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Non-rigid image registration is a crucial task in various medical applications, allowing the alignment of images
with complex spatial or temporal variations. This paper introduces NODEO-LDDMM and NODEO-PDE-LDDMM,
two innovative deep-learning-based approaches that bridge the gap between Large Deformation Diffeomorphic
Metric Mapping (LDDMM) and neural ordinary differential equations (NODEs). LDDMM and PDE-LDDMM
offer mathematically well-established formulations for diffeomorphic registration, while NODEs provide the
flexibility of deep-learning in the solution of the ODEs involved in both methods. Both NODEO-LDDMM and
NODEO-PDE-LDDMM include the strengths of deep-learning into LDDMM, enabling a robust optimization
with a good balance between accuracy and transformation smoothness in their solutions. Our proposed
methods reached or outperformed their traditional counterparts and the nearly diffeomorphic deep-learning-
based approaches selected as benchmarks. This work contributes to advancing non-rigid image registration
techniques, with a methodology suited to overcome some of the limitations of deep-learning in medical image
registration.

1. Introduction diffeomorphic registration the target to reach by many research on non-
rigid registration (e.g., the diffeomorphic versions of Demons [9] are
preferred over Demons [10]).

The family of PDE-constrained LDDMM methods proposed in [11]
and improved in [12,13] is especially interesting. PDE-LDDMM extends
the ideas of optical Stokes flow [14] to the diffeomorphic setting. PDE-
LDDMM has been used for modeling compressible and incompressible
diffeomorphisms, boundary-preserving nonlinear Stokes fluid diffeo-

The non-rigid registration of images is the process of determining
the transformation that best warps the source image into the target
image according to convenient non-rigid transformation models and
image similarity metrics. Non-rigid image registration is a fundamen-
tal stage in many different medical applications involving spatial or
temporal changes of anatomical or functional features [1-3].

The variational formulation of the non-rigid registration problem

from the minimization of an energy functional was inspired by Horn morphisms, and mass and intensity preserving diffeomorphisms [13,

and Schunck method to solve optical flow [4]. The solutions to the
non-rigid registration and optical flow problems have evolved through
decades, retaining the energy minimization approach as a backbone
[3]. Large Deformation Diffeomorphic Metric Mapping (LDDMM)
stands out for being a mathematically well-established approach to the
non-rigid registration problem through diffeomorphisms [5]. Diffeo-
morphisms enable shape analysis from transformations and thus, they
constitute the inception point of Computational Anatomy [6,7]. The
registration quality, the high accuracy, and the convenience of smooth
and invertible transformations for medical applications [8] have made

15]. The main acknowledged drawback of both LDDMM and PDE-
LDDMM is in their time complexity, which is in the order of several
minutes for the most interesting models despite the substantial reduc-
tions of the computational complexity yielded by the stationary or the
band-limited parametrizations [16,17].

Since the deep-learning explosion taking place in the second decade
of the XXI century, deep-learning solutions have been proposed to
solve a variety of computer vision and medical imaging problems.
FlowNet [18] provided the first deep-learning solution to the optical
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flow problem and the working ideas were quickly adapted and ex-
tended to the problems of non-rigid and diffeomorphic registration
in medical imaging [19,20]. Supervised deep-learning led to unsu-
pervised approaches for non-rigid and diffeomorphic registration that
circumvented the costly need to compute ground truth transforma-
tions for training and achieved inference times in the order of a few
seconds [21,22].

In this case, the main limitation of unsupervised methods lies in
the huge amount of data, the prohibitive hardware requirements, and
the energy consumption needed during training. In addition, there are
problems with their generalization capability and there is a lack of
guarantee that the solution for an image pair belongs to the transfor-
mation model even though solid clues that the model can be considered
to converge are provided.

Neural Ordinary Differential Equation based Optimization (NODEO)
for deformable image registration was recently proposed as a fresh
deep-learning approach to the problem of non-rigid and diffeomorphic
registration [23]. This method is based on neural ordinary differen-
tial equations (NODEs) [24], a promising approach in the field of
Scientific Computing cross-fertilized with machine learning to model
ordinary differential equations using neural networks [25]. NODEO
departs from the LDDMM energy minimization problem and proposes
the use of a NODE for the solution of the transport equation. This
way, stochastic gradient descent leads the optimization of the loss
function which allows to learn the model for the right-hand-side of
the transport equation using an implicit neural representation, and, by
solving the corresponding ODE, the solution to the image registration
problem. With NODEO, learning is specific to every image pair and the
hardware requirements are greatly reduced during training. The nature
of the approach increases the guarantee that the solution gets close
to the transformation model. Overall, NODEO has shown exceptional
accuracy at the cost of increasing the computational time to the order of
minutes. NODEO source code is available in the GIT repository https://
github.com/yifannnwu/NODEO-DIR. From a deep analysis of NODEO
(method formulation and codes), we can witness theoretical and imple-
mentation details that make NODEO depart slightly from the original
LDDMM formulation.

The purpose of our work is to close up NODEO original formulation
to LDDMM by including LDDMM original regularizer into the loss func-
tion and embedding some theoretical justifications into the LDDMM
theory. In addition, we provide a successful approximation of two
variants of PDE-LDDMM [26] with NODEs. Table 3 in the Appendix
shows a diagram of the methodological landscape of our work. With
respect to the original NODEO, our proposed methods show an im-
proved compromise between accuracy and transformation smoothness.
In addition, our proposed methods greatly outperform their traditional
counterparts and the most popular deep-learning approaches yielding
diffeomorphic or nearly diffeomorphic solutions.

Our manuscript proceeds as follows. Section 2 provides an overview
of the theory behind LDDMM and presents our extension to NODEO-
LDDMM. Section 3 revisits the most relevant PDE-LDDMM methods
and presents our two NODEO-PDE-LDDMM variants. Section 4 shows
the evaluation study conducted with our proposed methods. Finally,
Section 5 gathers the most relevant conclusions from our work.

2. LDDMM and NODEO-LDDMM formulations
2.1. LDDMM

Let I, and I, be the moving (source) and fixed (target) images
representing the input of the image registration problem. In the contin-
uous domain, the images are represented by square-integrable functions
I, : 2 - R, where 2 is a rectangular domain in R?. For volumetric
images, d = 3. Dif f(£) represents the Riemannian manifold of smooth
diffeomorphisms on Q. V is the tangent space of the Riemannian

structure at the identity diffeomorphism, id. V' is a space of smooth
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vector fields on Q. Dif f(2) has a Lie group structure, and V is the
corresponding Lie algebra.

Large Deformation Diffeomorphic Metric Mapping (LDDMM) was
proposed by Beg et al. in 2005 [5]. The LDDMM problem is approached
with a variational formulation from the minimization of the energy
functional
E(W) = Eny(0) + 75 Eynglg 097 1)) )
where ¢! : @ - R is the diffeomorphic transformation that warps
the moving [, into the fixed I, image, the total energy E is decomposed
into the regularization E., and the image similarity metric E;,,, and
01—2 is the weight of the contribution of E, and E,, to E.

LDDMM assumes that transformations live in an appropriate Rie-
mannian manifold of diffeomorphisms, Dif f(£2). The Riemannian met-
ric of Dif f(2) is defined from the scalar product in V'

(v, w)y = (Lv, Lw);» = (L' Lv,w) ;> = /(LTLu(x), w(x))d K, )
Q

where L = (Id — ad)®, a > 0, s € R is the invertible self-adjoint differ-
ential operator associated with the differential structure of Dif f(£2).
The metric is right-invariant with respect to the composition of diffeo-
morphisms. V is a Reproducing Kernel Hilbert Space (RKHS) of vector
fields.

Instead of defining the energy directly on ¢~!, the variational
problem is parametrized by v, € L*([0, 1], V), where v, is a time-varying
velocity field that represents the tangent vectors along the path of
diffeomorphisms ¢, with beginning in the identity ¢, = id and end
in ¢, = ¢, yielding the minimum energy solution for the LDDMM
problem. The transport equation

de,
7 =v,0¢, 3

corresponds with the Riemannian exponential map between the ele-
ments in V and the corresponding elements in the manifold of dif-
feomorphisms Dif f(£2). The inverse exponential map between the
elements in Dif f(£2) and V is the Riemannian logarithm. In Dif f(£),
computing or approximating the logarithm is notably challenging due
to the complexity of the manifold structure and the nonlinearity of the
problem.
In LDDMM, the regularization energy is defined from

1
Eyey0) = /0 loy I3 dt, @

where || - ||f/ = (-,-)y. Thus, the length of the path of diffeomor-
phisms ¢, is given by E,,(v). Under the exact matching assumption
at convergence, Eimg(IOO(p",I 1) = 0 and the solution v, yields a
flow of diffeomorphisms ¢, which is a geodesic in Dif f(£2) with the
Riemannian metric. This is the motivation below the word “metric” in
LDDMM. In practice, the matching is not exact and the solutions depart
slightly from belonging to geodesic paths.
The image similarity energy is defined from

Emg(go o™ 1)) = llgo o™ = 11113, 5)

although the energy minimization approach is amenable to the most
commonly used image similarity metrics in medical image registration
problems, such as normalized cross-correlation (NCC), its localized ver-
sion (INCC), mutual information (MI), and normalized gradient fields
(NGF) [27-29].

Gradient-descent is used in the optimization process. The derivation
of the gradient V, E(v) is obtained from the Hilbert space structure
of V and the relationship between Géiteaux derivatives and Fréchet
differentials. Let the velocity field v be perturbed along the direction
h. The Gateaux variation is given by

1
Eor - BO) /0 (VoEp. hy)ydt. 6)

onEw) = iy L5
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The derivation can be obtained from the Gateaux variations of the
regularization and the image similarity energies. The Gateaux variation
of the regularization is given by

ahEreg(U)=2/Ol(U,,h,)de. )
The Géateaux variation of the image similarity is given by

O Eimg(v) = % /Ol (Igo g — 11, DIyo g 0pdy o) 2dt, (8)
Using the notation trick ¢, = ¢,0¢;!, the diffeomorphism ¢, =
$ood;! = ¢7!. From the integral expansion of 9,¢, derived in [5]
and the change of variables ¢; ,(x) = y we get

Oy Eing (0) = /Ol(VuEimg,h,)th, ©)
where

VyEimg(v) = —%(LTL)—I (1D, g0 o — INVUgo b)) - (10)

Starting from v, = 0,7 € [0,1], the gradient-descent leads the
optimization toward a local minimum in the direction of the energy
gradient with the gradient-descent update equation

ot =0t — eV, E@D), an
where

2 _
V,E(v,) =2v, - ;(L*L) " (1D, 1 |(Ty 0 g — TNV 0 b)) - (12)

While for gradient-descent the optimization is sensitive to the initial
selection and refinement strategy of parameter e, Gauss-Newton is
typically able to converge to acceptable local minima with ¢ = 1.0.
In addition, the method shows a super-linear convergence rate, which
increases the efficiency of the optimization despite the extra burden in
the computation of the Hessian [16].

The time-varying parametrization of the velocity fields of the LD-
DMM problem was replaced with a constant in time parametrization
using stationary or steady velocity fields [16]. Due to the computational
efficiency, the stationary parametrization has been extensively adopted
in modern deep-learning approaches [22,30-32].

2.2. NODEO-LDDMM

NODEO stands for Neural Ordinary Differential Equation Optimiza-
tion. The method was proposed in [23] as a fresh learning-based
approach to the non-rigid registration problem using Neural Ordinary
Differential Equations (NODEs). NODEs were first proposed in [24] as
a learning-based approach to ODE solvers. The method is inspired by
the analogies between the Euler method and ResNet [33] and replaces
the residual network itself with a function leading the depth of the
neural network from discrete to infinite dimension thus leveraging the
accuracy of the solvers. We proceed to describe the formulation of our
proposed NODEO-LDDMM and discuss the differences with respect to
NODEO-CVPR22.

Given an ODE in the shape of
2 = fow.n, 13)
with initial condition y(t)) = y,, neural ODEs aim at learning the
function f parametrized by 0 in the shape of a neural network. Thus,
the objective is to learn f,, from

d
= foz0.) (14)
where
5!
z(t) = zg +/ fo(z(®),1), (15)
0]
and

I
L(z(t) =L (zo +/ fo(z(®), t)dt> (16)
fo
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is used as a loss function.

NODEO-LDDMM approaches the ODE solver of the original LDDMM
problem with NODEs. Thus, the solution of the transport equation is
estimated by the NODEs

ddy,

5 = az

where, similarly to Eq. (15),

bo.s = boo + / V! (o, )dr. (18)
0

Notice the correct analogies between the transport equation in [5] and
Eq. (17). The approach also allows computing the solution ¢, of the
transport equation

de, s
_dt,o = —0! (), where ¢ = ¢ +/0 0] ()1, 19)

yielding ¢! at time 1, and also learn a function representation of the
right-hand-side of the transport equation —v, o ¢, through a neural
network —v%(¢; o).

The loss function in NODEO-LDDMM is

1
LIy, 1, 0%, 0) = £reg(U,9(¢r,o)) + Lm (Io’ I, ¢op + / —U,g(¢r,0)df> .
0

(20)

The image similarity in L,
borrowed from previous proposals [22,23,30,34]

is INCC while the regularization £, is

reg

Ereg = )“lddmm[:lddmm + }‘grad['grad + AJdel EJdel’ (21)

where

1
Elddmm = A ” Uf(d)t,())”%/dla

Egrad = ”V¢1,0”iy_, and
Lyger = /(maX(O, —J4, () +€)dQ, (22)
o .

where € < 1.

It should be noticed that the regularization in LDDMM is imposed
on v, while in NODEO-LDDMM the regularization Ly, is imposed
on —uf(q.’),yo) which is a neural network representation of the right-
hand-side —v, o ¢, . Expanding the L4, expression and applying the
change of variable ¢, ,(x) = y we get

1
Liggmm = /0 (0 0 6,0(0), 0¥ 0 b, () dxdt =

1
/0 [ D, (DI (3), V0 (»)y dydt. (23)

In the case that | D¢y,(y)| > 1 and for the same regularization energy or
loss, the norm ||vf(y)[|?. in NODEO-LDDMM would be smaller than in
LDDMVM, leading to less deformation for ¢, ,. Conversely, if | D¢y ,(y)| <
1, the norm in NODEO-LDDMM would be larger than LDDMM, resulting
in more deformation for ¢,,. The regularization in NODEO-LDDMM
needs to be applied to —uf(q&,,o) and we need to accept the subtle
difference between LDDMM and NODEO-LDDMM regularization and
the effect in the amount of deformation.

Regarding the Jacobian loss, £y, the case of J; (x) > e holds
L4t = 0. For Jacobian values ranging from ¢ to negative values,
the Jacobian loss increases proportionately. Therefore, the Jacobian
loss promotes convergence towards models in which the diffeomor-
phism ¢, ; should exhibit more controlled contractions while avoiding
foldings.

Training is conducted for each registration pair. Starting from a
random initialization of —1?(¢, ), forward and backward propagation
iteratively improve the estimation of the network parameters 6 accord-
ing to the minimization of the loss function given in Eq. (20). This is
a main difference between NODEO-LDDMM and other deep-learning
approaches so far like VoxelMorph [22], SymNet [30], LapIRN [31],
SynthMorph [35], or TransMorph [32].
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2.3. NODEO-LDDMM vs. NODEO-CVPR22

The main differences between NODEO-LDDMM and NODEO-
CVPR22 involve the use of the LDDMM regularizer E., as a loss
function L44,,,. In addition, the authors claim the need to apply a
Gaussian kernel in the last layer of the CNN architecture and they
use the term va in Egs. (19), (20), and (22). Based on empirical
observations, this could be attributed to NODEO-CVPR22 architecture
without K not being sufficiently capable of learning smooth models
from the regularization losses. Assuming that the Gaussian kernel is the
RKHS operator of the transformation model, then the variable vf would
actually represent the momentum of the velocity field and the network
parameters would be adjusted to learn the momentum, not the velocity
field. A more elegant explanation is that auto gradient is computing the
gradient of the loss function in the space of L? functions, however, the
gradient needs to be computed in V' [5]. Then, the use of a Gaussian
kernel in the last layer of the CNN architecture is a transformation of
the L? differentials into V differentials considering a Gaussian RKHS
structure of V. Therefore, NODEO-LDDMM provides a formulation for
the problem more consistent with LDDMM theory.

Analyzing the codes available in the GIT repository https://github.
com/yifannnwu/NODEO-DIR, two remarkable implementation details
come to light. First of all, the authors used a stationary parametrization
for the NODES. This means that vf does not depend on time and the
authors are solving the problem for the stationary parametrization.
Second, the computation of the inverse of the exponential mapping

log : Dif f(Q2) >V, ¢, - v, (24)

is needed for the computation of the regularization loss. This is circum-
vented with the rough approximation

U R Py — @y (25)

that introduces an intrinsic error in the solutions. With NODEO-
LDDMM we propose to use the result of the forward pass of the neural
network.

To establish a fair comparison between both methodologies, we
used the same CNN architecture as in NODEO-CVPR22 (replacing K
operator with (LYL)~!). In future work, we will explore the effect of
non-stationary NODE solvers, time-dependent CNNs, and other model
architectures such as transformers [36] or Multi Layer Perceptrons
(MLP), widely used in implicit representations [37-39].

3. PDE-LDDMM and NODEO-PDE-LDDMM formulations

PDE-LDDMM consists of a formulation analytically but not nu-
merically equivalent to Beg et al. LDDMM using an optimal con-
trol approach [11,12]. The fundamental constraints in PDE-LDDMM
are derived from the inverse consistency identity, qﬁoiy,oqﬁa} = id,
that, together with the transport equation yield the deformation state
equation

ar¢r,o + D¢t,0 cU = 0 (26)

with initial condition ¢, = id [5]. Depending on the desired model of
constrained deformations, alternative equations can be incorporated to
the constrained variational formulation such as the incompressibility
constraint [13] or the EPDiff equation [40], among others.

3.1. PDE-LDDMM based on the image state equation

The original PDE-LDDMM method proposed by Hart et al. in [11]
approached the LDDMM problem with a constrained variational for-
mulation where the constraint was based on the restriction of the
deformation state equation from maps to images. Let m(f) represent
the warped images I,o ¢, . Thus, the problem is defined from the
minimization problem

1
_ 2 1 2
E0 = [+ Slm - 112, @)
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subject to
om, +Vm, -v, =0 (28)

with initial condition m(0) = I, (see the analogy with Eq. (26)). The

differentiation of the augmented Lagrangian with respect to the state

variable m and its adjoint variable A yield the optimality conditions
o,m, + Vm, - v, = 0,m(0) = I, (forward)

2 (29)
=0,y =V - (4 v) = 0.4(1) = (I, = m(1)) (backward),

and the gradient (in L?) needed for gradient-descent optimization
V2E@W)=2L Lo+ AVm. (30)

From the optimal control point of view, v is the control, m is the
state, and 4 is the adjoint variable. The objective of the PDE-LDDMM
approach was to avoid the expensive computations in the deformation
space by the translation of the computations to the image space through
the solution of the image state equation.

3.2. PDE-LDDMM based on the deformation state equation

Inspired by the previous PDE-LDDMM contributions, Hernandez
successfully explored the idea of obtaining more stability and accuracy
by relying on the deformation state equation [26,40,41]. The author
proposed two different methods, one using the expressions of the state
and adjoint variables that can be derived from the equivalence between
Hart et al. PDE-LDDMM [11] and original LDDMM [5]. The second one
directly imposed the deformation state equation as a constraint.

Thus, the first method (PDE-LDDMMy; o) uses the deformation state
equation (Eq. (26)) for the computation of the forward and inverse
paths, ¢, and ¢,

01910+ Do - v, =0,

id (forward)

3D
—0,¢0, — Doy, - v, = 0, ¢ = id (backward),
and then it uses the expressions
J, t :|D¢0,[|
m(t) =Iyo ¢, (32)

A1) =J,4(1) 0 by,

in the computation of the gradient V;, E(v) from Eq. (30).
The second method (PDE-LDDMM ¢ eq) solves Eq. (27) subject to
the forward equation in Eq. (31). The differentiation of the augmented
Lagrangian with respect to the state variable ¢ and its adjoint variable
p yield the optimality conditions
0,90+ Do, - v, =0, = id (forward)

(33)
—0,0,—V - (p, - v;) = 0, p(1) = A(1) - Vm(1) (backward),

and the gradient needed for gradient-descent optimization is, in this
case,

V2E@)=2L Lo+ D¢ - p. (€D)]

Originally, Runge-Kutta was used for the computation of the so-
lutions of the ODEs. The equations for Semi-Lagrangian integration
were derived in [41]. They improved the stability of the solvers while
reducing the complexity with the number of time steps. Both methods
outperformed PDE-LDDMM based on the image state equation (the
method in Section 3.1).

3.3. NODEO-PDE-LDDMM

We propose to depart from traditional PDE-LDDMM approaching
the ODE solvers of the equations in PDE-LDDMM ., and
PDE-LDDMMge oq Wwith their corresponding NODEs. Thus, in
NODEO-PDE-LDDMM; o, We compute the solutions ¢,, and ¢, (Egs.
(31)) using a forward and a backward NODE, respectively. Then, the
variables J,, m(t), and A(f) are computed from Eq. (32) using the
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Table 1
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Baseline methods, NODEO-LDDMM and NODEO-PDE-LDDMM. Quantitative results on NIREP and OASIS-L2R22. Mean and standard deviation of the Dice Similarity Coefficient
(DSC), maximum and minimum of the Jacobian determinant, number and percentage of negative Jacobian determinants, and standard deviation of the logarithm of the Jacobian
determinant for those points with positive values. The arrows indicate that high DSC values while not extreme Jacobian determinant values are preferable. Boldface indicate,
for each family of methods, the one with the best compromise between DSC average and minimum Jacobians > —0.10, which is a reasonable threshold for nearly diffeomorphic
solutions. For NODEO methods, the value of the regularization parameter « is indicated.

NIREP

Method DSC (%) 1 max (J) | min (J) 1 #of |J,/<0 1 SDlogJ |
Affine 43.56 +1.94 - - - -

VM-GIT 2021 61.35+224 12.48 +2.17 0.04 + 0.06 6 (< 0.01%) 0.28 +0.01
SyMNet-Diff 61.13 +2.24 1527 £2.25 -0.15+0.27 29 (< 0.01%) 0.31+0.01
LapIRN-Diff 60.44 +1.23 6.66 +0.78 0.16 +0.03 0 0.22 +£0.01
TransMorph-BSpl IXI 58.95 + 1.69 10.63 + 1.90 0.06 +0.02 0 0.28 + 0.00
ANTS 60.24 +1.35 4.11+£0.39 0.24 +£0.03 0 0.15 £ 0.00
StLDDMM 62.10 +1.54 15.09 +4.46 0.02 +0.22 39 (< 0.01%) 0.27 £ 0.01
PDE-LDDMMy;, eq 60.11 +2.81 7.41 +£3.56 0.01 +£0.01 0 0.23 +0.02
PDE-LDDMMf ¢q 60.92 +1.88 15.59 +5.89 0.05 +0.03 0 0.24 +0.03
NODEO-CVPR22 63.74 +£0.90 11.02 £2.69 -0.19+0.12 776 (0.014%) 0.28 £ 0.01
NODEO-LDDMM 0.0001 6525 +1.52 13.17 £3.26 —0.78 £ 0.37 4157 (0.077%) 0.31+0.02
NODEO-LDDMM 0.00025 64.39 + 1.50 11.22 +3.07 -0.29 +0.23 1383 (0.025%) 0.29 +0.02
NODEO-LDDMM 0.0005 62.83 +1.25 8.93 +1.50 —0.06 +0.12 242 (< 0.01%) 0.28 +0.01
NODEO-LDDMM 0.0010 60.01 +1.83 6.64 +1.09 0.10+0.12 1 (<0.01%) 0.26 +0.02
NODEO-PDE-LDDMV;; o, 0.0001 65.26 + 1.73 14.02 +2.86 —0.65 +0.34 4243 (0.079%) 0.31 +0.02
NODEO-PDE-LDDMM, eq 0.00025 63.95+1.78 1091 +3.27 —0.30+0.32 1077 (0.022%) 0.27 +0.02
NODEO-PDE-LDDMM, eq 0.0005 62.64 +1.32 8.55+1.41 —0.01+0.07 100 (< 0.01%) 0.27 +0.00
NODEO-PDE-LDDMV;; o, 0.0010 60.21 + 1.72 6.54 +0.98 0.09 +0.07 10 (< 0.01%) 0.27 +0.00
NODEO-PDE-LDDMM,;.¢ eq 0.0001 63.81 +£5.82 11.67 + 3.89 —0.50 + 0.47 3304 (0.061%) 0.28 +0.07
NODEO-PDE-LDDMM ¢ eq 0.00025 6428 +1.75 10.88 +2.56 -0.26 +0.12 1101 (0.020%) 0.28 +£0.01
NODEO-PDE-LDDMM¢ ¢, 0.0005 62.75 +1.46 9.63 +3.07 —0.06 + 0.08 236 (< 0.01%) 0.27 £ 0.00
NODEO-PDE-LDDMM,;.¢ eq 0.0010 60.25 + 1.40 6.53 +£0.85 0.09 +0.05 1 (<0.01%) 0.26 + 0.00
OASIS-L2R22 validation set

Method DSC (%) 1 max (J) | min (J) 1 #of |J,/<0 1 SDlogJ |
Affine 57.18 £5.17 - - - -

VM-GIT 2021 7525 £3.77 26.61 + 11.66 0.03 +0.02 4 (< 0.01%) 0.32 +0.04
SyMNet-Diff 77.78 +2.66 18.82 +3.78 -0.11+0.24 30 (< 0.01%) 0.34 +0.01
LapIRN-Diff 77.03 +3.18 4.56 +1.25 0.24 +0.05 0 0.15+0.01
TransMorph-BSpl IXI 77.04 +2.54 14.65 +4.59 —0.09+0.18 105 (< 0.01%) 0.32+0.01
ANTS 77.07 £3.49 4.36 +0.67 0.23 +£0.04 0 0.18 £ 0.01
StLDDMM 77.47 +2.81 32.16 +£70.55 -0.52 +1.05 2976 (0.051%) 0.30 +0.05
PDE-LDDMMy;, e 73.30+£5.32 11.51 +6.83 0.00 +0.01 0 0.26 + 0.04
PDE-LDDMMg¢ eq 76.12 +2.61 47.39 + 80.02 0.08 +0.03 0 0.22 +0.02
NODEO-CVPR22 79.20 +2.56 18.43 £5.40 -0.43 +£0.22 7438 (0.129%) 0.41+£0.03
NODEO-LDDMM 0.0001 80.37 +2.70 29.74 +13.42 —-1.30+0.54 25320 (0.440%) 0.50 + 0.06
NODEO-LDDMM 0.00025 79.76 +2.55 22.51+7.39 —0.62 +0.24 11402 (0.198%) 0.43 +0.04
NODEO-LDDMM 0.0005 78.96 + 2.44 16.65 + 8.81 -0.26 +0.15 3705 (0.064%) 0.38 £0.03
NODEO-LDDMM 0.0010 7745 +2.43 11.38 +5.87 —0.04 +0.08 1062 (0.018%) 0.35+0.02
NODEO-LDDMM 0.0015 75.01 £4.76 7.33+£3.02 0.09 £0.24 537 (< 0.01%) 0.31 +£0.08
NODEO-LDDMM 0.0025 74.60 + 2.80 5.76 +1.98 0.10 +£0.08 266 (< 0.01%) 0.32 £ 0.02
NODEO-PDE-LDDMM, eq 0.0001 80.37 +2.63 28.98 +10.17 —-1.18+£0.25 26310 (0.458%) 0.50 +0.05
NODEO-PDE-LDDMM, eq 0.00025 79.74 +£2.52 23.89 +10.61 —0.66 + 0.30 10532 (0.183%) 0.42 +0.03
NODEO-PDE-LDDMV;; ., 0.0005 78.87 +£2.35 15.44 +5.55 —0.21+0.11 2975 (0.051%) 0.37 £0.02
NODEO-PDE-LDDMM, eq 0.0010 7724 +£2.55 10.81 +5.39 —0.04 + 0.06 990 (0.017%) 0.34 +0.02
NODEO-PDE-LDDMM, eq 0.0015 7622 £2.74 8.38 +4.21 0.01 £0.08 811 (0.014%) 0.34 +£0.03
NODEO-PDE-LDDMV;; , 0.0025 74.18 +3.04 5.82+2.12 0.11 +£0.08 0 0.31 +0.02
NODEO-PDE-LDDMM,;¢ eq 0.0001 80.33 +2.59 30.75 + 16.60 —-1.25+0.28 25471 (0.443%) 0.50 + 0.04
NODEO-PDE-LDDMM¢ eq 0.00025 79.88 +2.47 23.67 £11.06 -0.55+0.21 10178 (0.177%) 0.42+0.03
NODEO-PDE-LDDMM ;¢ eq 0.0005 78.77 +£2.64 16.18 + 8.17 -0.27 +0.21 3479 (0.060) 0.37 +0.03
NODEO-PDE-LDDMM,;.¢ eq 0.0010 77.38 +2.43 10.60 +4.79 —0.01 +0.06 629 (0.010%) 0.34 +0.02
NODEO-PDE-LDDMM ¢ eq 0.0015 76.17 £ 2.66 8.09 +3.34 0.03 £0.09 573 (0.011%) 0.33+£0.03
NODEO-PDE-LDDMM¢ ¢q 0.0025 73.12 £ 6.38 5.76 +£2.55 0.16 +£0.21 3 (< 0.01%) 0.30 +0.07
OASIS-L2R22 test set

Method DSC (%) 1 max (J) | min (J) 1 #of [Jy <0 SDlogJ |
Affine 58.61 +£5.09 - - - -

VM-GIT 2021 77.66 +£2.93 23.69 +9.58 0.00+0.13 2 (<0.01%) 0.28 +0.03
SyMNet-Diff 78.71 +2.57 21.74 £7.15 —0.10 = 0.20 53 (< 0.01%) 0.34 +0.02
LapIRN-Diff 78.45 +2.23 4.52+1.12 0.23 +£0.05 0 0.16 + 0.01
TransMorph-BSpl IXI 77.78 £ 1.49 13.13 +2.87 —0.05+0.10 199 (< 0.01%) 0.32+0.01

(continued on next page)
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Table 1 (continued).
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ANTS 79.21 £ 1.89 4.65+1.07 0.22 +0.04 0 0.19 +0.02
StLDDMM 78.49 + 1.77 16.55 +17.86 -0.35+0.83 3480 (0.06%) 0.29 +0.04
PDE-LDDMM; q 75.98 +£2.67 13.82 £ 15.70 0.01+0.01 0 0.28 +0.03
PDE-LDDMM et ¢q 76.30 +2.36 18.25 £ 17.67 0.09 +0.04 0 0.26 + 0.02
NODEO-CVPR22 79.96 +1.52 18.47 +£6.24 —0.46 +0.21 16927 (0.29%) 0.42 +0.04
NODEO-LDDMM 0.0001 80.91 + 1.66 29.11 £ 12.21 -1.37+0.62 50964 (0.89%) 0.50 +0.08
NODEO-LDDMM 0.00025 80.38 + 1.61 19.54 + 8.05 —0.63 +0.31 20106 (0.35%) 0.42 +0.04
NODEO-LDDMM 0.0005 79.43 +1.59 14.63 +7.67 -0.22+0.14 5944 (0.10%) 0.37 +0.04
NODEO-LDDMM 0.0010 78.03 +1.59 9.66 + 4.34 —-0.03 +0.10 2036 (0.04%) 0.35+0.03
NODEO-LDDMM 0.0015 76.49 +2.67 7.34+2.71 0.09 +0.16 1046 (0.02%) 0.32+0.06
NODEO-LDDMM 0.0025 75.10 +£3.70 5.65 +1.86 0.14 +0.15 831 (0.01%) 0.31 +0.06
NODEO-PDE-LDDMN; ., 0.0001 80.20 +4.98 28.67 + 14.07 -1.27+0.77 49395 (0.86%) 0.49+0.11
NODEO-PDE-LDDMM; ., 0.00025 80.39 + 1.61 19.42 + 8.61 —0.61 +0.26 20668 (0.36%) 0.43 +0.05
NODEO-PDE-LDDMN; ., 0.0005 79.49 + 1.57 14.56 +7.52 -0.21+£0.12 6716 (0.12%) 0.37 +0.04
NODEO-PDE-LDDMMN; ., 0.0010 78.01 +1.63 9.59 +4.09 —-0.03 + 0.09 2051 (0.04%) 0.35+0.04
NODEO-PDE-LDDMM; 4 0.0015 76.73 £ 1.89 7.60 +3.37 0.06 + 0.09 1073 (0.02%) 0.33+0.03
NODEO-PDE-LDDMM; ., 0.0025 75.00 +3.72 5.66 +2.08 0.15+0.15 723 (0.01%) 0.31 +0.06
NODEO-PDE-LDDMM¢f ¢q 0.0001 81.00 + 1.62 29.22 +12.65 —1.40 £ 0.56 55729 (0.97%) 0.52 +0.08
NODEO-PDE-LDDMMg¢ ¢q 0.00025 80.44 + 1.54 19.80 +£7.48 —0.62 +0.26 23249 (0.40%) 0.43 +0.05
NODEO-PDE-LDDMM¢f ¢q 0.0005 79.47 £ 1.52 14.38 + 6.34 -0.24 +0.12 7489 (0.13%) 0.38 +0.04
NODEO-PDE-LDDMMj¢f ¢q 0.0010 77.81 + 1.80 9.40 +3.57 —-0.02 +0.10 1994 (0.03%) 0.34 +0.04
NODEO-PDE-LDDMM¢ ¢q 0.0015 76.42 £2.70 7.47 +3.04 0.08 +0.17 902 (0.02%) 0.32+0.06
NODEO-PDE-LDDMM¢ ¢q 0.0025 75.58 +1.82 5.84 +1.69 0.12 +0.07 643 (0.01%) 0.32+0.03

Table 2

NIREP16. Computation time and maximum VRAM memory usage achieved by the registration methods considered in our study. NODEO values are given for 300 iterations.

Method Metric Model timegpy (S) Peak VRAM (MBs)
VM-GIT 2021 SSD vxm_dense_brain_T1_3D_mse 8.05 3739
SyMNet-Diff INCC SyMNet_smo30_update_80 000 4.09 2888
LapIRN-Diff INCC LapIRN_diff_fea7? 3.16 5934
TransMorph-BSpl IXI INCC TransMorph_bspl_Validation_dsc0.750 19.29 2772
ANTS? INCC SyM-LDDMM 2065.24 2656
StLDDMM INCC LDDMM 30.42 2733
PDE-LDDMM; INCC State equation 183.89 6159
PDE-LDDMM¢f ¢q NCC Deformation equation 250.39 5899
NODEO-CVPR22 INCC Transport equation 76.10 5855
NODEO-LDDMM INCC Transport equation 68.99 6029
NODEO-PDE-LDDMM; ¢4 INCC State equation 252.35 11999
NODEO-PDE-LDDMM; o INCC Deformation equation 145.99 9233

2 In ANTS indicates that the computation is performed in the CPU and RAM.

solutions ¢, and ¢,,. The expression for v, is computed from the
approximation

v —%(LTL)‘l(AVm) (35)

previously used in the LDDMM literature [42]. This approximation
comes from the fact that, during optimization, V2 E(v) — 0, and then
the right-hand-side of Eq. (30) can be considered a rough approxima-
tion of v at the beginning of the optimization process that increases its
precision iteratively. Finally, the losses analogous to NODEO-LDDMM
are computed, backward propagation is performed, and the parameters
of the forward and backward NODEs are updated.

In PDE-LDDMMgef oq We compute the solutions of ¢, and p, in
Eq. (33) using a forward and a backward NODE, respectively. Notice
that ¢, is represented with a vector field while p, is represented with
a scalar field. Therefore, the network architectures and the forward
passes of the networks are different. Then, the expression for v, is
computed from the approximation

v ‘%(U‘ Ly (D¢ - p). (36)

The same reasoning as in Eq. (35) holds for its justification, although, to
our knowledge, this is the first time that it has been proposed. Finally,
the losses analogous to NODEO-LDDMM are computed, backward prop-
agation is performed, and the parameters of the forward and backward
NODE:s are updated.

Last but not least, our NODEO-PDE-LDDMM approach allows the
computation of v, directly from Eq. (35) or Eq. (36). Therefore, the

problem raised with NODEO-LDDMM and the estimation of the loga-
rithm map does not hold. The regularization loss £44um is defined on
v, in agreement with LDDMM regularization. The regularization loss
Ly1aq is also defined on Ve, . As in NODEO original formulation, INCC
is selected as the image similarity metric.

4. Results
4.1. Datasets

We have evaluated our proposed methods in two different datasets
extensively selected for the evaluation of non-rigid registration meth-
ods:

NIREP. The Non-rigid Image Registration Evaluation Project
(NIREP) was proposed in [43] for the evaluation of non-rigid regis-
tration. NIREP consists of 16 T1 Magnetic Resonance Imaging (MRI)
images. These images were acquired at the Human Neuroanatomy and
Neuroimaging Laboratory, University of Iowa. They were selected for
the NIREP project from a database of 240 normal volunteers. Datasets
correspond to young 8 males and 8 females with a mean age of 32.5 +
8.4 and 29.8 + 5.8 years, respectively. The images are skull-stripped and
aligned according to the anterior and posterior commissures. Images
are distributed with the segmentation of 32 gray matter regions at the
frontal, parietal, temporal, and occipital lobes. The most remarkable
feature of this dataset is its excellent image quality. The geometry of the
manual segmentations provides a specially challenging framework for
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Fig. 1. Volume overlap obtained by the registration methods measured in terms of
the Dice Similarity Coefficient (DSC) between the warped and the corresponding target
segmentations. Box and whisker plots show the distribution of the DSC values averaged
over the segmentations. The green line indicates the mean of the best benchmark
method (VoxelMorph for NIREP, TransMorph for OASIS val and SyMNet for OASIS
test) and the magenta line indicates the mean of NODEO-CVPR22, facilitating the
comparisons.

deformable registration evaluation. In this work, a subsampled version
of this dataset is used for the evaluation of the methods following
the guidelines in [16]. The images are subsampled reducing image
dimensions to 180 x 212 x 180. Subsampling is needed to be able
to run interesting but memory-demanding benchmark methods and to
maintain the continuity of the evaluation results shown in previous
works [40,41,44]. In our experiments, the first image is selected as the

source and warped to the remaining 15 images of the dataset.
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Fig. 2. RGB cube to facilitate the interpretation of the colormap used in the figures of
the displacement fields. It should be noticed that the origin of coordinates is located
at the center of the cube, therefore, displacements close to zero will be represented in

gray.

OASIS-L2R22. The open-access series of imaging studies, OASIS
(https://www.oasis-brains.org/), is a project aimed at making neu-
roimaging data sets of the brain freely available to the scientific com-
munity. OASIS is divided into different projects with a focus on the
study of the anatomical evolution of normal and diseased brains.
OASIS-L2R22 dataset is a small sample made of 416 3D T1 MRI scans
from different subjects. The dataset was proposed in the Learn2Reg
challenge with the intention to assess the performance of non-rigid
registration methods in the alignment of small structures of variable
shape and size from monomodal MRI [45]. There is no available infor-
mation regarding the sex or the age of the subjects. The original OASIS
images were pre-processed for the HyperMorph paper [46]. Prepro-
cessing included resampling and alignment to a common template and
skull stripping. The segmentations were automatically obtained using
FreeSurfer and SAMSEG from the neurite package (https://surfer.nmr.
mgh.harvard.edu/fswiki/Samseg). A total of 35 brain structures are
customarily used in the evaluation. The registration pairs are given by
the challenge organizers. The image dimensions are 160 x 224 x 192.

The validation set is made up of 19 image pairs while the test
set is made up of 39 image pairs. The validation set can be used
for the evaluation of non-rigid registration methods in the case that
the data has not been involved in the model design. For the test set,
the segmentations are not publicly available. To obtain the evaluation
metrics of non-rigid registration methods in the test set, the methods
should be implemented in Python and submitted to the challenge
platform through a docker before the challenge deadline. This means
rewriting the codes for traditional methods, typically built on C++ or
Matlab. For our work, we segmented the test images using SAMSEG
(accessed in March 2024). We observed that this version of SAMSEG
provides much more labels than the Learn2Reg segmentations and
there is a mismatch in the labels assigned to corresponding structures.
We manually combined and reassigned the labels to be mostly in
correspondence with the Learn2Reg segmentations. We validated the
differences of our segmentations in the validation set, getting only
slight differences with respect to Learn2Reg segmentations.

4.2. Benchmark methods

In this work, we selected the traditional LDDMM and PDE-LDDMM
methods closest to our work as benchmark methods. In addition, we
selected the most popular unsupervised deep-learning approaches with
available source code and models trained in the T1 MRI registration
problem, preferably with diffeomorphic variants. Since the number of
different LDDMM and PDE-LDDMM variants is considerable, and given
the prevalence of the stationary parametrization of diffeomorphisms in
unsupervised deep-learning approaches, we focused our study on the
evaluation of stationary variants. We selected as benchmark the best-
performing stationary versions of LDDMM and PDE-LDDMM in [29]
(NCC or INCC image similarity and Gauss-Newton—Krylov optimiza-
tion) and ANTS (INCC image similarity) [47]. From the deep-learning
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Fig. 3. NIREP. Sagittal view of the differences after registration I,0¢~' — I, in a representative experiment. Red arrows point out (in order of appearance) the parieto-occipital
sulcus, the corpus callosum, the parietal lobe, the central sulcus and the occipital lobe. These are the locations where the methods showed the most remarkable intensity differences.

methods we selected VoxelMorph [21], SyMNet [30], LapIRN [31] and
the B-Spline version of TransMorph [32]. NODEO-CVPR22 with the
default parameters was also selected as a benchmark [23].

4.3. Implementation details and parameters

The experiments were run on a machine equipped with one NVidia
GeForce RTX 3090 Ti with 24 GBS of video memory and an Intel
Core i7 with 64 GBS of DDR3 RAM. The C++ code of ANTS library
was used for the SyN method. The LDDMM codes were developed in
the GPU with Matlab. The Python codes available in the GIT reposi-
tory https://github.com/yifannnwu/NODEO-DIR served as a basis for
the implementation of our proposed methods.

For the traditional methods, we used the same implementation
and parameters as in [29]. All methods were embedded into a multi-
resolution scheme of three levels. Gauss-Newton and Gauss—-Newton—
Krylov were implemented with an efficient method for the update of
the step size based on offline backtracking line-search combined with
a check on Armijo’s condition. We used the stopping conditions in [12].
Otherwise, the optimization was stopped after 50 iterations in the case
of Gauss—Newton and after 5 inner x 10 outer iterations in the case of
Gauss-Newton—Krylov.

Regularization parameters were selected from a search of the op-
timal parameters in NIREP16 and OASIS datasets. Thus, we used ¢? =
1.0, s = 2, and a unit-domain discretization of the image domain . The
regularization parameter a was selected from a search of the optimal
parameter value in NIREP and OASIS-L2R22 validation datasets. The
details can be found in the Appendix.

ANTS was run with the following parameters
synconvergence="[50x50x50,1e-6,10]",
synshrinkfactors="4x2x1",
synsmoothingsigmas="3x2x1vox".

The selection of the number of iterations was in agreement with the
number of iterations used in Gauss-Newton and the number of inner x
outer iterations used in Gauss—Newton-Krylov optimization for PDE-
LDDMM. The selection of the Gaussian smoothing parameters resulted
in a minimal regularization with the objective of obtaining a maximal
image matching.

NODEO-CVPR22 was executed with the default parameters. The
mean filter was used as smoothing kernel. The number of time steps
was 2, yielding a stationary parametrization. The weighting parameters
were Aggmm = 0.0005, Agreq = 0.05, and Ajge, = 2.5. The same parameters
were used in NODEO-LDDMM and NODEO-PDE-LDDMM.
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Fig. 4. OASIS-L2R22. Sagittal view of the differences after registration I,o~' — I, in a representative experiment.

4.4. Evaluation metrics

In this study, we use the widely extended Dice Similarity Coefficient
(DSCQ) for the evaluation of the accuracy of non-rigid registration in the
task of atlas-based segmentation [48,49]. As a proxy to transformation
quality, we measure the invertibility and smoothness of the transfor-
mations using different metrics based on the Jacobian determinant
of the transformations (in the following, we use the word Jacobian
to refer to its determinant). Namely, we use the Jacobian extrema
(min and max), the number of negative Jacobians, and the standard
deviation of the logarithm of the positive Jacobians (SDlogJ). The
Jacobian extrema allow measuring the greatest changes in volume,
whether there are foldings in the transformations, and how aggressive
they are. The number of negative Jacobians allows measuring whether
there is a general tendency to fold, or foldings occur in a few isolated
examples. The SDlogJ allows measuring the uniformity of the amount
of deformation. In our evaluation, we depart from just showing results
of DSC accuracy, or recommending the methods yielding the best DSC
metrics. Instead, we analyze the compromise between accuracy and
smoothness depending on the values of the regularization parameter
a defining operator L in Eq. (2) in a similar way as conducted in [39].

In the last decade, we have witnessed a trend where the evaluation
of non-rigid registration is performed exclusively in terms of the DSC

accuracy. Some methods have become popular due to their high DSC
accuracies, obtained at the expense of reducing smoothness or giving
up invertibility. These accuracies are considered the only criterion to
prevail over the state of the art. It has been shown that properties
such as smoothness, invertibility, or statistics enabling are obtained at
the expense of reducing the DSC accuracy. Therefore, it is usual that
methods with these desirable properties are reported to be of inferior
performance, and the unfair use of DSC accuracy as the only criterion to
establish superior performance is not discussed in the evaluations pre-
sented in the literature. In [34] we tried to break this inercy proposing
the combination of segmentation overlap metrics with different metrics
reflecting the smoothness and invertibility of the transformations such
as the Jacobian extrema and the number of negative Jacobians. Our
proposal justifies the selection of the evaluation metrics used in this
work.

4.5. Evaluation results

Table 1 shows the mean and standard deviation of the DSC values
after registration and the measurements obtained from the Jacobians.
In addition, Fig. 1 shows, in the shape of box and whisker plots, the
statistical distribution of the DSC values after averaging across the 32
and 35 segmented structures for NIREP and OASIS, respectively.
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SyMNet-Diff

ANTS StLDDMM

NODEO-CVPR22 NODEO-LDDMM

LapIRN-Diff TransMorph-Bspl

PDE-LDDMMg eq PDE-LDDMMgef oq

NODEO-PDE-LDDMMg¢ ¢q ~ NODEO-PDE-LDDMM et o

Fig. 5. NIREP. Sagittal view of the displacement fields in a representative experiment. The RGB color map proposed in VoxelMorph paper is used for the color representation of

the vector fields (see Fig. 2). NODEO-LDDMM methods are shown with a = 0.0005.

SyMNet-Diff

ANTS StLDDMM

NODEO-CVPR22

NODEO-LDDMM

LapIRN-Diff TransMorph-Bspl

PDE-LDDMMg; oq DE-LDDMM g

-

NODEO-PDE-LDDMMgt oq NODEO-PDE-LDDMM ¢ eq

Fig. 6. OASIS-L2R22. Sagittal view of the displacement fields in a representative experiment. The RGB color map proposed in VoxelMorph paper is used for the color representation
of the vector fields (see Fig. 2). NODEO-LDDMM methods with are shown with a = 0.0010.

In NIREP database, all NODEO methods with « < 0.0005 reached
or overpassed the baseline established by the best-performing deep-
learning and traditional benchmarks in terms of the DSC. The min(J)-
max(J) range and the number of negative Jacobians were related

to the amount of regularization established with parameter a. The

methods with a 0.0005 may yield a good compromise between
high DSC and moderate Jacobian values. Although the number of
negative Jacobian reaches several hundreds, the minimum Jacobian
values indicate that the foldings are not aggressive, leading to nearly

diffeomorphic solutions. In this case, our proposed NODEO methods
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obtain competitive DSC values compared with VoxelMorph and StLD-
DMM. StLDDMM and NODEO-LDDMM perform similarly, and the two
variants of NODEO-PDE-LDDMM overpass PDE-LDDMM variants.

In OASIS database, all NODEO methods with « < 0.0010 reached
or overpassed the baseline of deep-learning and traditional methods
in terms of the DSC. In this case, the good compromise between high
DSC and moderate Jacobian values is obtained with &« = 0.0010. The
number of negative Jacobians greatly increased with respect to NIREP
results. The performance is competitive with the best deep-learning and
traditional benchmark methods. Again, the two variants of NODEO-
PDE-LDDMM surpassed PDE-LDDMM variants. The differences between
OASIS-L2R22 validation and test set in terms of the DSC were similar
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NODEO-CVPR22 NODEO-LDDMM

Fig. 7. Zoom of the displacement fields shown in Figs. 5 and 6 for the enhancement of the comparison between NODEO-CVPR22 and NODEO-LDDMM. The artifacts in NODEO-
CVPR22 flows are neatly appreciated in the left figures.

VM-GIT SyMNet-Diff LapIRN-Diff

ANTS StLDDMM PDE-LDDMMgy eq PDE-LDDMMgq¢ eq

NODEO-CVPR22 NODEO-LDDMM NODEO-PDE-LDDMMg¢ gq NODEO-PDE-LDDMM 4t oq

Fig. 8. NIREP. Sagittal view of the transformation grids in a representative experiment. NODEO-LDDMM methods are shown with a = 0.0005. The white arrows point out locations
where the similarities and differences among the methods can be neatly appreciated.
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VM-GIT LapIRN-Diff TransMorph-Bspl

StLDDMM PDE-LDDMMg¢ eq PDE-LDDMM

def eq

NODEO-CVPR22 NODEO-LDDMM NODEO-PDE-LDDMMg¢ ¢q NODEO-PDE-LDDMM ¢ eq

Fig. 9. OASIS-L2R22. Sagittal view of the transformation grids in a representative experiment. NODEO-LDDMM methods are shown with « = 0.0010. The white arrows point out
locations where the similarities and differences among the methods can be neatly appreciated.

NODEO-CVPR22
a = 0.0001 a = 0.00025 a = 0.0005 a = 0.0010

NODEO-LDDMM NODEO-LDDMM NODEO-LDDMM NODEO-LDDMM

NODEO-PDE-LDDMMg; eq NODEO-PDE-LDDMMg; cq NODEO-PDE-LDDMMg¢ cq NODEO-PDE-LDDMMg¢ cq

NODEO-PDE-LDDMMef q ~ NODEO-PDE-LDDMMgef oq ~ NODEO-PDE-LDDMMgef ¢q ~ NODEO-PDE-LDDMMgef o

Fig. 10. NIREP. Maximum intensity projection in the sagittal direction of the number of negative Jacobians obtained with NODEO methods through the 15 experiments.
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NODEO-CVPR22

o = 0.0001

a = 0.00025

NODEO-LDDMM

NODEO-PDE-LDDMMg¢ cq

a = 0.0005

NODEO-LDDMM

NODEO-PDE-LDDMMg¢ cq

NODEO-PDE-LDDMM ggf oq
o = 0.0010

NODEO-PDE-LDDMM ggf oq
o = 0.0015

NODEO-PDE-LDDMM ggf oq
o = 0.0025

NODEO-LDDMM

NODEO-LDDMM

NODEO-LDDMM

NODEO-PDE-LDDMDMgy eq

NODEO-PDE-LDDMMg¢ cq

NODEO-PDE-LDDMDMgy eq

NODEO-PDE-LDDMM gef o

NODEO-PDE-LDDMM gef o

NODEO-PDE-LDDMM gef o

Fig. 11. OASIS-L2R22 validation set. Maximum intensity projection in the sagittal direction of the number of negative Jacobians obtained with NODEO methods through the 19

experiments.

within the methods and consistent across them. The Jacobian extrema
remained within a similar min-max range. However, the number of

negative Jacobians increased considerably in the test set.

In both NIREP and OASIS, NODEO-CVPR22 outperformed in DSC
accuracy our selected configurations. However, this is at the cost of
greatly increasing the number of negative Jacobians and the minimum
Jacobian values. It is well-known that high regularization constraints
reduce the ability of a method from obtaining high DSC values while
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constraints leading to low regularization facilitate increasing DSC ac-
curacy. The performance of NODEO-CVPR22 in terms of DSC and
Jacobians is a consequence of a lower regularization.

4.6. Qualitative results

Apart from the quantitative evaluation, it is important to show some
illustrative examples for a qualitative assessment. Figs. 3 and 4 show
sagittal views of the differences after registration of the benchmark
and our proposed methods for the different « values. The methods
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NODEO-CVPR22

o = 0.0001

NODEO-PDE-LDDMMg¢ cq

« = 0.00025

NODEO-LDDMM

a = 0.0005

NODEO-LDDMM

NODEO-PDE-LDDMDMgy eq

NODEO-PDE-LDDMM gt oq
o = 0.0010

NODEO-PDE-LDDMM ggf oq
o = 0.0015

NODEO-PDE-LDDMM g¢f oq
o = 0.0025

NODEO-LDDMM

NODEO-LDDMM

NODEO-LDDMM

NODEO-PDE-LDDMMg¢ eq

NODEO-PDE-LDDMMg¢ eq

NODEO-PDE-LDDMMg¢ oq

NODEO-PDE-LDDMM j¢f oq

NODEO-PDE-LDDMM

NODEO-PDE-LDDMM

def eq def eq

Fig. 12. OASIS-L2R22 test set. Maximum intensity projection in the sagittal direction of the number of negative Jacobians obtained with NODEO methods through the 39

experiments.

reduce the differences after registration to different extents. Our pro-
posed methods are found within the methods with the smallest visual
differences. The intensity differences among the methods can be better
appreciated in NIREP database. The deep-learning methods are not
able to reduce intensity differences in the parietal lobe. In particular,
LapIRN-Diff and TransMorph-Bspl show notable intensity differences
all over the cortex, at the parieto-occipital sulcus, and the boundaries
of the corpus callosum. Traditional LDDMM methods show intensity
differences in a small area close to the central sulcus. The pattern of
differences of our proposed methods with « = 0.0005 is similar to
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traditional methods. Differences are mostly located in the parietal lobe
and the cortex boundary of the occipital lobe.

Figs. 5 and 6 show sagittal views of the RGB coded maps of the
displacement fields of the methods considered in this work. Fig. 2
shows the RGB cube for the interpretation of the colormaps. The visual
smoothness of traditional LDDMM methods can be also appreciated
in VM-GIT, LapIRN-Diff, and TransMorph-Bspl. While NODEO-CVPR22
flows exhibit artifacts typical of ODE numerical instabilities, our pro-
posed methods do not show such artifacts and the visual smoothness is
comparable with their traditional counterparts (see Fig. 7). In OASIS, it
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drives our attention the boundary artifact shown by the displacement
fields of the deep-learning methods in the cortex boundary of the
parietal and frontal lobes.

Figs. 8 and 9 show sagittal views of the transformation grids. The
visual exploration and zooming of the transformation grids is even
more informative than the visualization of the displacement fields.
Strong qualitative differences can be neatly appreciated in the figures.
White arrows point out some relevant ones. We can appreciate that
the deformation of traditional methods are concentrated in the central
brain structures, such as the corpus callosum, caudate nucleus, and
the ventricles. NODEO-CVPR22, NODEO-LDDMM, and NODEO-PDE-
LDDMM specialize in obtaining deformations not only in the central
structures but also all over the cortex, a challenging location for non-
rigid registration. Their patterns of deformation greatly differ from
their corresponding traditional methods. The transformations shown
by NODEO-CVPR22 in the corpus callosum region or the frontal re-
gion seem much less plausible than the transformations shown by our
proposed methods. The patterns of deformation in VM-GIT look much
more similar to StLDDMM and PDE-LDDMM than any of the NODEO
methods. This ability to capture deformations in the cortex could be
one of the reasons for the exceptional DSC accuracy shown in NIREP
evaluation.

Last, but not least, Figs. 10, 11, and 12 depict the locations of the
negative Jacobians obtained with NODEO methods throughout all the
registration experiments represented as maximum intensity projections
of an image displaying the count of negative Jacobians in the sagittal
direction. For NIREP, the negative Jacobians are primarily situated in
the cortex, a challenging region for diffeomorphic registration. Com-
pared with NODEO-CVPR22, the distribution of negative Jacobians for
our NODEO methods is reduced for our recommended « = 0.0005. For
OASIS-L2R22, NODEO-CVPR22 shows negative Jacobians spread across
the entire image. For our NODEO methods, the distribution of negative
Jacobians is significantly decreased for our recommended a = 0.0010.

4.7. Computational complexity

To give closure to our analysis, we show in Table 2 the time
and memory requirements of our proposed methods in comparison
with the benchmark methods. Regarding the memory requirements,
NODEO-CVPR22 and NODEO-LDDMM show similar values. They are
of the same order as LapIRN-Diff and PDE-LDDMM. On the contrary,
the memory requirements of both variants of NODEO-PDE-LDDMM
rise to the order of 10 GBs. Regarding time requirements, NODEO-
CVPR22 and NODEO-LDDMM take around one minute, while StLD-
DMM take around half a minute. The PDE-LDDMM version of NODEO-
PDE-LDDMM st eq takes around 68 s less. However, the PDE-LDDMM
version of PDE-LDDMM def eq is less efficient with around 71 s more.
Thus, our proposed NODEO-LDDMM can be considered a time-efficient
method with reasonable memory consumption. From NODEO-PDE-
LDDMV, the variant based on the deformation equation outperforms
the time efficiency of PDE-LDDMM methods. We will explore in fu-
ture work the improvement in complexity yielded by the band-limited
parametrization.

5. Conclusions

In this paper, we have introduced three different methods at the in-
tersection of LDDMM and PDE-LDDMM families and
deep-learning: NODEO-LDDMM, NODEO-PDE-LDDMMj o4, and
NODEO-PDE-LDDMMgs ¢q- By blending the well-established mathe-
matical formulation of LDDMM with the adaptability of NODEs to learn
the solutions of the ordinary differential equations, our proposed meth-
ods have bridged gaps regarding optimization robustness and accuracy
from traditional methods, and training complexity and generalization
capability from learning.
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Our method has been evaluated in NIREP and OASIS-L2R22, two
datasets posing complementary challenges to the non-rigid registration
problem. NIREP provides manual segmentations while OASIS-L2R22
provides automatically segmented structures. The results of our eval-
uation reveal that our proposed methods are able to compete with
traditional LDDMM and deep-learning-based techniques. Our qualita-
tive assessment has shown the superiority obtained with respect to
NODEO-CVPR22. Although our results show a solid proof of the poten-
tial of our methods in the problem of non-rigid registration, we believe
that regularization could be improved in order to get better control over
the number of negative Jacobians without reducing accuracy.

The main difference between NODEO methods and deep-learning
methods such as VoxelMorph, SymNet, LapIRN, or TransMorph is
that the neural networks in NODEO are specific for the given image
pair while deep-learning methods intensively train on a large dataset
of image pairs, and the resulting neural networks are intended for
computing the solution for every test image pair. In terms of compu-
tational efficiency, the inference of deep-learning methods is in the
order of seconds while the inference of NODEO methods is in the
order of minutes. However, NODEO methods are much easier to train.
Monitoring training gives information on the performance of the model
for the specific image pair. Indeed, the time complexity for NODEO
methods is in the order of minutes while for deep-learning methods
it ranges from hours to days. The memory complexity is much lower
for NODEO than deep-learning methods (the memory for training a
batch size of 1 is close to 24 GBs for VoxelMorph). Indeed, NODEO
methods are optimizing the networks specifically for the image pair.
Therefore, they have much greater generalization ability than deep-
learning methods. Increasing the generalization ability in deep-learning
methods goes through either training in a larger database or performing
instance optimization [50] and, in both cases, this is at the expense of
facing the problems with training complexity.

In future work, we will explore ways to increase the regularization.
We will also work on the extension of our methods from the stationary
to the non-stationary parametrization. This will involve adding the tem-
poral dimension to the networks and developing time-varying NODEs
in our methods. These enhancements will allow our systems to better
capture the evolution of the dynamics of the velocity fields over time.
We anticipate that the resulting models will offer great flexibility and
adaptability in addressing challenging image registration scenarios.

Moreover, we will explore the inclusion of physically meaningful
constraints in our NODEO-PDE-LDDMM framework, such as incom-
pressibility [13]. This will require the integration of physical laws
(such as conservation of mass) into the loss function, ensuring that
the learned dynamics respect the fundamental principles of physics.
Techniques like Lagrange multipliers or penalty losses could be used
to enforce incompressibility constraints during training. Furthermore,
we will investigate how these constraints can be generalized to other
physical properties, to make our PDE-LDDMM approach applicable in
different contexts. We believe that incorporating these physically in-
formed elements will not only improve the performance of our methods
but also increase their robustness, making them applicable to a broad
range of clinical problems.
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Appendix A. Methodological landscape of our proposed methods

Table 3 shows a diagram of the methodological landscape of our
proposed methods illustrating the main differences between NODEO-
CVPR22 and NODEO-LDDMM and between NODEO-LDDMM and
NODEO-PDE-LDDMM.

Appendix B. Algorithms

Algorithms 1 and 2 gather the steps for a gradient-descent version
of LDDMM and NODEO-LDDMM. Both algorithms share common steps
such as the computation of ¢:g', I o ¢, o, and the energy values. How-
ever, in the case of LDDMM the solution of the transport equation is
approached using Semi-Lagrangian or Scaling and Squaring solvers [16,
51,52]. In the case of NODEO, the solution is approached using Euler
solvers, and the right-hand-side of the equation is computed from the
NODE neural representation. The other fundamental difference is in the
optimization. In the case of LDDMM, the energy gradient is computed
from the expression analytically derived in [5] and used in the update
of v,. In the case of NODEO, the loss gradient is computed using
automatic differentiation and used to perform backpropagation and
update the neural representation of —vf(¢, ).

Algorithms 3 and 4 gather the steps for both variants of our NODEO-
PDE-LDDMM. Using the algorithm of NODEO-LDDMM as a backbone,
the algorithms compute the ingredients needed in the computation of
v, and backpropagation leads to the update of the right-hand-side of
the ODEs involved in both approaches.

Algorithm 1. LDDMM.

Data: I, I, '€V, L, K, o, e.
Results: v, € V, arg min of Eq 1.
for n < 0 to convergence do

1) Compute d):’;'(t) from the corresponding transport equation.

2) Compute I,o ¢, from I, and ¢/¢' ().

3) Compute D¢, ,|.

4) Compute V,E(v) from Eq 6.

5) Compute v/*' = v — eV, E(v,).

6) Compute the image similarity, the regularization energy, and the global
energy and check for algorithm convergence. Apply the selected line-search
strategy.
end
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Algorithm 2. NODEO-LDDMM.

Data: 1, I, (uf)o, L, K, o, n,.

Results: —v%(¢, ), arg min of Eq 12, ¢,,, solution of Eq 11 through the NODE
solver.

Build the NODE network. Initialize randomly —v?(¢, ).
for n < 0 to n;, do

1) Compute ¢"¢' from Eq 11.

2) Compute —v,(¢, ) from —v?(¢, ).

3) Compute I, 0 ¢,, from I, and qﬁ:’;‘ using a spatial transformer.

4) Compute the image similarity, the regularization losses, and the loss
function.

5) Perform backward propagation on —vf(¢,).

6) Update (—uf(¢, )"
end
Select the best-performing —v?(¢, ) according to the stopping strategy.

Algorithm 3. NODEO-PDE-LDDMM,; eq-

Data: Iy, I, (Do 0)") (Do, 1)), L, K, 0, my.

Results: v,, arg min of Eq 18 with INCC metric, ¢,, and ¢,,, solutions of Eq 22
through the NODE solvers.

Build the NODE network. Initialize randomly (D, - v,)’ and (D, - v,)°.
for n < 0 to n,, do
1) Compute qﬁ:’;‘ and ¢;*' through the NODE solvers.
2) Compute m(r) from Eq 23 using a spatial transformer.
3) Compute A(¢) from Eq 23 using a spatial transformer.
4) Compute v(r) from Eq 26.
5) Compute the image similarity, the regularization losses, and the loss function.
6) Perform backward propagation on (D¢, - v,)° and (D¢, - v,)°.
7) Update (D¢, - v,)?)"*! and ((Dgy, - v,)?)".
end
Select the best-performing ((Dg,, - v,)%)"*! and (D, - v,)°)"*! according to the
stopping strategy and provide as solution the associated v,.

Algorithm 4. NODEO-PDE-LDDMMgy; .

Data: Iy, I, (D,g - 0)")°, (V- (p, - v))"), L, K, 0, my.

Results: v, arg min of Eq 18 with INCC metric and ¢, solution of Eq 22 through
the NODE solver.

Build the NODE network. Initialize randomly (Dé,, - v,)’ and (V - (p, - v,))’.
for n < 0 to n,, do
1) Compute d):’;;' through the NODE solver.
2) Compute p(1) from Eq 24 using a spatial transformer for m(1).
3) Compute p(7) through the NODE solver.
4) Compute v(r) from Eq 27.
5) Compute the image similarity, the regularization losses, and the loss function.
6) Perform backward propagation on (D¢, - v,)’ and (V - (p, - v,))’.
7) Update (D¢, - v,)°)"*' and ((V - (p, - 0,))°)"1.
end
Select the best-performing (D¢, - v,)°)"*! and ((V - (p, - v,))?)"*' according to the
stopping strategy and provide as solution the associated v,.

Appendix C. Regularization in LDDMM and NODEO-LDDMM

In our study, regularization parameters were selected from a search
of the optimal parameter a in NIREP and OASIS-L2R22 datasets. In
this appendix, we present the details of the study conducted for such
selection. Table 4 shows the quantitative results in LDDMM and PDE-
LDDMM for the different values of the regularization parameter a.

In NIREP, the highest DSC values are obtained with & = 0.0005 or
a = 0.0010. However, looking at the Jacobian metrics we appreciate
that the regularization is too weak and some variants of the methods
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Journal of Computational Science 85 (2025) 102507

LDDMM and PDE-LDDMM. Quantitative results on NIREP and OASIS-L2R22 for the selection of the regularization parameter . Mean and standard deviation of the Dice Similarity
Coefficient (DSC), maximum and minimum of the Jacobian determinant, number of negative Jacobian determinants, and standard deviation of the logarithm of the Jacobian
determinant for those points with positive values. The abbreviation st eq is used for the PDE-LDDMM method based on the state equation. The abbreviation def eq is used for the
PDE-LDDMM method based on the deformation equation. The arrows indicate that high DSC values while not extreme Jacobian determinant values are preferable. In the column
failed J we indicate the number of experiments with failed Jacobian computation (extremely large max(J) values, > 1000, or nan) due to numerical issues with low regularization.
These values were removed from the computation of the corresponding Jacobian-based quantitative results.

NIREP

Method Metric a DSC (%) 1 max (J) | min (J) 1 #of |[J,/<0 1 SDlogJ | failed J
Stationary LDDMM INCC 0.0005 63.39 £ 1.62 - - - - 15
Stationary LDDMM INCC 0.0010 62.10 + 1.54 15.09 +4.46 0.02 +£0.22 39 0.27 +£0.01 -
Stationary LDDMM INCC 0.0015 60.85 + 1.47 15.09 +4.46 0.02 +£0.22 0 0.27 £0.01 -
Stationary LDDMM INCC 0.0025 58.98 +1.30 8.03 +1.94 0.19 +0.08 0 0.21 £0.01 -
PDE-LDDMM st eq INCC 0.0005 60.39 +2.46 11.78 +8.41 0.00 +0.01 0 0.24 +0.02 -
PDE-LDDMM st eq INCC 0.0010 60.11 +2.81 7.41 +3.56 0.01 +£0.01 0 0.23 +0.02 -
PDE-LDDMM st eq INCC 0.0015 60.19 +2.64 6.37 £2.43 0.02 +0.02 0 0.22 +0.02 -
PDE-LDDMM st eq INCC 0.0025 59.84 +2.53 5.17 £ 1.64 0.02 +0.02 0 0.21 +£0.02 -
PDE-LDDMM def eq NCC 0.0005 59.41 £4.47 9.56 +3.47 0.06 +0.03 0 0.23 +0.03 1
PDE-LDDMM def eq NCC 0.0010 60.92 + 1.88 15.59 +5.89 0.05 +0.03 0 0.24 +0.03 -
PDE-LDDMM def eq NCC 0.0015 60.67 +2.38 29.95 + 33.66 0.05+0.03 0 0.24 +0.01 -
PDE-LDDMM def eq NCC 0.0025 60.10 + 1.45 13.19 £ 10.59 0.09 +0.03 0 0.21 £0.01 -
OASIS-L2R22

Method Metric a DSC (%) 1 max (J) | min (J) 1 #of [J,/ <0 SDlogJ | failed J
Stationary LDDMM INCC 0.0005 78.55 +3.20 1062.09 + 1065.20 —217.73 +287.48 39300 0.63 +£0.12 -
Stationary LDDMM INCC 0.0010 78.35+£3.20 227.49 +235.54 —14.89 +41.82 6578 0.41 +£0.06 -
Stationary LDDMM INCC 0.0015 78.15 +2.87 75.27 + 132.66 —1.11+1.42 2729 0.34 +0.04 -
Stationary LDDMM INCC 0.0025 7747 +2.81 32.16 £70.55 -0.52 + 1.05 2976 0.30 +0.05 -
PDE-LDDMM st eq INCC 0.0005 73.64 +£2.99 33.00 +45.70 0.00 + 0.00 76 0.27 +£0.04 3
PDE-LDDMM st eq INCC 0.0010 71.19 +10.73 16.85 + 12.67 0.00 + 0.00 0 0.26 + 0.04 3
PDE-LDDMM st eq INCC 0.0015 7235+ 7.13 11.63 +7.13 0.00 +0.01 0 0.26 +0.03 1
PDE-LDDMM st eq INCC 0.0025 73.30+£5.32 11.51 +£6.83 0.00 +0.01 0 0.26 +0.04 1
PDE-LDDMM def eq NCC 0.0005 74.33 £6.19 533.71 +267.12 0.02 +0.01 0 0.32+0.03 9
PDE-LDDMM def eq NCC 0.0010 77.07 £2.72 116.90 +71.31 0.02 +0.02 0 0.30 +0.02 8
PDE-LDDMM def eq NCC 0.0015 77.14 £ 2.64 147.54 + 159.86 0.04 +0.02 0 0.27 +£0.02 4
PDE-LDDMM def eq NCC 0.0025 76.12 +2.61 47.39 + 80.02 0.08 +0.03 0 0.22 +0.02 -

show failed Jacobian computations, which is not desirable. From this
analysis, we selected a = 0.0010.

In OASIS-L2R22, PDE-LDDMM methods obtain the highest DSC
values with « = 0.0005 or « = 0.0015, while StLDDMM obtains the
highest DSC values with « = 0.0005. PDE-LDDMM is a fragile method
where the numerics for the computation of the Jacobian may explode
when using weak regularization parameters. Since the obtained DSC
values are still competitive with the best-performing regularizations,
we selected a = 0.0025 as an optimal regularization parameter.

In the case of NODEO based methods, we did not experience
failed Jacobian computations in any of the methods, even for a =
0.0001, which provided the weakest regularization. Therefore, the use
of NODEs in PDE-LDDMM yields a more robust optimization.

In addition, it drives our attention that the range for a selection
in NIREP should be between 0.0025 and 0.0005 for LDDMM, between
0.0010 and 0.0001 for NODEO-LDDMM and NODEO-PDE-LDDMM. In
OASIS-L2R22, the range changes between 0.0025 and 0.00025. There-
fore, the estimations of acceptable regularization ranges in LDDMM
cannot be extended to NODEO and viceversa.

Data availability

Data will be made available on request.
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