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Abstract: The present work is motivated by the necessity of handling and controlling three-dimensional
polarization states, whose appropriate preparation has increasing interest in areas like nanotech-
nologies, quantum computing and near-field phenomena. By virtue of the so-called characteristic
decomposition, any polarization state of light can be represented as an incoherent superposition of
a pure state, a fully unpolarized state and a discriminating state. The discriminating component
has nonzero spin in general, in which case the state is said to be nonregular. A simple procedure to
transform an arbitrary nonregular state to a regular one through its incoherent composition with
a pure state is described, resulting in a state that lacks a discriminating component. In addition, a
method to suppress the spin vector of any given polarization state through its incoherent combination
with a circularly polarized pure state is presented. Both approaches allow for the configuration of
polarization states with simple features.
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1. Introduction

The preparation and control of polarization states is a topic of growing interest in near-
field phenomena, nanophotonics and quantum technologies [1–12], as well as in multiple
applications of laser-driven polarization distributions like processing and structuring
of material surfaces, sharp focusing, capture and manipulation of microparticles, and
microscopy [13–18].

Thus, many interesting approaches involving either spatial distributions of polariza-
tion states or physical situations where the three components of the electric field of the
electromagnetic wave at a given point in space should be considered have been dealt with
from different points of view [19–24].

While some of the above-mentioned physical situations involve coherent, or determin-
istic, optical fields whose electric vector evolves within a fixed plane for each point in space,
the present work deals with polychromatic random light [25], whose polarization state at
each particular point in space may require general three-dimensional (3D) treatment. In
fact, any polarization state of random stationary light can be represented as an incoherent
superposition of a pure state (pure referring to totally polarized), a discriminating state
and a fully unpolarized state [26,27]. States whose discriminating component has nonzero
spin are called nonregular, while regular states exhibit the particularly simple structure
where the discriminating component is a two-dimensional unpolarized state [28,29]. Since
a genuine feature of nonregular states is that the spin vector of their discriminating compo-
nents has transversal character [29], nonregularity appears as a fundamental property of
3D polarization states whose control deserves attention.

The fact that nonregularity involves intricate polarization properties which influence
light–matter interactions makes it desirable to develop methods to transform nonregular
states into regular ones in order to improve the control of the polarimetric anisotropies of
the interacting polarization states.
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The main aim of this work is to introduce, for the first time, a general procedure to
convert a nonregular state to a regular one (thus exhibiting much simpler characteristic
structure) by means of the incoherent composition of the original state with a pure state
which is determined from the original nonregular state itself. In other words, this com-
munication focuses on the formulation of the theoretical framework for the removal of
nonregularity from an arbitrary 3D polarization state.

The problem is solved by means of the characteristic decomposition of the polarization
matrix of the state, which is represented with respect to the intrinsic reference frame of
the discriminating component. This allows for the identification of a pure state (in general
elliptically polarized) whose incoherent composition with the original state produces a
regular state lacking a discriminating component.

In addition, the issue of cancelling the spin vector of a generic polarization state is
addressed through its incoherent superposition with a circularly polarized state whose
spin vector is opposite to that of the original state.

Both procedures can be applied to the configuration and control of general three-
dimensional polarization states and, due to the formal similarity of polarization density
matrices and quantum 3 × 3 density matrices, also provide deeper insights into the structure
of density matrices representing three-level quantum states as, for instance, qutrits [5].

2. Theoretical Framework

The polarization matrix, which contains all of the second-order measurable informa-
tion about the state of polarization (including intensity) of an electromagnetic wave, is
defined as the following 3 × 3 Hermitian matrix [26]:

R = ⟨ε(t)⊗ ε†(t)⟩ =

⟨εx(t) ε∗x(t)⟩ ⟨εx(t) ε∗y(t)⟩ ⟨εx(t) ε∗z(t)⟩
⟨εy(t) ε∗x(t)⟩ ⟨εy(t) ε∗y(t)⟩ ⟨εy(t) ε∗z(t)⟩
⟨εz(t) ε∗x(t)⟩ ⟨εz(t) ε∗y(t)⟩ ⟨εz(t) ε∗z(t)⟩

 , (1)

where the elements are the second-order moments of the zero-mean analytic signals
εi(t) (i = x, y, z) (complex random processes) [25,30] associated with the three Cartesian
components of the electric field vector at point r in space with respect to the given Carte-
sian reference frame XYZ [31]. Superscript † denotes the conjugate transpose, ⊗ stands
for the Kronecker Product, and the brackets ⟨. . .⟩ indicate time averaging. In the case of
stationary and ergodic fields, the brackets can also be interpreted as ensemble averaging
over the ensemble of sample realizations [25,32]. The convention R = ⟨ε(t)⊗ ε†(t)⟩, which
is common in polarization optics, is used in place of the convention R = ⟨ε∗(t)⊗ εT(t)⟩,
which is frequently used in optical coherence theory.

Thus, R is characterized by nine quantities which are measurable through the cor-
responding 3D Stokes parameters [33–41]. Obviously, R takes different specific forms
depending on the Cartesian reference frame XYZ considered.

Let us now bring out the unitary similarity transformation that diagonalizes R

R = Udiag(λ1, λ2, λ3)U†, [λ1 ≥ λ2 ≥ λ3], (2)

where U is a unitary matrix, and (λ1, λ2, λ3) are the real eigenvalues of R, which are neces-
sarily non-negative due to the fact that R has the mathematical structure of a covariance
matrix of the three zero-mean random signals εi(t) [32]. The eigenvalues have been taken
in decreasing order (λ1 ≥ λ2 ≥ λ3) without loss of generality. Let us also observe that
trR = λ1 + λ2 + λ3 represents the intensity I of the state. For certain purposes, it is appro-
priate to use the polarization density matrix R̂ = R/I, whose eigenvalues are denoted as
λ̂i = λi/I (i = 1, 2, 3), with λ̂1 + λ̂2 + λ̂3 = 1.

The above diagonalization of R leads directly to the so-called spectral decomposition

R = λ̂1 I R̂p1 + λ̂2 I R̂p2 + λ̂3 I R̂p3 ,[
R̂p1 = Udiag(1, 0, 0)U†, R̂p2 = Udiag(0, 1, 0)U†, R̂p3 = Udiag(0, 0, 1)U†], (3)
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which shows that R can be interpreted as the incoherent superposition of three pure states
whose associated analytic signal vectors are mutually orthogonal [32,42].

The above interpretation relies on the concept of superposition of pure polarization
states, which refers to the coincidence, at a given point in space, of a number of pure
states, for instance belonging to different random stationary light beams. Depending on
the single-point correlations between the fluctuating components of the analytic signal
vectors of the superimposed (also composed or combined) states, the resulting state can
be pure (coherent composition) or partially polarized (partially coherent or incoherent
composition). In fact, any partially polarized state can always be considered a partially
coherent superposition of a number n of pure states, represented by the respective analytic
signal vectors εi (i = 1, . . . , n) and described as follows ([32], Section 1.12.3) (the time
dependence is omitted for brevity):

R =
〈
ε⊗ ε†〉 = 〈( n

∑
i=1

εi

)
⊗
(

n
∑

i=1
εi

)†
〉

= X + Y

X =

〈
n
∑

i=1
εi ⊗ ε†

i

〉
=

n
∑

i=1

〈
εi ⊗ ε†

i
〉
=

n
∑

i=1
Ri

Y =

〈
n
∑

i,j=1,i ̸=j

[(
εi ⊗ ε†

j

)
+
(
εj ⊗ ε†

i
)]〉

=
n
∑

i,j=1,i ̸=j

[〈
εi ⊗ ε†

j

〉
+
〈
εj ⊗ ε†

i
〉]

(4)

where the matrix X formally corresponds to the polarization matrix describing the incoher-
ent composition of the pure states εi, whereas the term Y = R − X is a Hermitian matrix
that is not positive semidefinite and consequently does not correspond to any polarization
state. When the superposed states εi are fully uncorrelated, the average in the expression
of Y becomes the zero matrix (Y=0), so that R=X (incoherent composition).

In the general case of partially correlated fields, Y does not vanish (Y ̸= 0) and thus
determines the structure of polarimetric purity of the state R. In the limiting case where all
superimposed fields are mutually fully correlated (coherent composition), the composed
state is pure, with the associated analytic signal vector ε = ε1 + ε2 . . . + εn and with the
associated polarization matrix R=ε⊗ ε†.

The spectral decomposition (3) can be rearranged to build the corresponding charac-
teristic decomposition [26,31,43],

R = P1 IR̂p + (P2 − P1)IR̂m + (1 − P2)IR̂u−3D,

R̂p = Udiag(1, 0, 0)U†, R̂m = 1
2 Udiag(1, 1, 0)U†, R̂u−3D = 1

3 diag(1, 1, 1) ,
(5)

where R̂p represents a pure state (which coincides with R̂p1 in Equation (3)), R̂u−3D (propor-
tional to the identity matrix) is a fully unpolarized state, and R̂m is called the discriminating
component of R, while the coefficients of the convex sum are regulated by the indices of
polarimetric purity (IPP) defined from the eigenvalues of R̂ in the following manner [44,45]:

P1 = λ̂1 − λ̂2, P2 = 1 − 3λ̂3. (6)

Let us note that the convention λ1 ≥ λ2 ≥ λ3 should be preserved to obtain the proper
definition of the above IPP, and consequently, 0 ≤ P1 ≤ P2 ≤ 1 [45].

The structure of the characteristic decomposition shows that the discriminating com-
ponent R̂m has two equal nonzero eigenvalues λ̂1(Rm) = λ̂2(Rm) = 1/2, so that, taken as
isolated, it is characterized by P1(Rm) = 0 and P2(Rm) = 1 [27]. Regarding the whole state
R, it is pure if and only if P1 = 1 (i.e., P1 = P2 = 1), while it is fully unpolarized if and only
if P2 = 0 (i.e., P1 = P2 = 0).

Thus, the characteristic decomposition reflects the structure of polarimetric purity of
the polarization state [46]. While any two-dimensional (2D) polarization state (characterized
by the fact that the electric field fluctuates in a fixed plane, called the polarization plane) can
be represented as an incoherent superposition of a pure state and a 2D unpolarized state
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(the field fluctuates fully randomly within a fixed polarization plane), the characteristic
decomposition of a general 3D state includes the peculiar discriminating state in addition
to the pure and fully depolarized (maximally mixed) components.

Consequently, the IPP regulate the structure of polarimetric purity–randomness of R,
while they are insensitive to the type of polarization exhibited by the spectral components.
The overall polarimetric purity of a state R is given by the associated degree of polarimetric
purity (or degree of polarization) [26],

P3D =

√
3P2

1 + P2
2

4
=

√
1
2

(
3trR̂2 − 1

)
=

√√√√ 1
2

(
3

3

∑
i=1

λ̂2
i − 1

)
, (7)

which takes values within the interval between P3D = 0, for fully unpolarized states, and
P3D = 1, for fully polarized states.

States whose discriminating component corresponds to a 2D unpolarized state, i.e.,
R̂m = diag (1/2,1/2,0), are called regular and represent a borderline case of general, non-
regular states. Consequently, a polarization state is regular if and only if its discriminating
component lacks spin, while maximal nonregularity is achieved by the so-called perfect
nonregular states characterized by the fact that they can be represented by an equiprobable
incoherent mixture of a circularly polarized state and a linearly polarized state whose
electric field fluctuates along a direction normal to the polarization plane of the circular
component [27,28]. The degree of nonregularity provides a measure of the distance of the
state to a regular one and is defined as [28]

PN(R) = 4 (P2 − P1) m̂3, [0 ≤ PN(R) ≤ 1], (8)

where m̂3 is the smallest eigenvalue of Re (R̂m), with 0 ≤ m̂3 ≤ 1/4.
Additional complementary descriptors can be defined through the intrinsic represen-

tation of R, which is determined by means of the diagonalization of the real part ReR of
R [47],

ReR = QOdiag(a1, a2, a3)QT
O , [a1 ≥ a2 ≥ a3], (9)

where QO is a proper orthogonal matrix (QT
O = Q−1

O , detQO = +1), superscript T indicates
the transpose matrix and the non-negative diagonal elements (a1, a2, a3) (taken in decreas-
ing order without loss of generality) are called the principal intensities of R. The intrinsic
polarization matrix RO (representing the same state as R, but referenced with respect to
the so-called intrinsic reference frame XOYOZO instead of the generic original one XYZ) is
defined by RO = QT

ORQO and can be expressed in the simple form [31,47]

RO ≡

 a1 −inO3/2 inO2/2
inO3/2 a2 −inO1/2
−inO2/2 inO1/2 a3

 = I

 â1 −in̂O3/2 in̂O2/2
in̂O3/2 â2 −in̂O1/2
−in̂O2/2 in̂O1/2 â3

,

[a1 ≥ a2 ≥ a3, I = a1 + a2 + a3, âi = ai/I, n̂Oi = nOi/I (i = 1, 2, 3)],

(10)

where the off-diagonal elements are fully determined by the spin vector in its intrinsic rep-
resentation nO ≡ (nO1, nO2, nO3)

T [31,47]. Thus, the information held by the polarization
matrix of any polarization state can be parametrized in terms of nine scalar descriptors,
namely the three principal intensities (a1, a2, a3), the three components (nO1, nO2, nO3) of
the spin vector along the respective intrinsic axes XOYOZO and the three angles determining
the rotation associated with QO [31,48]. Consequently, regardless of the spatial orientation
of the principal intensities of the polarization state, the intrinsic polarization properties are
determined by the polarization object constituted by the polarization ellipsoid defined by
(a1, a2, a3) and the spin vector [47,48] (see Figure 1).
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Figure 1. The polarization object encompasses the intrinsic information of a polarization state
by means of the intensity ellipsoid, whose semiaxes a1, a2, a3 are the eigenvalues of the real part
of the polarization matrix (taken in decreasing order, a1 ≥ a2 ≥ a3), together with the intrinsic
representation nO of the spin vector of the state.

The principal intensities determine three meaningful quantities, namely the intensity
I = a1 + a2 + a3, the degree of linear polarization Pl = â1 − â2 and the degree of direc-
tionality Pd = 1 − 3â3. Other additional descriptors are the degree of circular polarization
Pc = |n|/I, given by the intensity-normalized absolute value of the spin vector, and the de-

gree of elliptical purity Pe =
√

P2
l + P2

c [49]. The set Pl , Pc, Pd constitutes the so-called com-
ponents of purity (CP) of the polarization state [50], while the set (I, Pl , Pd, n̂O1, n̂O2, n̂O3)
constitutes, precisely, the six nonzero intrinsic Stokes parameters [40].

Complementary to the IPP, the CP carry qualitative information on the type of polar-
ization exhibited by the state R in such a manner that the contributions of the CP as sources
of the overall purity of R are evidenced by the relation [50]

P3D =

√
3
(

P2
l + P2

c
)
+ P2

d
4

, (11)

which establishes an essential link between the IPP and the CP via Equation (7).

3. Regularizing Procedure

The nonregularity of a polarization state is governed by the properties of its discrimi-
nating component. In fact, a polarization state is regular if and only if its discriminating
component exhibits nonzero spin or, equivalently, Rm is a real matrix, in which case, as said
above, it must take the form of a 2D unpolarized state.

It has been shown that, when referenced to its intrinsic reference frame XmOYmOZmO,
the discriminating component adopts the simple form [8,28]

RmO =
1
2

I

1 0 0
0 cos2 χ −i cos χ sin χ

0 i cos χ sin χ sin2 χ

, [−π/4 ≤ χ ≤ π/4]. (12)

Let us now consider the representation of a nonregular R state (i.e., χ ̸= 0) and its
characteristic components with respect to the reference frame XmOYmOZmO. This trans-
formation is achieved through R’ = QmO R QT

mO, where the proper orthogonal matrix
QmO is what carries out the change to the intrinsic representation of the discriminating
component RmO = QmO Rm QT

mO. Therefore, the characteristic decomposition of the new
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polarization matrix R’ representing the state R, but referenced with respect to the reference
frame XmOYmOZmO, adopts the form

R’ = IP1R̂′
p + I(P2 − P1)R̂mO + I(1 − P2)R̂u−3D,

R̂′
p = QmOUdiag(1, 0, 0)U†QT

mO,

R̂mO = 1
2 QmOUdiag(1, 1, 0)U†QT

mO,

R̂u−3D = 1
3 QmOUIU†QT

mO = I
3 I ,

 (13)

where I stands for the 3 × 3 identity matrix.
Recall that, from Equation (12), the discriminating component in its intrinsic represen-

tation R̂mO can be interpreted through the decomposition [28]

R̂mO = I
2 R̂l−x +

I
2 R̂e−x,

R̂l−x =

 1 0 0
0 0 0
0 0 0

,

R̂e−x =

 0 0 0
0 c2

χ −icχsχ

0 icχsχ s2
χ

,
[

sχ = sin χ, cχ = cos χ
−π/4 ≤ χ ≤ π/4

]
.

(14)

Here, R̂l−x and R̂e−x are the polarization matrices of a linearly polarized pure state whose
electric field fluctuates along the axis XmO and an elliptically polarized pure state whose
polarization ellipse lies on plane YmOZmO (i.e., its spin vector lies along the XmO axis).

To achieve the cancellation of the spin vector of the discriminating component RmO
(as required for the transformation of R’ to a regular state) while preserving the orientation
of the spin vector of the pure component, it is sufficient to combine it incoherently with a
state (I/2) R̂⊥e−x orthonormal to (I/2) R̂e−x (see Figure 2) so that the polarization matrix
of the resulting state is given by

R̂mO + I
2 R̂⊥e−x = I

2 R̂l−x +
I
2 R̂e−x +

I
2 R̂⊥e−x

= I
2

 1 0 0
0 0 0
0 0 0

+ I
2

 0 0 0
0 c2

χ −icχsχ

0 icχsχ s2
χ

+ I
2

 0 0 0
0 s2

χ icχsχ

0 −icχsχ c2
χ


= I

2

 1 0 0
0 0 0
0 0 0

+
I
2

 0 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

I R̂u−2D

=
I
2

 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

3I
2 R̂u−3D

.

(15)

By applying this result to the composition R’ + (I/2)(P2 − P1) R̂⊥e−x ≡ RΣ of the
complete state R’ and the added pure state (I/2)(P2 − P1) R̂⊥e−x, the polarization matrix
RΣ of the composed state is given by

RΣ = R’ + (I/2)(P2 − P1)R̂⊥e−x

= IP1R̂′
p + I(P2 − P1)

[
R̂mO + (1/2) R̂⊥e−x

]
+ I(1 − P2)Ru−3D

= IP1R̂′
p + I(P2 − P1)

[ 3
2 R̂u−3D

]
+ (1 − P2)R̂u−3D

= IP1R̂′
p + I

(
1 + 1

2 P2 − 3
2 P1

)
R̂u−3D,

[
1 + 1

2 P2 − 3
2 P1 = λ̂2

]
,

(16)
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which can be rearranged as

R’ + (I/2)(P2 − P1)R̂⊥e−x = I′P′
1R̂′

p + I′
(
1 − P′

1
)
R̂u−3D,[

I′ = I
(

1 + P2−P1
2

)
, P′

1 = P1

1+ P2−P1
2

]
,

(17)

thus showing that the combined state lacks a discriminating component; so, it is simply
equivalent to a superposition of the pure state R′

p and a 3D unpolarized state Ru−3D. As
indicated in Equation (17), the IPP of the resulting state are given by P′

1 = P′
2 in terms of

the IPP P1 and P2 of R.
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ˆ2 ( ) e xI P P   R , the polarization matrix R  

of the composed state is given by 

 

   

   

2 1

1 2 1 2 3

1 2 1 3 2 3

1 2 1 3 2 1 ?2

ˆ( 2)

ˆ ˆ ˆ(1 2) 1

3ˆ ˆ ˆ1
2

1 3 1 3 ˆˆ ˆ1 , 1 ,
2 2 2 2

e x

p mO e x u D

p u D u D

p u D

I P P

I P I P P I P

I P I P P P

I P I P P P P 

  

  

 



  

       

       

               

R R R

R R R R

R R R

R R

 (16)

which can be rearranged as 

   2 1 1 1 3

2 1 1
1

2 1

ˆ ˆ ˆ( 2) 1 ,

1 , ,
2 1

2

e x p u DI P P I P I P

P P PI I P P P

           

          
 

R R R R

 (17)

thus showing that the combined state lacks a discriminating component; so, it is simply 
equivalent to a superposition of the pure state pR  and a 3D unpolarized state 3u DR . As 
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reference frame XYZ  in the form (Figure 3) 

Figure 2. The incoherent composition of the discriminating component Rm with a specific pure state
determined univocally from Rm itself results in a fully unpolarized state. As the first step, Rm is
decomposed into an incoherent superposition of a linearly polarized state Rl−x and an elliptically
polarized state Re−x whose polarization plane is orthogonal to the direction along which the linear
component fluctuates. Through the appropriate composition of Rm and a pure state R⊥e−x whose 3D
Jones vector is orthogonal to that of Re−x, the resulting state is completely unpolarized.

As a consequence of the rotational invariance of Ru−3D (QT
mORu−3DQmO = Ru−3D),

the polarization matrix of the combined state can be represented with respect to the original
reference frame XYZ in the form (Figure 3)

RΣ−XYZ = QT
mOR’QmO = I′P′

1R̂p + I′
(
1 − P′

1
)
R̂u−3D. (18)
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Due to the simple structure of RΣ−XYZ, its polarization descriptors take the values

P′
l = P′

1 = P′
d = P′

2 = P′
3D =

P1

1 + P2−P1
2

, P′
c =

1

1 + P2−P1
2

Pc, P′
N = 0. (19)

Let us observe that, since the original state has been incoherently mixed with the
added pure component, the purity is reduced (P′

1 < P1, P′
2 < P2, P′

3D < P3D).
It should also be noted that the state R can alternatively be transformed to a regular

state through the composition R + (P2 − P1)Rk, with Rk being any pure state satisfying the
condition n (Rk) = −n (Rm); that is, the spin vector of the added state Rk is opposite to the
spin vector of the discriminating component Rm of R. In particular, when Rk represents
a circularly polarized state, the intensity of Rk is the smallest among the other infinite
states Rk that perform the cancellation of the spin vector of Rm. However, the resulting
state R + (P2 − P1)Rk has a nonvanishing discriminating state except for the particular case
Rk = QT

mO[(I/2) R̂⊥e−x]QmO described above.
In summary, given a nonregular polarization state, it can always be incoherently

combined with a pure state in such a way that the resulting state is regular and lacks a
discriminating component; so, it is equivalent to an incoherent superposition of the pure
component of the original state and a fully unpolarized state.

4. Spin Cancellation Procedure

The polarization matrix R of a given state can always be expressed as

R = Re(R) + iIm(R). (20)

Since R is a positive semidefinite Hermitian matrix, Re (R) is symmetric and has
non-negative diagonal elements, while Im (R) is an antisymmetric matrix of the form

Im(R) =

 0 −n3/2 n2/2
n3/2 0 −n1/2
−n2/2 n1/2 0

, (21)

where ni(i = 1, 2, 3) are the components of the spin vector n of the state represented by
R. This means that the imaginary parts of the off-diagonal elements of R determine the
components of n referenced with respect to the Cartesian reference frame XYZ taken to
represent the fluctuating components of the electric field [31,48].

To further simplify the mathematical expressions, it is worth noting that it is always
possible to rotate the laboratory reference frame XYZ to the new axes XnYnZn so the
direction of Zn coincides with the direction of the spin vector n. Let us note also that
XnYnZn is not unique because it leaves free the orientations of axes XnYn, provided they
are orthogonal to Zn. Mathematically, Rn = QnRQT

n , where Qn is any proper orthogonal
matrix that performs the required rotation transformation of the polarization matrix [31].
Thus, the transformed polarization matrix Rn representing the state takes the form

Rn = Re(Rn) + iIm(Rn),

Re(Rn) = Qn Re(R) QT
n ≡

 c11 c12 c13
c12 c22 c23
c13 c23 c33

,

Im(Rn) = Qn Im(R) QT
n =

 0 −n/2 0
n/2 0 0
0 0 0

 (n ≥ 0).

(22)
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Now, by incoherently combining the state with a circularly polarized pure state Rcl
whose spin vector is −n, the composed state, represented with respect to the reference
frame XnYnZn, is given by

Rt = Rn + n R̂cl =

 c11 c12 − in/2 c13
c12 + in/2 c22 c23

c13 c23 c33

+ n 1
2

 1 i 0
−i 1 0
0 0 0


=

c11+n/2 c12 c13
c12 c22+n/2 c23
c13 c23 c33

 = Re(Rn) + n R̂u−2D,

R̂u−2D = 1
2

1 0 0
0 1 0
0 0 0

.

(23)

Obviously, even though the reference frame XnYnZn has been taken for simplicity,
the above spin suppression only requires that the spin vector of the state Rcl equals -n,
regardless of the reference frame considered. Let us observe that the respective intrinsic
reference frames of the states R and Rcl do not coincide in general.

Let us also note that the composition of the original state (represented either by R or
Rn, depending on the reference frame considered) with other pure states (not necessarily
circularly polarized) exhibiting spin -n would also produce spin cancellation, but involving
intensities larger than the intensity n of Rcl .

5. Conclusions

Given a polarization state R, its spin vector be cancelled through its superposi-
tion with a pure state whose spin vector is opposite to that of R. Thus, there are infi-
nite pure states that satisfy the cancellation condition. Among them, the one with the
smallest intensity is a circularly polarized state with spin -n, in which case the resulting
state can also be interpreted as an incoherent composition of the state represented by
the real part of the polarization matrix of the original state and a 2D unpolarized state
nR̂u−2D = n diag(1/2, 1/2, 0) whose intensity equals the absolute value n of n (Figure 4).
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In any case, the resulting state is regular and is equivalent to an incoherent super-
position of three linearly polarized states whose electric fields fluctuate along mutually
orthogonal directions. Furthermore, in general, the components of the characteristic decom-
position of the resulting state are given by a linearly polarized state (the pure component), a
2D unpolarized state (the regular discriminating component) and a fully unpolarized state.

Although spin cancellation can always be performed through the composition pro-
cedure described above, it does not imply that any polarization state can be decomposed
as an incoherent combination of a pure state and a mixed state with zero spin. In fact, the
inspection of the characteristic decomposition whose discriminating component can exhibit
nonzero spin shows that only regular states admit such a simple decomposition.

Even though the general spin cancellation procedure converts R to a regular state,
there are other possible methods to regularize R via the cancellation of the spin vector of
its discriminating component, leading, in general, to a resulting state whose characteristic
components are given by the pure component Rp of R (thus, with nonzero spin in general),
a 2D unpolarized state Ru−2D and a fully unpolarized state Ru−3D. In particular, the com-
bination R + (P2 − P1)QT

mO[(I/2) R̂⊥e−x]QmO described in Section 3 produces a regular
state that lacks a discriminating component, so it is equivalent to a simple composition of
the pure component Rp of R and Ru−3D.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest.
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