Generalizing AUC Optimization to Multiclass Classification for Audio Segmentation With Limited Training Data

Gimeno, P (Universidad de Zaragoza) ; Mingote, V (Universidad de Zaragoza) ; Ortega, A (Universidad de Zaragoza) ; Miguel, A (Universidad de Zaragoza) ; Lleida, E (Universidad de Zaragoza)
Generalizing AUC Optimization to Multiclass Classification for Audio Segmentation With Limited Training Data
Financiación H2020 / H2020 Funds
Resumen: Area under the ROC curve (AUC) optimisation techniques developed for neural networks have recently demonstrated their capabilities in different audio and speech related tasks. However, due to its intrinsic nature, AUC optimisation has focused only on binary tasks so far. In this paper, we introduce an extension to the AUC optimisation framework so that it can be easily applied to an arbitrary number of classes, aiming to overcome the issues derived from training data limitations in deep learning solutions. Building upon the multiclass definitions of the AUC metric found in the literature, we define two new training objectives using a one-versus-one and a one-versus-rest approach. In order to demonstrate its potential, we apply them in an audio segmentation task with limited training data that aims to differentiate 3 classes: foreground music, background music and no music. Experimental results show that our proposal can improve the performance of audio segmentation systems significantly compared to traditional training criteria such as cross entropy.
Idioma: Inglés
DOI: 10.1109/LSP.2021.3084501
Año: 2021
Publicado en: IEEE SIGNAL PROCESSING LETTERS 28 (2021), 1135-1139
ISSN: 1070-9908

Factor impacto JCR: 3.201 (2021)
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 113 / 274 = 0.412 (2021) - Q2 - T2
Factor impacto CITESCORE: 6.6 - Engineering (Q1) - Mathematics (Q1) - Computer Science (Q1)

Factor impacto SCIMAGO: 1.361 - Electrical and Electronic Engineering (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T36-20R
Financiación: info:eu-repo/grantAgreement/EC/H2020/101007666/EU/Exchanges for SPEech ReseArch aNd TechnOlogies/ESPERANTO
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TIN2017-85854-C4-1-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2025-01-17-14:45:03)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Teoría de la Señal y Comunicaciones



 Record created 2025-01-15, last modified 2025-01-17


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)