐶𝜗(Ω𝑁 ), (3.25)

where 𝜗(Ω𝑁 ) ∶= max
1≤𝑘≤𝑁

𝑥𝑘

∫
𝑥𝑘−1

(
1 +

𝓁∑
𝑚=1

𝜖−1𝑚 exp
(
− 𝛽𝑠
𝜖𝑚

))
𝑑𝑠.

Proof. From (3.24), we can get

|𝜒𝑖(𝑥𝑘)| ≤ 𝜖𝑖| (−𝑦𝑖(𝑥) −
𝑑

𝑑𝑥
𝑦𝑖(𝑥)

)||||𝑥=𝑥𝑘 |+ | 𝑖−1∑
𝑚=1

̃𝑖,𝑚(𝑥𝑘)

𝑥𝑘

∫
𝑥𝑘−𝜚

𝑦′𝑚(𝑠)𝑑𝑠|
+|∑𝓁

𝑚=𝑖+1 ̃𝑖,𝑚(𝑥𝑘) ∫ 𝑥𝑘
𝑥𝑘−1

𝑦′𝑚(𝑠)𝑑𝑠|
≤ 𝜖𝑖

𝑥𝑘

∫
𝑥𝑘−1

|𝑦′′𝑖 (𝑠)|𝑑𝑠+𝐶

𝑥𝑘

∫
𝑥𝑘−𝜚

𝑖−1∑
𝑚=1

|𝑦′𝑚(𝑠)|𝑑𝑠+𝐶

𝑥𝑘

∫
𝑥𝑘−1

𝓁∑
𝑚=𝑖+1

|𝑦′𝑚(𝑠)|𝑑𝑠
≤ 𝐶 ∫ 𝑥𝑘

𝑥𝑘−1

(
1 +

∑𝓁
𝑛=1 𝜖

−1
𝑚 exp

(
− 𝛽𝑠
𝜖𝑚

))
𝑑𝑠.

Consequently, we obtain ‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤ 𝐶𝜗(Ω𝑁 ), which is the required result. □

Finally, we provide the following uniform convergence theorem for the proposed scheme on the a priori meshes, which may be 
proved along the same lines as previously discussed in Subsection 2.2.

Theorem 3.2. Assuming 𝒚 as the solution of (3.1a)--(3.1b) and 𝒀 as the approximate solution of (3.20a)--(3.20b), the following convergence 
result holds true

‖𝒚 − 𝒀 ‖
Ω
𝑁 ≤

{
𝐶𝑁−1 ln𝑁, (on Shishkin mesh)

𝐶𝑁−1, (on Bakhvalov mesh).

3.4. A posteriori error analysis

In this subsection, we deduce the a posteriori error estimates corresponding to the nonlinear discrete problem (3.20a)--(3.20b). 
For the simplicity in further calculations, we denote 𝑞𝑖(𝑥) ∶= 𝑏𝑖(𝑥,𝒀 (𝑥)); 𝑖 = 1,… ,𝓁. On the discretization mesh Ω

𝑁
, we consider the 

piecewise linear interpolants 𝑌𝑖(𝑥) & 𝑞𝑖(𝑥) corresponding to 𝑌𝑖,𝑘 & 𝑞𝑖 (𝑘 = 1,… ,𝑁), respectively. Clearly, 𝑌𝑖(𝑥) & 𝑞𝑖(𝑥) are continuous 
on Ω, linear on each sub-intervals [𝑥𝑘−1, 𝑥𝑘] and dfined by the following expressions

𝑌𝑖(𝑥) = 𝑌𝑖,𝑘 + (𝑥− 𝑥𝑘)−𝑌𝑖,𝑘,

𝑞𝑖(𝑥) = 𝑞𝑖,𝑘 + (𝑥− 𝑥𝑘)−𝑞𝑖,𝑘.

The above equations imply that it holds

𝑌𝑖(𝑥𝑘) = 𝑌𝑖,𝑘, 𝑞𝑖(𝑥𝑘) = 𝑞𝑖,𝑘,[
𝑌𝑖(𝑥)

]′
=−𝑌𝑖,𝑘,

[
𝑞𝑖(𝑥)

]′ =−𝑞𝑖,𝑘.

Further, we dfine the quantities that will be used in the next theorem. For Scheme I, we dfine ̂𝑖,𝑚(𝑥𝑘) = 𝑎̂𝑖,𝑚(𝑥𝑘) with

𝑎̂𝑖,𝑚(𝑥𝑘) =
𝜕𝑏𝑖
𝜕𝑢𝑚

(
𝑥𝑘, 𝜈̂1,𝑘,… , 𝜈̂𝑖−1,𝑘, 𝑌𝑖,𝑘, 𝜈̂𝑖+1,𝑘,… , 𝜈̂𝓁,𝑘

)
,

where 𝜈̂𝑚,𝑘 are the intermediate values, while for Scheme II, dfine ̂𝑖,𝑚(𝑥𝑘) = 0,𝑚 = 1,… , 𝑖− 1, and ̂𝑖,𝑚(𝑥𝑘) = 𝑎̂𝑖,𝑚(𝑥𝑘) with

𝑎̂𝑖,𝑚(𝑥𝑘) =
𝜕𝑏𝑖
𝜕𝑢𝑚

(
𝑥𝑘, 𝑌1,𝑘,… , 𝑌𝑖−1,𝑘, 𝑌𝑖,𝑘, 𝜈̂𝑖+1,𝑘,… , 𝜈̂𝓁,𝑘

)
,

where 𝜈̂𝑚,𝑘 are the intermediate values.

Also, we dfine +

𝐶3;𝑖,𝑚 =max
𝑥,𝒚

|̂𝑖,𝑚|, 𝐶4;𝑖 =max
𝑥,𝒚

|||||𝜕
2𝑏𝑖(𝑥,𝒚)
𝜕𝑥2

||||| , 𝐶5;𝑖 =max
𝑥,𝒚,𝑠

||||| 𝜕
2𝑏𝑖(𝑥,𝒚)
𝜕𝑥𝜕𝑦𝑠(𝑥)

||||| , 𝐶6;𝑖 = max
𝑥,𝒚,𝑠,𝑟

||||| 𝜕2𝑏𝑖(𝑥,𝒚)
𝜕𝑦𝑠(𝑥)𝜕𝑦𝑟(𝑥)

||||| .
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Theorem 3.3. Let 𝒚 be the continuous solution of (3.1a)--(3.1b), 𝒀 be the discrete solution of (3.20a)--(3.20b). Assuming 𝒀 as the piecewise 
linear interpolation of 𝒀 𝑘, the following inequality holds

‖𝒀 − 𝒚‖∞ ≤ 𝐶2
(
𝜆̃1 + 𝜆̃2 + 𝜆̃3

)
, (3.26)

where 𝜆̃𝑗 ∶= max
1≤𝑘≤𝑁 𝜆̃𝑗,𝑘, 𝑗 = 1,2,3, and

𝜆̃1,𝑘 ∶= ℎ𝑘 max
1≤𝑖≤𝓁

𝓁∑
𝑚=1
𝑚≠𝑖

𝐶3;𝑖,𝑚|−𝑌𝑚,𝑘|, 𝜆̃2,𝑘 ∶= ℎ𝑘 max
1≤𝑖≤𝓁 |−𝑞𝑖,𝑘|,

𝜆̃3,𝑘 ∶=
ℎ2
𝑘

8
max
1≤𝑖≤𝓁

⎧⎪⎨⎪⎩𝐶4;𝑖 +𝐶5;𝑖

𝓁∑
𝑠=1

|−𝑌𝑠,𝑘|+𝐶6;𝑖

(
𝓁∑
𝑠=1

|−𝑌𝑠,𝑘|)2⎫⎪⎬⎪⎭ .
Proof. For any 𝑥∈ (𝑥𝑘−1, 𝑥𝑘), we have

𝑖𝒀 (𝑥) − 𝑖𝒚(𝑥) = 𝜖𝑖

[
𝑌𝑖(𝑥)

]′
+ 𝑏𝑖(𝑥,𝒀 (𝑥))

= 𝜖𝑖−𝑌𝑖,𝑘 + 𝑞𝑖(𝑥) +
(
𝑞𝑖(𝑥) − 𝑞𝑖(𝑥)

)
= 𝜖𝑖−𝑌𝑖,𝑘 + 𝑞𝑖,𝑘 + (𝑥− 𝑥𝑘)−𝑞𝑖,𝑘 +

(
𝑞𝑖(𝑥) − 𝑞𝑖(𝑥)

)
= −𝑏𝑖(𝑥𝑘, 𝑌1(𝑥𝑘−𝜚),… , 𝑌𝑖−1(𝑥𝑘−𝜚), 𝑌𝑖(𝑥𝑘), 𝑌𝑖+1(𝑥𝑘−1),… , 𝑌𝑙(𝑥𝑘−1))

+ 𝑏𝑖(𝑥𝑘, 𝑌1(𝑥𝑘),… , 𝑌𝓁,𝑘) + (𝑥− 𝑥𝑘)−𝑞𝑖,𝑘 +
(
𝑞𝑖(𝑥) − 𝑞𝑖(𝑥)

)
=

𝑖−1∑
𝑚=1

̂𝑖,𝑚(𝑥𝑘)(𝑌𝑚,𝑘 − 𝑌𝑚,𝑘−𝜚) +
𝓁∑

𝑚=𝑖+1
̂𝑖,𝑚(𝑥𝑘)(𝑌𝑚,𝑘 − 𝑌𝑚,𝑘−1) + (𝑥− 𝑥𝑘)−𝑞𝑖,𝑘

+
(
𝑞𝑖(𝑥) − 𝑞𝑖(𝑥)

)
, (3.27)

where (3.1a) and (3.23) are also used.

Now, we proceed as follows to evaluate each term of (3.27) one by one. First, we have

| 𝑖−1∑
𝑚=1

̂𝑖,𝑚(𝑥𝑘)(𝑌𝑚,𝑘 − 𝑌𝑚,𝑘−𝜚) +
𝓁∑

𝑚=𝑖+1
̂𝑖,𝑚(𝑥𝑘)(𝑌𝑚,𝑘 − 𝑌𝑚,𝑘−1)| ≤ | 𝓁∑

𝑚=1
𝑚≠𝑖

̂𝑖,𝑚(𝑥𝑘)ℎ𝑘−𝑌𝑚,𝑘|
≤ ℎ𝑘

𝓁∑
𝑚=1
𝑚≠𝑖

𝐶3;𝑖,𝑚|−𝑌𝑚,𝑘|. (3.28)

Next, it holds

|(𝑥− 𝑥𝑘)−𝑞𝑖,𝑘| ≤ ℎ𝑘|−𝑞𝑖,𝑘|. (3.29)

Following to [32], it is straightforward to see that the function 𝑞𝑖(𝑥) satifies

‖𝑞𝑖(𝑥) − 𝑞𝑖(𝑥)‖∞ ≤ max
1≤𝑘≤𝑁

{
ℎ2
𝑘

8
sup

(𝑥𝑘−1 ,𝑥𝑘)
|𝑞′′𝑖 (𝑥)|

}
.

Moreover, we have

|𝑞′′𝑖 (𝑥)| = ||||||
𝜕2𝑏𝑖(𝑥,𝒀 (𝑥))

𝜕𝑥2
+

𝓁∑
𝑠=1

𝜕2𝑏𝑖(𝑥,𝒀 (𝑥))
𝜕𝑥𝜕𝑦𝑠(𝑥)

⋅
(
𝑌𝑠(𝑥)

)′
+

𝓁∑
𝑠=1

𝓁∑
𝑟=1

𝜕2𝑏𝑖(𝑥,𝒀 (𝑥))
𝜕𝑦𝑠(𝑥)𝜕𝑦𝑟(𝑥)

⋅
(
𝑌𝑠(𝑥)

)′
⋅
(
𝑌𝑟(𝑥)

)′||||||
≤ 𝐶4;𝑖 +𝐶5;𝑖

𝓁∑
𝑠=1

| (𝑌𝑠(𝑥))′ |+𝐶6;𝑖

𝓁∑
𝑠=1

𝓁∑
𝑟=1

| (𝑌𝑠(𝑥))′ || (𝑌𝑟(𝑥))′ |
≤ 𝐶4;𝑖 +𝐶5;𝑖

𝓁∑
𝑠=1

| (𝑌𝑠(𝑥))′ |+𝐶6;𝑖

(
𝓁∑
𝑠=1

| (𝑌𝑠(𝑥))′ |)2

≤ 𝐶4;𝑖 +𝐶5;𝑖

𝓁∑
𝑠=1

|−𝑌𝑠,𝑘|+𝐶6;𝑖

(
𝓁∑
𝑠=1

|−𝑌𝑠,𝑘|)2

.
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Thus,

‖𝑞𝑖(𝑥) − 𝑞𝑖(𝑥)‖∞ ≤ max
1≤𝑘≤𝑁

ℎ2
𝑘

8

⎧⎪⎨⎪⎩𝐶4;𝑖 +𝐶5;𝑖

𝓁∑
𝑠=1

|−𝑌𝑠,𝑘|+𝐶6;𝑖

(
𝓁∑
𝑠=1

|−𝑌𝑠,𝑘|)2⎫⎪⎬⎪⎭ . (3.30)

Consequently, the required estimate (3.26) can be obtained by combining all these findings from (3.28)--(3.30) in (3.27) and using 
Corollary 3.1. □

4. Numerical experiments

In this section, we show the numerical results obtained for two different test problems, which corroborate in practice the theoretical 
conclusions established in this work. The numerical results are compared on a priori meshes as well as on a posteriori meshes. In 
this work, we generate the a posteriori meshes by following the mesh-generating algorithm originally proposed in [33]. For the 
convergence analysis of this algorithm in the singular perturbation context, one can see [22]. Many researchers have extensively used 
such algorithm for various classes of singularly perturbed problems (see [20,22,34--36], by instance).

As suggested in [22], we use the following relaxed or weakened form of the discrete equidistribution principle for any nonnegative 
monitor function 𝛷:

𝛷𝑘 ≤ 𝜌

𝑁

𝑁∑
𝑘=1

𝛷𝑘, 𝑘 = 1,… ,𝑁, (4.1)

where the constant 𝜌 > 1 is used to control the accuracy and iteration count.

4.1. Mesh generation algorithm

Step 1. Start with a uniform mesh 𝑥(0)
𝑘

= {𝑘∕𝑁, 𝑘 = 0,… ,𝑁}, and set 𝑟 = 0.

Step 2. Calculate the discrete solution 𝑌 (𝑟)
𝑖,𝑘

on the mesh 𝑥(𝑟)
𝑘

for linear and nonlinear problem separately, where 𝑖 = 1,… ,𝓁 and 
𝑘 = 1,… ,𝑁 .

Step 3. Calculate the subsequent discrete monitor functions:

𝛷
(𝑟)
𝑘

= 𝜆1,𝑘 + 𝜆2,𝑘 + 𝜆3,𝑘 + 𝜆4,𝑘 + 𝜆5,𝑘, (for linear problem)

𝛷
(𝑟)
𝑘

= 𝜆̃1,𝑘 + 𝜆̃2,𝑘 + 𝜆̃3,𝑘, (for nonlinear problem)

for 𝑘 = 1,… ,𝑁 and then compute Φ(𝑟)
𝑚 =

𝑚∑
𝑗=1

𝛷
(𝑟)
𝑚 for 𝑚 = 1,… ,𝑁 .

Step 4. Stopping criterion: if max
1≤𝑘≤𝑁𝛷

(𝑟)
𝑘

≤ 𝜌
Φ(𝑟)
𝑁

𝑁
holds, proceed to Step 6, else move to the next step.

Step 5. Let 𝑄𝑘 = 𝑘
Φ(𝑟)
𝑁

𝑁
for 𝑘 = 0,… ,𝑁 . Construct new mesh {𝑥(𝑟+1)

𝑘
} by linear interpolation of the points (Φ(𝑟)

𝑘
, 𝑥

(𝑟)
𝑘
) and evaluating 

at 𝑄𝑘 for 𝑘 = 0,1,… ,𝑁 . Go to Step 2 with 𝑟 = 𝑟+ 1.

Step 6. Consider {𝑥(𝑟)
𝑘
} as the ultimate adaptive mesh and 𝑌 (𝑟)

𝑖,𝑘
as the ultimate solution. Stop.

4.2. Numerical examples

Now, we will consider one test example for each linear and nonlinear type in the numerical experiment.

Example 4.1 ([13]). Consider a system of three linear equations of the form (2.1a)--(2.1b), where the coefficient matrices and vectors 
are given by

 =
⎛⎜⎜⎝
𝜖1 0 0
0 𝜖2 0
0 0 𝜖3

⎞⎟⎟⎠ , (𝑥) =
⎛⎜⎜⎝
4 1 1
−1 4 + 𝑥 1
2 −1 5 + 𝑥

⎞⎟⎟⎠ , 𝒈(𝑥) =
⎛⎜⎜⎝

𝑥

1
1 + 𝑥2

⎞⎟⎟⎠ , 𝜸 =
⎛⎜⎜⎝
0
0
0

⎞⎟⎟⎠ .
Example 4.2. Consider a system of three nonlinear equations of the form (3.1a)--(3.1b), where

 =
⎛⎜⎜⎝
𝜖1 0 0
0 𝜖2 0
0 0 𝜖3

⎞⎟⎟⎠ , 𝒃(𝑥,𝒚(𝑥)) =
⎛⎜⎜⎝
3𝑦1(𝑥) −

1
4 𝑒

−𝑦21(𝑥) − 𝑦2(𝑥) − 𝑦3(𝑥) − 𝑥2 + 1
−𝑦1(𝑥) + 4𝑦2(𝑥) − cos𝑦2(𝑥) − 𝑦3(𝑥) − 𝑒𝑥

−𝑦1(𝑥) − 𝑦2(𝑥) + sin𝑦3(𝑥) + 5𝑦3(𝑥) − 𝑥

⎞⎟⎟⎠ , 𝜸⋆ =
⎛⎜⎜⎝
0
0
0

⎞⎟⎟⎠ .
To solve the nonlinear system of equations related to Example 4.2, Newton’s method is applied with zero as the initial guess. The 

stopping criterion is dfined as
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Table 1

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.1 obtained via 
splitting scheme (2.11).

𝑁 Shishkin mesh Bakhvalov mesh A posteriori mesh

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 3.4938e-02 0.6911 1.0982e-02 0.9854 1.6631e-02 0.6402

27 2.1641e-02 0.7528 5.5473e-03 0.9907 1.0671e-02 1.2864

28 1.2843e-02 0.7973 2.7915e-03 0.9962 4.3748e-03 0.9860

29 7.3900e-03 0.8289 1.3995e-03 0.9926 2.2087e-03 0.9982

210 4.1602e-03 0.8517 7.0335e-04 0.9932 1.1057e-03 1.0009

211 2.3054e-03 0.8684 3.5334e-04 1.0010 5.5251e-04 0.9954

212 1.2628e-03 0.8812 1.7655e-04 0.9991 2.7715e-04 0.9999

213 6.8559e-04 -- 8.8330e-05 -- 1.3858e-04 --

Table 2

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.1 obtained via 
splitting scheme (2.12).

𝑁 Shishkin mesh Bakhvalov mesh A posteriori mesh

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 2.4412e-02 0.5926 8.4223e-03 0.9739 4.8785e-03 1.0105

27 1.6188e-02 0.6838 4.2878e-03 1.0206 2.4215e-03 1.1324

28 1.0078e-02 0.7526 2.1135e-03 0.9239 1.1046e-03 0.9607

29 5.9816e-03 0.8019 1.1139e-03 1.0382 5.6756e-04 1.0066

210 3.4311e-03 0.8359 5.4243e-04 0.9658 2.8248e-04 0.9266

211 1.9222e-03 0.8594 2.7773e-04 0.9512 1.4861e-04 1.0554

212 1.0595e-03 0.8763 1.4364e-04 1.0198 7.1508e-05 0.9667

213 5.7721e-04 -- 7.0842e-05 -- 3.6589e-05 --

‖𝒀 (𝑛) − 𝒀 (𝑛−1)‖∞ ≤ 0.1 ×𝑁−1, (4.2)

where 𝒀 (𝑛), for 𝑛 = 1,2,… , represents the successive approximations to 𝒀 computed iteratively.

For the numerical experiments, we used the software MATLAB R2015a (The Mathworks, Inc.), on a 64-bit machine, with an Intel(R) 
Xeon(R) E5-2360 v4 processor running at 2.20 GHz and 64 GB RAM. Further, the perturbation parameters are chosen from the set 
𝜖 ∶= {

(𝜖1, 𝜖2, 𝜖3) | 𝜖3 = 20,2−2,… ,2−20; 𝜖2 = 𝜖3,2−2𝜖3,… ,2−26; 𝜖1 = 𝜖2,2−2𝜖2,… ,2−30
}

. A variant of the double-mesh principle has 
been utilized for the estimation of errors in the numerical solutions, as the exact solutions to the test examples are unknown. Thus, 
the errors are approximated by

𝐸𝑁
(𝜖1 ,𝜖2 ,𝜖3)

= ‖𝒀 𝑁 − 𝒀 2𝑁‖
Ω
𝑁 ,

where 𝒀 𝑁 represents the approximate solution obtained at (𝑁 + 1) mesh points, while 𝒀 2𝑁 denotes the numerical solution on a 
mesh with (2𝑁 + 1) mesh points, obtained by bisecting the previous mesh; note that then, any interpolation is necessary. From the 
previous maximum errors, we calculate the uniform errors (𝐸𝑁 ) and the corresponding numerical uniform convergence rates (𝜌𝑁 ), 
in a usual way by

𝐸𝑁 = max
(𝜖1 ,𝜖2 ,𝜖3)∈𝜖 𝐸

𝑁
(𝜖1 ,𝜖2 ,𝜖3)

, 𝜌𝑁 = log2
(
𝐸𝑁

𝐸2𝑁

)
.

Tables 1 and 2 show the numerical results obtained on a priori meshes as well as a posteriori mesh for Example 4.1 using the discrete 
scheme (2.11)--(2.12), respectively. From them, we observe that both methods show uniform convergence of almost first order on 
the Shishkin mesh and first order for both the Bakhvalov and the a posteriori meshes. Moreover, the maximum errors are smallest 
for the Bakhvalov meshes when (2.11) is used and smallest for the a posteriori meshes when (2.12) is used.

Tables 3 and 4 show the numerical results computed on a priori meshes as well as a posteriori mesh for Example 4.2 using 
the discrete schemes (3.21) and (3.22), respectively. From them, we see again the same orders of uniform convergence as in the 
Example 4.1 and now the maximum errors are similar for both methods on the three meshes.

An important aspect of our algorithm, from a numerical point of view, is related with the number of iterations required to satisfy 
the stopping criterion (4.2); for fixed values of perturbation parameters and different values of 𝑁 , this value is given in Tables 5 and 
6 for splitting schemes (3.21) and (3.22), respectively. As we can see, the number of iterations is independent on the value of the 
discretization parameter 𝑁 .

Tables 7 and 8 show a comparison of the computational time (in seconds) between our proposed schemes and existing standard 
discretization schemes, used to solve Examples 4.1 and 4.2, respectively. To calculate the computational times for Examples 4.1 and 
4.2, we perform the experiments for all values of 𝜖 ∈ 𝜖 and taking 𝑁 = 26,… ,213. These tables clearly show that the proposed 
splitting schemes outperform the standard discretization schemes in terms of computational times. Moreover, the computational time 
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Table 3

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.21).

𝑁 Shishkin mesh Bakhvalov mesh A posteriori mesh

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 3.1112e-02 0.6454 1.4589e-02 0.9607 1.4200e-02 0.9351

27 1.9890e-02 0.7221 7.4961e-03 0.9801 7.4266e-03 1.0066

28 1.2058e-02 0.7781 3.8000e-03 0.9900 3.6964e-03 0.9947

29 7.0310e-03 0.8176 1.9132e-03 0.9949 1.8550e-03 1.0133

210 3.9892e-03 0.8453 9.5995e-04 0.9975 9.1895e-04 0.9821

211 2.2204e-03 0.8649 4.8081e-04 0.9987 4.6521e-04 1.0293

212 1.2191e-03 0.8793 2.4062e-04 0.9994 2.2793e-04 0.9827

213 6.6274e-04 -- 1.2036e-04 -- 1.1534e-04 --

Table 4

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.22).

𝑁 Shishkin mesh Bakhvalov mesh A posteriori mesh

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 3.1095e-02 0.6449 1.1289e-02 0.9638 1.2363e-02 0.9517

27 1.9887e-02 0.7219 5.7881e-03 0.9759 6.3922e-03 0.9497

28 1.2057e-02 0.7781 2.9429e-03 0.9903 3.3095e-03 1.0292

29 7.0309e-03 0.8176 1.4814e-03 0.9933 1.6216e-03 1.0035

210 3.9893e-03 0.8453 7.4415e-04 0.9978 8.0879e-04 0.9918

211 2.2204e-03 0.8649 3.7265e-04 0.9988 4.0671e-04 1.0288

212 1.2191e-03 0.8793 1.8648e-04 0.9994 1.9934e-04 0.9483

213 6.6274e-04 -- 9.3280e-05 -- 1.0331e-04 --

Table 5

Iteration counts for Example 4.2 obtained via splitting scheme (3.21) taking 
𝜖3 = 2−6, 𝜖2 = 2−10 , 𝜖1 = 2−14 and stopping criterion (4.2).

N

Type of meshes ↓ 26 27 28 29 210 211 212 213

Shishkin meshes 3 4 4 4 4 4 4 4

Bakhvalov meshes 3 4 4 4 4 4 4 4

A posteriori meshes 5 5 4 4 4 3 3 3

Table 6

Iteration counts for Example 4.2 obtained via splitting scheme (3.22) taking 
𝜖3 = 2−6, 𝜖2 = 2−10 , 𝜖1 = 2−14 and stopping criterion (4.2).

N

Type of meshes ↓ 26 27 28 29 210 211 212 213

Shishkin meshes 4 4 4 4 4 4 4 4

Bakhvalov meshes 4 4 4 4 4 4 4 4

A posteriori meshes 6 5 4 4 4 3 3 3

is bigger for the a posteriori mesh than for Shishkin or Bakhvalov meshes, as we expected, but the main advantage of our methods is 
that it requires a considerable smaller computational time than the classical backward Euler method; this difference increase notably 
in the case of the nonlinear system. So, we can conclude that our methods are more efficient than the classical methods used to solve 
the same type of problems.

Fig. 1a displays the numerical solution for Example 4.1, while Fig. 2a illustrates the numerical solution for Example 4.2. To enhance 
the visibility of the overlapping layer behavior near 𝑥 = 0, we have included blow-up plots in Fig. 1b and Fig. 2b, respectively. In 
order to provide a clear visualization of convergence rates across different meshes, log-log plots are utilized, as depicted in Fig. 3. 
Furthermore, to illustrate the adaptive nature of the a posteriori mesh, we display the trajectory of mesh points at each iteration in 
Fig. 4. This figure clearly displays the condensation of mesh points towards the left side (near 𝑥 = 0) and their subsequent adaptation 
to the solution behavior, thereby cofirming the adaptivity of the a posteriori mesh. Note that, for the construction of plots in Figs. 3

and 4, we have used the splitting schemes (2.11) and (3.21) for Examples 4.1 and 4.2, respectively.

From a numerical point of view, an important question is the ifluence of the stopping criterion on the numerical results. Tables 9

to 11 show the results obtained for different values of the constant used in the stopping criterion for the Newton’s method on the 
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Table 7

Comparison of computation time (in seconds) for Example 4.1 on various meshes.

Type of meshes

Scheme ↓ Shishkin mesh Bakhvalov mesh A posteriori mesh

Splitting Scheme for  = diag, (2.11) 132.7604 143.0740 663.3216

Splitting Scheme for  = ltr, (2.12) 131.0695 142.8700 660.9423

Backward Euler Scheme ([13]) 888.2355 890.3172 2231.0310

Table 8

Comparison of computation time (in seconds) for Example 4.2 on various meshes.

Type of meshes

Scheme ↓ Shishkin mesh Bakhvalov mesh A posteriori mesh

Splitting Scheme (3.21) 513.3180 523.0614 2080.5362

Splitting Scheme (3.22) 511.9097 520.6069 2081.7195

Backward Euler Scheme ([17]) 5133.1550 4317.1253 16034.5512

Fig. 1. Solution plots for Example 4.1 obtained via splitting scheme (2.11) for 𝜖1 = 2−14, 𝜖2 = 2−10, 𝜖3 = 2−6 , and 𝑁 = 64 using the a posteriori mesh.

Fig. 2. Solution plots for Example 4.2 obtained via splitting scheme (3.21) for 𝜖1 = 2−14, 𝜖2 = 2−10, 𝜖3 = 2−6 , and 𝑁 = 64 using the a posteriori mesh.
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Fig. 3. Log-log plots of error vs. 𝑁 for 𝜖1 = 2−14, 𝜖2 = 2−10, 𝜖3 = 2−6 on various meshes.

Fig. 4. Movement of a posteriori mesh points at each iteration for 𝜖1 = 2−14, 𝜖2 = 2−10, 𝜖3 = 2−6 , and 𝑁 = 64.

Table 9

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.21) on Shishkin mesh with different values of Tol.

𝑁 Tol=0.1 ×𝑁−1 Tol=0.01 ×𝑁−1 Tol=10 ×𝑁−1

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 3.1112e-02 0.6454 3.1112e-02 0.6454 3.1111e-02 0.6453

27 1.9890e-02 0.7221 1.9890e-02 0.7221 1.9890e-02 0.7221

28 1.2058e-02 0.7781 1.2058e-02 0.7781 1.2058e-02 0.7781

29 7.0310e-03 0.8176 7.0310e-03 0.8176 7.0310e-03 0.8176

210 3.9892e-03 0.8453 3.9892e-03 0.8453 3.9892e-03 0.8453

211 2.2204e-03 0.8649 2.2204e-03 0.8649 2.2204e-03 0.8649

212 1.2191e-03 0.8793 1.2191e-03 0.8793 1.2191e-03 0.8793

213 6.6274e-04 -- 6.6274e-04 -- 6.6274e-04 --

three different meshes when the diagonal splitting is used and Tables 12 to 14 when the lower triangular splitting is used; in all cases 
we see that there are not ifluence of the value of this constant on the numerical results.

Finally, Tables 15 and 16 show the number of iterations needed by algorithm by using different values of the constant used in 
the stopping criterion for the Newton’s; again, in all cases we observe that it is not ifluential on the numerical results. Then, we can 
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Table 10

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.21) on Bakhvalov mesh with different values of Tol.

𝑁 Tol=0.1 ×𝑁−1 Tol=0.01 ×𝑁−1 Tol=10 ×𝑁−1

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 1.4589e-02 0.9607 1.4589e-02 0.9607 1.4615e-02 0.9632

27 7.4961e-03 0.9801 7.4961e-03 0.9801 7.4961e-03 0.9801

28 3.8000e-03 0.9900 3.8000e-03 0.9900 3.8000e-03 0.9900

29 1.9132e-03 0.9949 1.9132e-03 0.9949 1.9132e-03 0.9949

210 9.5995e-04 0.9975 9.5995e-04 0.9975 9.5995e-04 0.9975

211 4.8081e-04 0.9987 4.8081e-04 0.9987 4.8081e-04 0.9987

212 2.4062e-04 0.9994 2.4062e-04 0.9994 2.4062e-04 0.9994

213 1.2036e-04 -- 1.2036e-04 -- 1.2036e-04 --

Table 11

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.21) on a posteriori mesh with different values of Tol.

𝑁 Tol=0.1 ×𝑁−1 Tol=0.01 ×𝑁−1 Tol=10 ×𝑁−1

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 1.4200e-02 0.9351 1.4200e-02 0.9351 1.4247e-02 0.9399

27 7.4266e-03 1.0066 7.4266e-03 1.0066 7.4267e-03 1.0066

28 3.6964e-03 0.9947 3.6964e-03 0.9947 3.6964e-03 0.9947

29 1.8550e-03 1.0133 1.8550e-03 1.0133 1.8550e-03 1.0133

210 9.1895e-04 0.9820 9.1895e-04 0.98209 9.1895e-04 0.9821

211 4.6521e-04 1.0293 4.6521e-04 1.0293 4.6521e-04 1.0293

212 2.2793e-04 0.9826 2.2793e-04 0.9827 2.2792e-04 0.9827

213 1.1534e-04 -- 1.1534e-04 -- 1.1534e-04 --

Table 12

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.22) on Shishkin mesh with different values of Tol.

𝑁 Tol=0.1 ×𝑁−1 Tol=0.01 ×𝑁−1 Tol=10 ×𝑁−1

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 3.1095e-02 0.6449 3.1095e-02 0.6449 3.1095e-02 0.6449

27 1.9887e-02 0.7219 1.9887e-02 0.7219 1.9887e-02 0.7219

28 1.2057e-02 0.7781 1.2057e-02 0.7781 1.2057e-02 0.7781

29 7.0309e-03 0.8176 7.0309e-03 0.8176 7.0309e-03 0.8176

210 3.9893e-03 0.8453 3.9893e-03 0.8453 3.9893e-03 0.8453

211 2.2204e-03 0.8649 2.2204e-03 0.8649 2.2204e-03 0.8649

212 1.2191e-03 0.8793 1.2191e-03 0.8793 1.2191e-03 0.8793

213 6.6274e-04 -- 6.6274e-04 -- 6.6274e-04 --

Table 13

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.22) on Bakhvalov mesh with different values of Tol.

𝑁 Tol=0.1 ×𝑁−1 Tol=0.01 ×𝑁−1 Tol=10 ×𝑁−1

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 1.1289e-02 0.9638 1.1289e-02 0.9638 1.1289e-02 0.9638

27 5.7881e-03 0.9759 5.7881e-03 0.9759 5.7881e-03 0.9759

28 2.9429e-03 0.9903 2.9429e-03 0.9903 2.9429e-03 0.9903

29 1.4814e-03 0.9933 1.4814e-03 0.9933 1.4814e-03 0.9933

210 7.4415e-04 0.9978 7.4415e-04 0.9977 7.4415e-04 0.9977

211 3.7265e-04 0.9988 3.7265e-04 0.9988 3.7265e-04 0.9988

212 1.8648e-04 0.9994 1.8648e-04 0.9994 1.8648e-04 0.9994

213 9.3280e-05 -- 9.3280e-05 -- 9.3280e-05 --
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Table 14

Uniform errors (𝐸𝑁 ) and uniform convergence rates (𝜌𝑁 ) for Example 4.2 obtained via 
splitting scheme (3.22) on a posteriori mesh with different values of Tol.

𝑁 Tol=0.1 ×𝑁−1 Tol=0.01 ×𝑁−1 Tol=10 ×𝑁−1

𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁 𝐸𝑁 𝜌𝑁

26 1.2363e-02 0.9517 1.2363e-02 0.9517 1.2261e-02 0.9396

27 6.3922e-03 0.9497 6.3922e-03 0.9497 6.3925e-03 0.9498

28 3.3095e-03 1.0292 3.3095e-03 1.0292 3.3095e-03 1.0292

29 1.6216e-03 1.0035 1.6216e-03 1.0035 1.6216e-03 1.0035

210 8.0879e-04 0.9918 8.0879e-04 0.9918 8.0879e-04 0.9918

211 4.0671e-04 1.0288 4.0671e-04 1.0288 4.0671e-04 1.0288

212 1.9934e-04 0.9483 1.9934e-04 0.9483 1.9933e-04 0.9483

213 1.0331e-04 -- 1.0331e-04 -- 1.0330e-04 --

Table 15

Iteration counts for Example 4.2 obtained via splitting scheme (3.21) taking 𝜖3 = 2−6, 𝜖2 = 
2−10 , 𝜖1 = 2−14 for different values of Tol.

N

Type of meshes ↓ Tol ↓ 26 27 28 29 210 211 212 213

Shishkin meshes 0.1 ×𝑁−1 3 4 4 4 4 4 4 4

0.01 ×𝑁−1 4 4 4 4 4 4 4 4

10 ×𝑁−1 2 3 3 3 3 3 3 3

Bakhvalov meshes 0.1 ×𝑁−1 3 4 4 4 4 4 4 4

0.01 ×𝑁−1 4 4 4 4 4 4 4 4

10 ×𝑁−1 2 3 3 3 3 3 3 3

A posteriori meshes 0.1 ×𝑁−1 5 5 4 4 4 3 3 3

0.01 ×𝑁−1 5 5 4 4 4 3 3 3

10 ×𝑁−1 5 5 4 4 4 3 3 3

Table 16

Iteration counts for Example 4.2 obtained via splitting scheme (3.22) taking 𝜖3 = 2−6, 𝜖2 = 
2−10 , 𝜖1 = 2−14 for different values of Tol.

N

Type of meshes ↓ Tol ↓ 26 27 28 29 210 211 212 213

Shishkin meshes 0.1 ×𝑁−1 4 4 4 4 4 4 4 4

0.01 ×𝑁−1 4 4 4 4 4 4 4 4

10 ×𝑁−1 2 3 3 3 3 3 3 3

Bakhvalov meshes 0.1 ×𝑁−1 4 4 4 4 4 4 4 4

0.01 ×𝑁−1 4 4 4 4 4 4 4 4

10 ×𝑁−1 2 3 3 3 3 3 3 3

A posteriori meshes 0.1 ×𝑁−1 6 5 4 4 4 3 3 3

0.01 ×𝑁−1 6 5 4 4 4 3 3 3

10 ×𝑁−1 6 5 4 4 4 3 3 3

conclude that our algorithm is an efficient method to solve the nonlinear coupled systems, which are considerably more difficult than 
the corresponding linear ones.

5. Conclusions

In this work, we have analyzed the numerical approximation of singularly perturbed initial value coupled systems of first-order, 
for which the diffusion parameters at each equation are distinct and they can have a different order of magnitude. We have considered 
both linear and nonlinear systems. For both types of problems, we have constructed efficient numerical methods which are dfined 
on a priori meshes of Shishkin or Bakhvalov type and also on a posteriori meshes. In all cases, we have proved that the numerical 
method is uniformly convergent with respect to the diffusion parameter; moreover, it has almost first-order in the case of Shishkin 
mesh and first-order in the case of Bakhvalov and a posteriori meshes. We have shown the numerical results obtained for two different 
test problems without exact solution known; those results corroborate, in practice, the theoretical results and also the reduction of 
the computational cost in comparison with the classical backward Euler scheme; then, we can conclude that our algorithm is more 
efficient than the classical methods used to solve the same type of problems.
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