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A B S T R A C T
Non-rigid image registration is a crucial task in various medical applications, allowing the alignment of imageswith complex spatial or temporal variations. This paper introduces NODEO-LDDMM and NODEO-PDE-LDDMM,two innovative deep-learning-based approaches that bridge the gap between Large Deformation DiffeomorphicMetric Mapping (LDDMM) and neural ordinary differential equations (NODEs). LDDMM and PDE-LDDMMoffer mathematically well-established formulations for diffeomorphic registration, while NODEs provide theflexibility of deep-learning in the solution of the ODEs involved in both methods. Both NODEO-LDDMM andNODEO-PDE-LDDMM include the strengths of deep-learning into LDDMM, enabling a robust optimizationwith a good balance between accuracy and transformation smoothness in their solutions. Our proposedmethods reached or outperformed their traditional counterparts and the nearly diffeomorphic deep-learning-based approaches selected as benchmarks. This work contributes to advancing non-rigid image registrationtechniques, with a methodology suited to overcome some of the limitations of deep-learning in medical imageregistration.
1. Introduction
The non-rigid registration of images is the process of determiningthe transformation that best warps the source image into the targetimage according to convenient non-rigid transformation models andimage similarity metrics. Non-rigid image registration is a fundamen-tal stage in many different medical applications involving spatial ortemporal changes of anatomical or functional features [1–3].The variational formulation of the non-rigid registration problemfrom the minimization of an energy functional was inspired by Hornand Schunck method to solve optical flow [4]. The solutions to thenon-rigid registration and optical flow problems have evolved throughdecades, retaining the energy minimization approach as a backbone[3]. Large Deformation Diffeomorphic Metric Mapping (LDDMM)stands out for being a mathematically well-established approach to thenon-rigid registration problem through diffeomorphisms [5]. Diffeo-morphisms enable shape analysis from transformations and thus, theyconstitute the inception point of Computational Anatomy [6,7]. Theregistration quality, the high accuracy, and the convenience of smoothand invertible transformations for medical applications [8] have made
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diffeomorphic registration the target to reach by many research on non-rigid registration (e.g., the diffeomorphic versions of Demons [9] arepreferred over Demons [10]).The family of PDE-constrained LDDMM methods proposed in [11]and improved in [12,13] is especially interesting. PDE-LDDMM extendsthe ideas of optical Stokes flow [14] to the diffeomorphic setting. PDE-LDDMM has been used for modeling compressible and incompressiblediffeomorphisms, boundary-preserving nonlinear Stokes fluid diffeo-morphisms, and mass and intensity preserving diffeomorphisms [13,15]. The main acknowledged drawback of both LDDMM and PDE-LDDMM is in their time complexity, which is in the order of severalminutes for the most interesting models despite the substantial reduc-tions of the computational complexity yielded by the stationary or theband-limited parametrizations [16,17].Since the deep-learning explosion taking place in the second decadeof the XXI century, deep-learning solutions have been proposed tosolve a variety of computer vision and medical imaging problems.FlowNet [18] provided the first deep-learning solution to the optical
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flow problem and the working ideas were quickly adapted and ex-ended to the problems of non-rigid and diffeomorphic registrationn medical imaging [19,20]. Supervised deep-learning led to unsu-ervised approaches for non-rigid and diffeomorphic registration thatircumvented the costly need to compute ground truth transforma-tions for training and achieved inference times in the order of a fewseconds [21,22].In this case, the main limitation of unsupervised methods lies inhe huge amount of data, the prohibitive hardware requirements, andhe energy consumption needed during training. In addition, there areproblems with their generalization capability and there is a lack ofuarantee that the solution for an image pair belongs to the transfor-ation model even though solid clues that the model can be consideredo converge are provided.Neural Ordinary Differential Equation based Optimization (NODEO)for deformable image registration was recently proposed as a freshdeep-learning approach to the problem of non-rigid and diffeomorphicegistration [23]. This method is based on neural ordinary differen-ial equations (NODEs) [24], a promising approach in the field ofScientific Computing cross-fertilized with machine learning to modelordinary differential equations using neural networks [25]. NODEOeparts from the LDDMM energy minimization problem and proposesthe use of a NODE for the solution of the transport equation. Thisway, stochastic gradient descent leads the optimization of the lossfunction which allows to learn the model for the right-hand-side ofthe transport equation using an implicit neural representation, and, bysolving the corresponding ODE, the solution to the image registrationproblem. With NODEO, learning is specific to every image pair and thehardware requirements are greatly reduced during training. The naturef the approach increases the guarantee that the solution gets closeto the transformation model. Overall, NODEO has shown exceptionalaccuracy at the cost of increasing the computational time to the order ofminutes. NODEO source code is available in the GIT repository https://github.com/yifannnwu/NODEO-DIR. From a deep analysis of NODEOmethod formulation and codes), we can witness theoretical and imple-mentation details that make NODEO depart slightly from the originalLDDMM formulation.The purpose of our work is to close up NODEO original formulationo LDDMM by including LDDMM original regularizer into the loss func-ion and embedding some theoretical justifications into the LDDMMheory. In addition, we provide a successful approximation of twoariants of PDE-LDDMM [26] with NODEs. Table 3 in the Appendixshows a diagram of the methodological landscape of our work. Withrespect to the original NODEO, our proposed methods show an im-proved compromise between accuracy and transformation smoothness.In addition, our proposed methods greatly outperform their traditionalcounterparts and the most popular deep-learning approaches yieldingdiffeomorphic or nearly diffeomorphic solutions.Our manuscript proceeds as follows. Section 2 provides an overviewof the theory behind LDDMM and presents our extension to NODEO-LDDMM. Section 3 revisits the most relevant PDE-LDDMM methodsnd presents our two NODEO-PDE-LDDMM variants. Section 4 showsthe evaluation study conducted with our proposed methods. Finally,ection 5 gathers the most relevant conclusions from our work.
2. LDDMM and NODEO-LDDMM formulations
2.1. LDDMM

Let 𝐼0 and 𝐼1 be the moving (source) and fixed (target) imagesepresenting the input of the image registration problem. In the contin-ous domain, the images are represented by square-integrable functions
𝑖 ∶ 𝛺 → R, where 𝛺 is a rectangular domain in R𝑑 . For volumetricimages, 𝑑 = 3. 𝐷 𝑖𝑓 𝑓 (𝛺) represents the Riemannian manifold of smoothdiffeomorphisms on 𝛺. 𝑉 is the tangent space of the Riemannianstructure at the identity diffeomorphism, 𝑖𝑑. 𝑉 is a space of smooth
2 
vector fields on 𝛺. 𝐷 𝑖𝑓 𝑓 (𝛺) has a Lie group structure, and 𝑉 is thecorresponding Lie algebra.Large Deformation Diffeomorphic Metric Mapping (LDDMM) wasproposed by Beg et al. in 2005 [5]. The LDDMM problem is approachedwith a variational formulation from the minimization of the energyfunctional
𝐸(𝑣) = 𝐸r eg(𝑣) + 1

𝜎2
𝐸img(𝐼0 ◦𝜑−1, 𝐼1), (1)

where 𝜑−1 ∶ 𝛺 → R𝑑 is the diffeomorphic transformation that warpsthe moving 𝐼0 into the fixed 𝐼1 image, the total energy 𝐸 is decomposedinto the regularization 𝐸r eg and the image similarity metric 𝐸img, and
1
𝜎2

is the weight of the contribution of 𝐸r eg and 𝐸img to 𝐸.LDDMM assumes that transformations live in an appropriate Rie-mannian manifold of diffeomorphisms, 𝐷 𝑖𝑓 𝑓 (𝛺). The Riemannian met-ic of 𝐷 𝑖𝑓 𝑓 (𝛺) is defined from the scalar product in 𝑉

⟨𝑣, 𝑤⟩𝑉 = ⟨𝐿𝑣, 𝐿𝑤⟩𝐿2 = ⟨𝐿†𝐿𝑣, 𝑤⟩𝐿2 = ∫𝛺⟨𝐿
†𝐿𝑣(𝑥), 𝑤(𝑥)⟩𝑑 𝛺 , (2)

where 𝐿 = (𝐼 𝑑 − 𝛼 𝛥)𝑠, 𝛼 > 0, 𝑠 ∈ R is the invertible self-adjoint differ-ential operator associated with the differential structure of 𝐷 𝑖𝑓 𝑓 (𝛺).The metric is right-invariant with respect to the composition of diffeo-morphisms. 𝑉 is a Reproducing Kernel Hilbert Space (RKHS) of vectorfields.Instead of defining the energy directly on 𝜑−1, the variationalroblem is parametrized by 𝑣𝑡 ∈ 𝐿2([0, 1], 𝑉 ), where 𝑣𝑡 is a time-varyingelocity field that represents the tangent vectors along the path ofdiffeomorphisms 𝜙𝑡 with beginning in the identity 𝜙0 = 𝑖𝑑 and endin 𝜙1 = 𝜑, yielding the minimum energy solution for the LDDMMproblem. The transport equation
𝑑 𝜙𝑡
𝑑 𝑡 = 𝑣𝑡 ◦𝜙𝑡 (3)

corresponds with the Riemannian exponential map between the ele-ments in 𝑉 and the corresponding elements in the manifold of dif-feomorphisms 𝐷 𝑖𝑓 𝑓 (𝛺). The inverse exponential map between thelements in 𝐷 𝑖𝑓 𝑓 (𝛺) and 𝑉 is the Riemannian logarithm. In 𝐷 𝑖𝑓 𝑓 (𝛺),omputing or approximating the logarithm is notably challenging dueo the complexity of the manifold structure and the nonlinearity of theroblem.In LDDMM, the regularization energy is defined from
𝐸r eg(𝑣) = ∫

1

0
‖𝑣𝑡‖2𝑉 𝑑 𝑡, (4)

where ‖ ⋅ ‖2𝑉 = ⟨⋅, ⋅⟩𝑉 . Thus, the length of the path of diffeomor-phisms 𝜙𝑡 is given by 𝐸r eg(𝑣). Under the exact matching assumptionat convergence, 𝐸img(𝐼0 ◦𝜑−1, 𝐼1) = 0 and the solution 𝑣𝑡 yields aflow of diffeomorphisms 𝜙𝑡 which is a geodesic in 𝐷 𝑖𝑓 𝑓 (𝛺) with theRiemannian metric. This is the motivation below the word ‘‘metric’’ inLDDMM. In practice, the matching is not exact and the solutions departslightly from belonging to geodesic paths.The image similarity energy is defined from
𝐸img(𝐼0 ◦𝜑−1, 𝐼1) = ‖𝐼0 ◦𝜑−1 − 𝐼1‖2𝐿2 , (5)
although the energy minimization approach is amenable to the mostommonly used image similarity metrics in medical image registrationproblems, such as normalized cross-correlation (NCC), its localized ver-ion (lNCC), mutual information (MI), and normalized gradient fieldsNGF) [27–29].Gradient-descent is used in the optimization process. The derivationf the gradient ∇𝑣𝐸(𝑣) is obtained from the Hilbert space structureof 𝑉 and the relationship between Gâteaux derivatives and Fréchetdifferentials. Let the velocity field 𝑣 be perturbed along the direction
ℎ. The Gâteaux variation is given by
𝜕 𝐸(𝑣) = lim 𝐸(𝑣 + 𝜏 ℎ) − 𝐸(𝑣) =

1
⟨∇ 𝐸 , ℎ ⟩ 𝑑 𝑡. (6)
ℎ 𝜏→0 𝜏 ∫0 𝑣 𝑡 𝑡 𝑉
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The derivation can be obtained from the Gâteaux variations of theregularization and the image similarity energies. The Gâteaux variationof the regularization is given by
𝜕ℎ𝐸r eg(𝑣) = 2∫ 1

0
⟨𝑣𝑡, ℎ𝑡⟩𝑉 𝑑 𝑡. (7)

The Gâteaux variation of the image similarity is given by
𝜕ℎ𝐸img(𝑣) = 2

𝜎2 ∫
1

0
⟨𝐼0 ◦𝜙1,0 − 𝐼1, 𝐷 𝐼0 ◦𝜙1,0 𝜕ℎ𝜙1,0⟩𝐿2𝑑 𝑡, (8)

Using the notation trick 𝜙𝑠,𝑡 = 𝜙𝑡 ◦𝜙−1
𝑠 , the diffeomorphism 𝜙1,0 =

𝜙0 ◦𝜙−1
𝑡 = 𝜙−1

𝑡 . From the integral expansion of 𝜕ℎ𝜙1,0 derived in [5]nd the change of variables 𝜙1,𝑡(𝑥) = 𝑦 we get
𝜕ℎ𝐸img(𝑣) = ∫

1

0
⟨∇𝑣𝐸img, ℎ𝑡⟩𝑉 𝑑 𝑡, (9)

where
∇𝑣𝐸img(𝑣𝑡) = − 2

𝜎2
(𝐿†𝐿)−1

(|𝐷 𝜙𝑡,1|(𝐼0 ◦𝜙𝑡,0 − 𝐼1)∇(𝐼0 ◦𝜙𝑡,0)
)
. (10)

Starting from 𝑣𝑡 = 0𝑉 , 𝑡 ∈ [0, 1], the gradient-descent leads theptimization toward a local minimum in the direction of the energyradient with the gradient-descent update equation
𝑣𝑛+1𝑡 = 𝑣𝑛𝑡 − 𝜖∇𝑣𝐸(𝑣𝑛𝑡 ), (11)
where
∇𝑣𝐸(𝑣𝑡) = 2𝑣𝑡 − 2

𝜎2
(𝐿†𝐿)−1

(|𝐷 𝜙𝑡,1|(𝐼0 ◦𝜙𝑡,0 − 𝐼1)∇(𝐼0 ◦𝜙𝑡,0)
)
. (12)

While for gradient-descent the optimization is sensitive to the initialselection and refinement strategy of parameter 𝜖, Gauss–Newton istypically able to converge to acceptable local minima with 𝜖 = 1.0.n addition, the method shows a super-linear convergence rate, whichncreases the efficiency of the optimization despite the extra burden inhe computation of the Hessian [16].The time-varying parametrization of the velocity fields of the LD-DMM problem was replaced with a constant in time parametrizationusing stationary or steady velocity fields [16]. Due to the computationalfficiency, the stationary parametrization has been extensively adoptedn modern deep-learning approaches [22,30–32].
2.2. NODEO-LDDMM

NODEO stands for Neural Ordinary Differential Equation Optimiza-ion. The method was proposed in [23] as a fresh learning-basedapproach to the non-rigid registration problem using Neural OrdinaryDifferential Equations (NODEs). NODEs were first proposed in [24] asa learning-based approach to ODE solvers. The method is inspired bythe analogies between the Euler method and ResNet [33] and replaceshe residual network itself with a function leading the depth of theneural network from discrete to infinite dimension thus leveraging theaccuracy of the solvers. We proceed to describe the formulation of ourroposed NODEO-LDDMM and discuss the differences with respect toODEO-CVPR22.Given an ODE in the shape of
𝑑 𝑦
𝑑 𝑡 = 𝑓 (𝑦(𝑡), 𝑡), (13)
with initial condition 𝑦(𝑡0) = 𝑦0, neural ODEs aim at learning thefunction 𝑓 parametrized by 𝜃 in the shape of a neural network. Thus,the objective is to learn 𝑓𝜃 from
𝑑 𝑧
𝑑 𝑡 = 𝑓𝜃(𝑧(𝑡), 𝑡) (14)
where
𝑧(𝑡) = 𝑧0 + ∫

𝑡1

𝑡0
𝑓𝜃(𝑧(𝑡), 𝑡), (15)

and
(𝑧(𝑡1)) = 

(
𝑧0 +

𝑡1
𝑓𝜃(𝑧(𝑡), 𝑡)𝑑 𝑡) (16)
∫𝑡0

3 
is used as a loss function.NODEO-LDDMM approaches the ODE solver of the original LDDMMproblem with NODEs. Thus, the solution of the transport equation isestimated by the NODEs
𝑑 𝜙0,𝑡

𝑑 𝑡 = 𝑣𝜃𝑡 (𝜙0,𝑡), (17)
where, similarly to Eq. (15),
𝜙0,𝑠 = 𝜙0,0 + ∫

𝑠

0
𝑣𝜃𝑡 (𝜙0,𝑡)𝑑 𝑡. (18)

Notice the correct analogies between the transport equation in [5] andEq. (17). The approach also allows computing the solution 𝜙𝑡,0 of thetransport equation
𝑑 𝜙𝑡,0

𝑑 𝑡 = −𝑣𝜃𝑡 (𝜙𝑡,0), where 𝜙𝑠,0 = 𝜙0,0 + ∫
𝑠

0
−𝑣𝜃𝑡 (𝜙𝑡,0)𝑑 𝑡, (19)

yielding 𝜑−1 at time 1, and also learn a function representation of theright-hand-side of the transport equation −𝑣𝑡 ◦𝜙𝑡,0 through a neuralnetwork −𝑣𝜃𝑡 (𝜙𝑡,0).The loss function in NODEO-LDDMM is
(𝐼0, 𝐼1, 𝑣𝜃𝑡 (𝜙𝑡,0)) = r eg(𝑣𝜃𝑡 (𝜙𝑡,0)) + sim

(
𝐼0, 𝐼1, 𝜙0,0 + ∫

1

0
−𝑣𝜃𝑡 (𝜙𝑡,0)𝑑 𝑡) .

(20)
The image similarity in sim is lNCC while the regularization r eg isborrowed from previous proposals [22,23,30,34]
r eg = 𝜆lddmmlddmm + 𝜆g r adg r ad + 𝜆JdetJdet , (21)
where
lddmm = ∫

1

0
‖𝑣𝜃𝑡 (𝜙𝑡,0)‖2𝑉 𝑑 𝑡,

g r ad = ‖∇𝜙1,0‖2𝐿2 , and
Jdet = ∫𝛺(max(0,−𝐽𝜙1,0 (𝑥) + 𝜖))2𝑑 𝛺 , (22)
where 𝜖 < 1.It should be noticed that the regularization in LDDMM is imposedon 𝑣𝑡 while in NODEO-LDDMM the regularization lddmm is imposedon −𝑣𝜃𝑡 (𝜙𝑡,0) which is a neural network representation of the right-hand-side −𝑣𝑡 ◦𝜙𝑡,0. Expanding the lddmm expression and applying thechange of variable 𝜙𝑡,0(𝑥) = 𝑦 we get
lddmm = ∫

1

0
⟨𝑣𝜃𝑡 ◦𝜙𝑡,0(𝑥), 𝑣𝜃𝑡 ◦𝜙𝑡,0(𝑥)⟩𝑉 𝑑 𝑥𝑑 𝑡 =

∫
1

0
|𝐷 𝜙0,𝑡(𝑦)|⟨𝑣𝜃𝑡 (𝑦), 𝑣𝜃𝑡 (𝑦)⟩𝑉 𝑑 𝑦𝑑 𝑡. (23)

In the case that |𝐷 𝜙0,𝑡(𝑦)| > 1 and for the same regularization energy orloss, the norm ‖𝑣𝜃𝑡 (𝑦)‖2𝑉 in NODEO-LDDMM would be smaller than inLDDMM, leading to less deformation for 𝜙𝑡,0. Conversely, if |𝐷 𝜙0,𝑡(𝑦)| <
1, the norm in NODEO-LDDMM would be larger than LDDMM, resultingin more deformation for 𝜙𝑡,0. The regularization in NODEO-LDDMMneeds to be applied to −𝑣𝜃𝑡 (𝜙𝑡,0) and we need to accept the subtledifference between LDDMM and NODEO-LDDMM regularization andthe effect in the amount of deformation.Regarding the Jacobian loss, Jdet , the case of 𝐽𝜙1,0 (𝑥) ≥ 𝜖 holds
Jdet = 0. For Jacobian values ranging from 𝜖 to negative values,he Jacobian loss increases proportionately. Therefore, the Jacobianoss promotes convergence towards models in which the diffeomor-hism 𝜙1,0 should exhibit more controlled contractions while avoidingoldings.Training is conducted for each registration pair. Starting from arandom initialization of −𝑣𝜃𝑡 (𝜙𝑡,0), forward and backward propagationteratively improve the estimation of the network parameters 𝜃 accord-ing to the minimization of the loss function given in Eq. (20). This isa main difference between NODEO-LDDMM and other deep-learningapproaches so far like VoxelMorph [22], SymNet [30], LapIRN [31],SynthMorph [35], or TransMorph [32].
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2.3. NODEO-LDDMM vs. NODEO-CVPR22
The main differences between NODEO-LDDMM and NODEO-CVPR22 involve the use of the LDDMM regularizer 𝐸r eg as a lossfunction lddmm. In addition, the authors claim the need to apply aGaussian kernel in the last layer of the CNN architecture and theyuse the term 𝐾 𝑣𝜃𝑡 in Eqs. (19), (20), and (22). Based on empiricalobservations, this could be attributed to NODEO-CVPR22 architecturewithout 𝐾 not being sufficiently capable of learning smooth modelsfrom the regularization losses. Assuming that the Gaussian kernel is theKHS operator of the transformation model, then the variable 𝑣𝜃𝑡 wouldctually represent the momentum of the velocity field and the networkarameters would be adjusted to learn the momentum, not the velocityield. A more elegant explanation is that auto gradient is computing theradient of the loss function in the space of 𝐿2 functions, however, theradient needs to be computed in 𝑉 [5]. Then, the use of a Gaussiankernel in the last layer of the CNN architecture is a transformation ofthe 𝐿2 differentials into 𝑉 differentials considering a Gaussian RKHSstructure of 𝑉 . Therefore, NODEO-LDDMM provides a formulation forthe problem more consistent with LDDMM theory.Analyzing the codes available in the GIT repository https://github.com/yifannnwu/NODEO-DIR, two remarkable implementation detailsome to light. First of all, the authors used a stationary parametrizationor the NODES. This means that 𝑣𝜃𝑡 does not depend on time and theauthors are solving the problem for the stationary parametrization.Second, the computation of the inverse of the exponential mapping

log ∶ 𝐷 𝑖𝑓 𝑓 (𝛺) → 𝑉 , 𝜙𝑡 → 𝑣𝑡, (24)
is needed for the computation of the regularization loss. This is circum-vented with the rough approximation
𝑣𝑡 ≈ 𝜙𝑡+1 − 𝜙𝑡 (25)
that introduces an intrinsic error in the solutions. With NODEO-LDDMM we propose to use the result of the forward pass of the neuralnetwork.To establish a fair comparison between both methodologies, weused the same CNN architecture as in NODEO-CVPR22 (replacing 𝐾operator with (𝐿†𝐿)−1). In future work, we will explore the effect ofnon-stationary NODE solvers, time-dependent CNNs, and other modelarchitectures such as transformers [36] or Multi Layer PerceptronsMLP), widely used in implicit representations [37–39].
3. PDE-LDDMM and NODEO-PDE-LDDMM formulations

PDE-LDDMM consists of a formulation analytically but not nu-merically equivalent to Beg et al. LDDMM using an optimal con-trol approach [11,12]. The fundamental constraints in PDE-LDDMMare derived from the inverse consistency identity, 𝜙0,𝑡 ◦𝜙−1
0,𝑡 = 𝑖𝑑,that, together with the transport equation yield the deformation stateequation

𝜕𝑡𝜙𝑡,0 +𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡 = 0 (26)
with initial condition 𝜙0 = 𝑖𝑑 [5]. Depending on the desired model ofonstrained deformations, alternative equations can be incorporated tohe constrained variational formulation such as the incompressibilityonstraint [13] or the EPDiff equation [40], among others.
3.1. PDE-LDDMM based on the image state equation

The original PDE-LDDMM method proposed by Hart et al. in [11]pproached the LDDMM problem with a constrained variational for-mulation where the constraint was based on the restriction of thedeformation state equation from maps to images. Let 𝑚(𝑡) representthe warped images 𝐼0 ◦𝜙𝑡,0. Thus, the problem is defined from theminimization problem
𝐸(𝑣) = 1

‖𝑣 ‖2 𝑑 𝑡 + 1 ‖𝑚(1) − 𝐼 ‖2 (27)
∫0 𝑡 𝑉 𝜎2 1 𝐿2 v
4 
subject to
𝜕𝑡𝑚𝑡 + ∇𝑚𝑡 ⋅ 𝑣𝑡 = 0 (28)
with initial condition 𝑚(0) = 𝐼0 (see the analogy with Eq. (26)). Thedifferentiation of the augmented Lagrangian with respect to the stateariable 𝑚 and its adjoint variable 𝜆 yield the optimality conditions

𝜕𝑡𝑚𝑡 + ∇𝑚𝑡 ⋅ 𝑣𝑡 = 0, 𝑚(0) = 𝐼0 (forward)
−𝜕𝑡𝜆𝑡 − ∇ ⋅ (𝜆𝑡 ⋅ 𝑣𝑡) = 0, 𝜆(1) = 2

𝜎2
(𝐼1 − 𝑚(1)) (backward), (29)

and the gradient (in 𝐿2) needed for gradient-descent optimization
∇𝐿2𝐸(𝑣) = 2𝐿†𝐿𝑣 + 𝜆∇𝑚. (30)
From the optimal control point of view, 𝑣 is the control, 𝑚 is thestate, and 𝜆 is the adjoint variable. The objective of the PDE-LDDMMapproach was to avoid the expensive computations in the deformationspace by the translation of the computations to the image space throughthe solution of the image state equation.
3.2. PDE-LDDMM based on the deformation state equation

Inspired by the previous PDE-LDDMM contributions, Hernandezuccessfully explored the idea of obtaining more stability and accuracyy relying on the deformation state equation [26,40,41]. The authorproposed two different methods, one using the expressions of the statend adjoint variables that can be derived from the equivalence betweenart et al. PDE-LDDMM [11] and original LDDMM [5]. The second onedirectly imposed the deformation state equation as a constraint.Thus, the first method (PDE-LDDMMst eq) uses the deformation statequation (Eq. (26)) for the computation of the forward and inversepaths, 𝜙𝑡,0 and 𝜙0,𝑡,
𝜕𝑡𝜙𝑡,0 +𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡 = 0, 𝜙0,0 = 𝑖𝑑 (forward)
𝜕𝑡𝜙0,𝑡 −𝐷 𝜙0,𝑡 ⋅ 𝑣𝑡 = 0, 𝜙0,1 = 𝑖𝑑 (backward), (31)

and then it uses the expressions
𝐽𝑡 =|𝐷 𝜙0,𝑡|

𝑚(𝑡) =𝐼0 ◦𝜙𝑡,0

𝜆(𝑡) =𝐽𝑡𝜆(1) ◦𝜙0,𝑡

(32)
in the computation of the gradient ∇𝐿2𝐸(𝑣) from Eq. (30).The second method (PDE-LDDMMdef eq) solves Eq. (27) subject tothe forward equation in Eq. (31). The differentiation of the augmentedLagrangian with respect to the state variable 𝜙 and its adjoint variable
𝜌 yield the optimality conditions
𝜕𝑡𝜙𝑡,0 +𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡 = 0, 𝜙0,0 = 𝑖𝑑 (forward)
𝜕𝑡𝜌𝑡 − ∇ ⋅ (𝜌𝑡 ⋅ 𝑣𝑡) = 0, 𝜌(1) = 𝜆(1) ⋅ ∇𝑚(1) (backward), (33)

and the gradient needed for gradient-descent optimization is, in thiscase,
∇𝐿2𝐸(𝑣) = 2𝐿†𝐿𝑣 +𝐷 𝜙 ⋅ 𝜌. (34)

Originally, Runge–Kutta was used for the computation of the so-lutions of the ODEs. The equations for Semi-Lagrangian integrationere derived in [41]. They improved the stability of the solvers whilereducing the complexity with the number of time steps. Both methodsoutperformed PDE-LDDMM based on the image state equation (themethod in Section 3.1).
3.3. NODEO-PDE-LDDMM

We propose to depart from traditional PDE-LDDMM approachinghe ODE solvers of the equations in PDE-LDDMMst eq andDE-LDDMMdef eq with their corresponding NODEs. Thus, inODEO-PDE-LDDMMst eq we compute the solutions 𝜙𝑡,0 and 𝜙0,𝑡 (Eqs.31)) using a forward and a backward NODE, respectively. Then, theariables 𝐽 , 𝑚(𝑡), and 𝜆(𝑡) are computed from Eq. (32) using the
𝑡

https://github.com/yifannnwu/NODEO-DIR
https://github.com/yifannnwu/NODEO-DIR
https://github.com/yifannnwu/NODEO-DIR
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Table 1Baseline methods, NODEO-LDDMM and NODEO-PDE-LDDMM. Quantitative results on NIREP and OASIS-L2R22. Mean and standard deviation of the Dice Similarity CoefficientDSC), maximum and minimum of the Jacobian determinant, number and percentage of negative Jacobian determinants, and standard deviation of the logarithm of the Jacobianeterminant for those points with positive values. The arrows indicate that high DSC values while not extreme Jacobian determinant values are preferable. Boldface indicate,or each family of methods, the one with the best compromise between DSC average and minimum Jacobians ≥ −0.10, which is a reasonable threshold for nearly diffeomorphicolutions. For NODEO methods, the value of the regularization parameter 𝛼 is indicated.NIREP
Method DSC (%) ↑ max (J) ↓ min (J) ↑ # of |𝐽𝜙| ≤ 0 ↓ SDlogJ ↓

Affine 43.56 ± 1.94 – – – –
VM-GIT 2021 𝟔𝟏.𝟑𝟓 ± 𝟐.𝟐𝟒 12.48 ± 2.17 𝟎.𝟎𝟒 ± 𝟎.𝟎𝟔 6 (< 0.01%) 0.28 ± 0.01SyMNet-Diff 𝟔𝟏.𝟏𝟑 ± 𝟐.𝟐𝟒 15.27 ± 2.25 −𝟎.𝟏𝟓 ± 𝟎.𝟐𝟕 29 (< 0.01%) 0.31 ± 0.01LapIRN-Diff 60.44 ± 1.23 6.66 ± 0.78 0.16 ± 0.03 0 0.22 ± 0.01TransMorph-BSpl IXI 58.95 ± 1.69 10.63 ± 1.90 0.06 ± 0.02 0 0.28 ± 0.00
ANTS 60.24 ± 1.35 4.11 ± 0.39 0.24 ± 0.03 0 0.15 ± 0.00StLDDMM 𝟔𝟐.𝟏𝟎 ± 𝟏.𝟓𝟒 15.09 ± 4.46 𝟎.𝟎𝟐 ± 𝟎.𝟐𝟐 39 (< 0.01%) 0.27 ± 0.01PDE-LDDMMst eq 60.11 ± 2.81 7.41 ± 3.56 0.01 ± 0.01 0 0.23 ± 0.02PDE-LDDMMdef eq 60.92 ± 1.88 15.59 ± 5.89 0.05 ± 0.03 0 0.24 ± 0.03
NODEO-CVPR22 63.74 ± 0.90 11.02 ± 2.69 −0.19 ± 0.12 776 (0.014%) 0.28 ± 0.01
NODEO-LDDMM 0.0001 65.25 ± 1.52 13.17 ± 3.26 −0.78 ± 0.37 4157 (0.077%) 0.31 ± 0.02NODEO-LDDMM 0.00025 64.39 ± 1.50 11.22 ± 3.07 −0.29 ± 0.23 1383 (0.025%) 0.29 ± 0.02NODEO-LDDMM 0.0005 𝟔𝟐.𝟖𝟑 ± 𝟏.𝟐𝟓 8.93 ± 1.50 −𝟎.𝟎𝟔 ± 𝟎.𝟏𝟐 242 (< 0.01%) 0.28 ± 0.01NODEO-LDDMM 0.0010 60.01 ± 1.83 6.64 ± 1.09 0.10 ± 0.12 1 (< 0.01%) 0.26 ± 0.02
NODEO-PDE-LDDMMst eq 0.0001 65.26 ± 1.73 14.02 ± 2.86 −0.65 ± 0.34 4243 (0.079%) 0.31 ± 0.02NODEO-PDE-LDDMMst eq 0.00025 63.95 ± 1.78 10.91 ± 3.27 −0.30 ± 0.32 1077 (0.022%) 0.27 ± 0.02NODEO-PDE-LDDMMst eq 0.0005 𝟔𝟐.𝟔𝟒 ± 𝟏.𝟑𝟐 8.55 ± 1.41 −𝟎.𝟎𝟏 ± 𝟎.𝟎𝟕 100 (< 0.01%) 0.27 ± 0.00NODEO-PDE-LDDMMst eq 0.0010 60.21 ± 1.72 6.54 ± 0.98 0.09 ± 0.07 10 (< 0.01%) 0.27 ± 0.00
NODEO-PDE-LDDMMdef eq 0.0001 63.81 ± 5.82 11.67 ± 3.89 −0.50 ± 0.47 3304 (0.061%) 0.28 ± 0.07NODEO-PDE-LDDMMdef eq 0.00025 64.28 ± 1.75 10.88 ± 2.56 −0.26 ± 0.12 1101 (0.020%) 0.28 ± 0.01NODEO-PDE-LDDMMdef eq 0.0005 𝟔𝟐.𝟕𝟓 ± 𝟏.𝟒𝟔 9.63 ± 3.07 −𝟎.𝟎𝟔 ± 𝟎.𝟎𝟖 236 (< 0.01%) 0.27 ± 0.00NODEO-PDE-LDDMMdef eq 0.0010 60.25 ± 1.40 6.53 ± 0.85 0.09 ± 0.05 1 (< 0.01%) 0.26 ± 0.00
OASIS-L2R22 validation set
Method DSC (%) ↑ max (J) ↓ min (J) ↑ # of |𝐽𝜙| ≤ 0 ↓ SDlogJ ↓

Affine 57.18 ± 5.17 – – – –
VM-GIT 2021 75.25 ± 3.77 26.61 ± 11.66 0.03 ± 0.02 4 (< 0.01%) 0.32 ± 0.04SyMNet-Diff 77.78 ± 2.66 18.82 ± 3.78 −0.11 ± 0.24 30 (< 0.01%) 0.34 ± 0.01LapIRN-Diff 77.03 ± 3.18 4.56 ± 1.25 0.24 ± 0.05 0 0.15 ± 0.01TransMorph-BSpl IXI 𝟕𝟕.𝟎𝟒 ± 𝟐.𝟓𝟒 14.65 ± 4.59 −𝟎.𝟎𝟗 ± 𝟎.𝟏𝟖 105 (< 0.01%) 0.32 ± 0.01
ANTS 77.07 ± 3.49 4.36 ± 0.67 0.23 ± 0.04 0 0.18 ± 0.01StLDDMM 77.47 ± 2.81 32.16 ± 70.55 −0.52 ± 1.05 2976 (0.051%) 0.30 ± 0.05PDE-LDDMMst eq 73.30 ± 5.32 11.51 ± 6.83 0.00 ± 0.01 0 0.26 ± 0.04PDE-LDDMMdef eq 𝟕𝟔.𝟏𝟐 ± 𝟐.𝟔𝟏 47.39 ± 80.02 𝟎.𝟎𝟖 ± 𝟎.𝟎𝟑 0 0.22 ± 0.02
NODEO-CVPR22 79.20 ± 2.56 18.43 ± 5.40 −0.43 ± 0.22 7438 (0.129%) 0.41 ± 0.03
NODEO-LDDMM 0.0001 80.37 ± 2.70 29.74 ± 13.42 −1.30 ± 0.54 25 320 (0.440%) 0.50 ± 0.06NODEO-LDDMM 0.00025 79.76 ± 2.55 22.51 ± 7.39 −0.62 ± 0.24 11 402 (0.198%) 0.43 ± 0.04NODEO-LDDMM 0.0005 78.96 ± 2.44 16.65 ± 8.81 −0.26 ± 0.15 3705 (0.064%) 0.38 ± 0.03NODEO-LDDMM 0.0010 𝟕𝟕.𝟒𝟓 ± 𝟐.𝟒𝟑 11.38 ± 5.87 −𝟎.𝟎𝟒 ± 𝟎.𝟎𝟖 1062 (0.018%) 0.35 ± 0.02NODEO-LDDMM 0.0015 75.01 ± 4.76 7.33 ± 3.02 0.09 ± 0.24 537 (< 0.01%) 0.31 ± 0.08NODEO-LDDMM 0.0025 74.60 ± 2.80 5.76 ± 1.98 0.10 ± 0.08 266 (< 0.01%) 0.32 ± 0.02
NODEO-PDE-LDDMMst eq 0.0001 80.37 ± 2.63 28.98 ± 10.17 −1.18 ± 0.25 26 310 (0.458%) 0.50 ± 0.05NODEO-PDE-LDDMMst eq 0.00025 79.74 ± 2.52 23.89 ± 10.61 −0.66 ± 0.30 10 532 (0.183%) 0.42 ± 0.03NODEO-PDE-LDDMMst eq 0.0005 78.87 ± 2.35 15.44 ± 5.55 −0.21 ± 0.11 2975 (0.051%) 0.37 ± 0.02NODEO-PDE-LDDMMst eq 0.0010 𝟕𝟕.𝟐𝟒 ± 𝟐.𝟓𝟓 10.81 ± 5.39 −𝟎.𝟎𝟒 ± 𝟎.𝟎𝟔 990 (0.017%) 0.34 ± 0.02NODEO-PDE-LDDMMst eq 0.0015 76.22 ± 2.74 8.38 ± 4.21 0.01 ± 0.08 811 (0.014%) 0.34 ± 0.03NODEO-PDE-LDDMMst eq 0.0025 74.18 ± 3.04 5.82 ± 2.12 0.11 ± 0.08 0 0.31 ± 0.02
NODEO-PDE-LDDMMdef eq 0.0001 80.33 ± 2.59 30.75 ± 16.60 −1.25 ± 0.28 25 471 (0.443%) 0.50 ± 0.04NODEO-PDE-LDDMMdef eq 0.00025 79.88 ± 2.47 23.67 ± 11.06 −0.55 ± 0.21 10 178 (0.177%) 0.42 ± 0.03NODEO-PDE-LDDMMdef eq 0.0005 78.77 ± 2.64 16.18 ± 8.17 −0.27 ± 0.21 3479 (0.060) 0.37 ± 0.03NODEO-PDE-LDDMMdef eq 0.0010 𝟕𝟕.𝟑𝟖 ± 𝟐.𝟒𝟑 10.60 ± 4.79 −𝟎.𝟎𝟏 ± 𝟎.𝟎𝟔 629 (0.010%) 0.34 ± 0.02NODEO-PDE-LDDMMdef eq 0.0015 76.17 ± 2.66 8.09 ± 3.34 0.03 ± 0.09 573 (0.011%) 0.33 ± 0.03NODEO-PDE-LDDMMdef eq 0.0025 73.12 ± 6.38 5.76 ± 2.55 0.16 ± 0.21 3 (< 0.01%) 0.30 ± 0.07
OASIS-L2R22 test set
Method DSC (%) ↑ max (J) ↓ min (J) ↑ # of |𝐽𝜙| ≤ 0 ↓ SDlogJ ↓

Affine 58.61 ± 5.09 – – – –
VM-GIT 2021 77.66 ± 2.93 23.69 ± 9.58 0.00 ± 0.13 2 (< 0.01%) 0.28 ± 0.03SyMNet-Diff 𝟕𝟖.𝟕𝟏 ± 𝟐.𝟓𝟕 21.74 ± 7.15 −𝟎.𝟏𝟎 ± 𝟎.𝟐𝟎 53 (< 0.01%) 0.34 ± 0.02LapIRN-Diff 78.45 ± 2.23 4.52 ± 1.12 0.23 ± 0.05 0 0.16 ± 0.01TransMorph-BSpl IXI 77.78 ± 1.49 13.13 ± 2.87 −0.05 ± 0.10 199 (< 0.01%) 0.32 ± 0.01

(continued on next page)
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Table 1 (continued).ANTS 79.21 ± 1.89 4.65 ± 1.07 0.22 ± 0.04 0 0.19 ± 0.02StLDDMM 78.49 ± 1.77 16.55 ± 17.86 −0.35 ± 0.83 3480 (0.06%) 0.29 ± 0.04PDE-LDDMMst eq 75.98 ± 2.67 13.82 ± 15.70 0.01 ± 0.01 0 0.28 ± 0.03PDE-LDDMMdef eq 𝟕𝟔.𝟑𝟎 ± 𝟐.𝟑𝟔 18.25 ± 17.67 𝟎.𝟎𝟗 ± 𝟎.𝟎𝟒 0 0.26 ± 0.02
NODEO-CVPR22 79.96 ± 1.52 18.47 ± 6.24 −0.46 ± 0.21 16 927 (0.29%) 0.42 ± 0.04
NODEO-LDDMM 0.0001 80.91 ± 1.66 29.11 ± 12.21 −1.37 ± 0.62 50 964 (0.89%) 0.50 ± 0.08NODEO-LDDMM 0.00025 80.38 ± 1.61 19.54 ± 8.05 −0.63 ± 0.31 20 106 (0.35%) 0.42 ± 0.04NODEO-LDDMM 0.0005 79.43 ± 1.59 14.63 ± 7.67 −0.22 ± 0.14 5944 (0.10%) 0.37 ± 0.04NODEO-LDDMM 0.0010 𝟕𝟖.𝟎𝟑 ± 𝟏.𝟓𝟗 9.66 ± 4.34 −𝟎.𝟎𝟑 ± 𝟎.𝟏𝟎 2036 (0.04%) 0.35 ± 0.03NODEO-LDDMM 0.0015 76.49 ± 2.67 7.34 ± 2.71 0.09 ± 0.16 1046 (0.02%) 0.32 ± 0.06NODEO-LDDMM 0.0025 75.10 ± 3.70 5.65 ± 1.86 0.14 ± 0.15 831 (0.01%) 0.31 ± 0.06
NODEO-PDE-LDDMMst eq 0.0001 80.20 ± 4.98 28.67 ± 14.07 −1.27 ± 0.77 49 395 (0.86%) 0.49 ± 0.11NODEO-PDE-LDDMMst eq 0.00025 80.39 ± 1.61 19.42 ± 8.61 −0.61 ± 0.26 20 668 (0.36%) 0.43 ± 0.05NODEO-PDE-LDDMMst eq 0.0005 79.49 ± 1.57 14.56 ± 7.52 −0.21 ± 0.12 6716 (0.12%) 0.37 ± 0.04NODEO-PDE-LDDMMst eq 0.0010 𝟕𝟖.𝟎𝟏 ± 𝟏.𝟔𝟑 9.59 ± 4.09 −𝟎.𝟎𝟑 ± 𝟎.𝟎𝟗 2051 (0.04%) 0.35 ± 0.04NODEO-PDE-LDDMMst eq 0.0015 76.73 ± 1.89 7.60 ± 3.37 0.06 ± 0.09 1073 (0.02%) 0.33 ± 0.03NODEO-PDE-LDDMMst eq 0.0025 75.00 ± 3.72 5.66 ± 2.08 0.15 ± 0.15 723 (0.01%) 0.31 ± 0.06
NODEO-PDE-LDDMMdef eq 0.0001 81.00 ± 1.62 29.22 ± 12.65 −1.40 ± 0.56 55 729 (0.97%) 0.52 ± 0.08NODEO-PDE-LDDMMdef eq 0.00025 80.44 ± 1.54 19.80 ± 7.48 −0.62 ± 0.26 23 249 (0.40%) 0.43 ± 0.05NODEO-PDE-LDDMMdef eq 0.0005 79.47 ± 1.52 14.38 ± 6.34 −0.24 ± 0.12 7489 (0.13%) 0.38 ± 0.04NODEO-PDE-LDDMMdef eq 0.0010 𝟕𝟕.𝟖𝟏 ± 𝟏.𝟖𝟎 9.40 ± 3.57 −𝟎.𝟎𝟐 ± 𝟎.𝟏𝟎 1994 (0.03%) 0.34 ± 0.04NODEO-PDE-LDDMMdef eq 0.0015 76.42 ± 2.70 7.47 ± 3.04 0.08 ± 0.17 902 (0.02%) 0.32 ± 0.06NODEO-PDE-LDDMMdef eq 0.0025 75.58 ± 1.82 5.84 ± 1.69 0.12 ± 0.07 643 (0.01%) 0.32 ± 0.03
Table 2NIREP16. Computation time and maximum VRAM memory usage achieved by the registration methods considered in our study. NODEO values are given for 300 iterations.Method Metric Model 𝑡𝑖𝑚𝑒𝐺 𝑃 𝑈 (s) Peak VRAM (MBs)
VM-GIT 2021 SSD vxm_dense_brain_T1_3D_mse 8.05 3739SyMNet-Diff lNCC SyMNet_smo30_update_80 000 4.09 2888LapIRN-Diff lNCC LapIRN_diff_fea7 3.16 5934TransMorph-BSpl IXI lNCC TransMorph_bspl_Validation_dsc0.750 19.29 2772
ANTSa lNCC SyM-LDDMM 2065.24 2656StLDDMM lNCC LDDMM 30.42 2733PDE-LDDMMst eq lNCC State equation 183.89 6159PDE-LDDMMdef eq NCC Deformation equation 250.39 5899
NODEO-CVPR22 lNCC Transport equation 76.10 5855
NODEO-LDDMM lNCC Transport equation 68.99 6029NODEO-PDE-LDDMMst eq lNCC State equation 252.35 11 999NODEO-PDE-LDDMMst eq lNCC Deformation equation 145.99 9233

a In ANTS indicates that the computation is performed in the CPU and RAM.
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solutions 𝜙𝑡,0 and 𝜙0,𝑡. The expression for 𝑣𝑡 is computed from thepproximation
𝑣 → −1

2
(𝐿†𝐿)−1(𝜆∇𝑚) (35)

previously used in the LDDMM literature [42]. This approximationcomes from the fact that, during optimization, ∇𝐿2𝐸(𝑣) → 0, and thenthe right-hand-side of Eq. (30) can be considered a rough approxima-tion of 𝑣 at the beginning of the optimization process that increases itsrecision iteratively. Finally, the losses analogous to NODEO-LDDMMre computed, backward propagation is performed, and the parametersf the forward and backward NODEs are updated.In PDE-LDDMMdef eq we compute the solutions of 𝜙𝑡,0 and 𝜌𝑡 inEq. (33) using a forward and a backward NODE, respectively. Noticehat 𝜙𝑡,0 is represented with a vector field while 𝜌𝑡 is represented witha scalar field. Therefore, the network architectures and the forwardpasses of the networks are different. Then, the expression for 𝑣𝑡 iscomputed from the approximation
𝑣 → −1

2
(𝐿†𝐿)−1(𝐷 𝜙 ⋅ 𝜌). (36)

The same reasoning as in Eq. (35) holds for its justification, although, toour knowledge, this is the first time that it has been proposed. Finally,he losses analogous to NODEO-LDDMM are computed, backward prop-gation is performed, and the parameters of the forward and backwardODEs are updated.Last but not least, our NODEO-PDE-LDDMM approach allows thecomputation of 𝑣 directly from Eq. (35) or Eq. (36). Therefore, the
𝑡 m
6 
problem raised with NODEO-LDDMM and the estimation of the loga-ithm map does not hold. The regularization loss lddmm is defined on
𝑣𝑡 in agreement with LDDMM regularization. The regularization loss
g r ad is also defined on ∇𝜙1,0. As in NODEO original formulation, lNCCis selected as the image similarity metric.
4. Results
4.1. Datasets

We have evaluated our proposed methods in two different datasetsxtensively selected for the evaluation of non-rigid registration meth-ds:
NIREP. The Non-rigid Image Registration Evaluation Project(NIREP) was proposed in [43] for the evaluation of non-rigid regis-tration. NIREP consists of 16 T1 Magnetic Resonance Imaging (MRI)mages. These images were acquired at the Human Neuroanatomy andeuroimaging Laboratory, University of Iowa. They were selected forthe NIREP project from a database of 240 normal volunteers. Datasetscorrespond to young 8 males and 8 females with a mean age of 32.5 ±

.4 and 29.8 ± 5.8 years, respectively. The images are skull-stripped andligned according to the anterior and posterior commissures. Imagesare distributed with the segmentation of 32 gray matter regions at thefrontal, parietal, temporal, and occipital lobes. The most remarkablefeature of this dataset is its excellent image quality. The geometry of the
anual segmentations provides a specially challenging framework for
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Fig. 1. Volume overlap obtained by the registration methods measured in terms ofthe Dice Similarity Coefficient (DSC) between the warped and the corresponding targetsegmentations. Box and whisker plots show the distribution of the DSC values averagedover the segmentations. The green line indicates the mean of the best benchmarkmethod (VoxelMorph for NIREP, TransMorph for OASIS val and SyMNet for OASIStest) and the magenta line indicates the mean of NODEO-CVPR22, facilitating thecomparisons.

deformable registration evaluation. In this work, a subsampled versionof this dataset is used for the evaluation of the methods followingthe guidelines in [16]. The images are subsampled reducing imagedimensions to 180 × 212 × 180. Subsampling is needed to be ableto run interesting but memory-demanding benchmark methods and tomaintain the continuity of the evaluation results shown in previousworks [40,41,44]. In our experiments, the first image is selected as thesource and warped to the remaining 15 images of the dataset.

7 
Fig. 2. RGB cube to facilitate the interpretation of the colormap used in the figures ofthe displacement fields. It should be noticed that the origin of coordinates is locatedat the center of the cube, therefore, displacements close to zero will be represented ingray.

OASIS-L2R22. The open-access series of imaging studies, OASIS(https://www.oasis-brains.org/), is a project aimed at making neu-roimaging data sets of the brain freely available to the scientific com-munity. OASIS is divided into different projects with a focus on thestudy of the anatomical evolution of normal and diseased brains.OASIS-L2R22 dataset is a small sample made of 416 3D T1 MRI scansfrom different subjects. The dataset was proposed in the Learn2Regchallenge with the intention to assess the performance of non-rigidregistration methods in the alignment of small structures of variableshape and size from monomodal MRI [45]. There is no available infor-mation regarding the sex or the age of the subjects. The original OASISimages were pre-processed for the HyperMorph paper [46]. Prepro-cessing included resampling and alignment to a common template andskull stripping. The segmentations were automatically obtained usingFreeSurfer and SAMSEG from the neurite package (https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg). A total of 35 brain structures arecustomarily used in the evaluation. The registration pairs are given bythe challenge organizers. The image dimensions are 160 × 224 × 192.The validation set is made up of 19 image pairs while the testset is made up of 39 image pairs. The validation set can be usedfor the evaluation of non-rigid registration methods in the case thatthe data has not been involved in the model design. For the test set,the segmentations are not publicly available. To obtain the evaluationmetrics of non-rigid registration methods in the test set, the methodsshould be implemented in Python and submitted to the challengeplatform through a docker before the challenge deadline. This meansrewriting the codes for traditional methods, typically built on C++ orMatlab. For our work, we segmented the test images using SAMSEG(accessed in March 2024). We observed that this version of SAMSEGprovides much more labels than the Learn2Reg segmentations andthere is a mismatch in the labels assigned to corresponding structures.We manually combined and reassigned the labels to be mostly incorrespondence with the Learn2Reg segmentations. We validated thedifferences of our segmentations in the validation set, getting onlyslight differences with respect to Learn2Reg segmentations.
4.2. Benchmark methods

In this work, we selected the traditional LDDMM and PDE-LDDMMmethods closest to our work as benchmark methods. In addition, weselected the most popular unsupervised deep-learning approaches withavailable source code and models trained in the T1 MRI registrationproblem, preferably with diffeomorphic variants. Since the number ofdifferent LDDMM and PDE-LDDMM variants is considerable, and giventhe prevalence of the stationary parametrization of diffeomorphisms inunsupervised deep-learning approaches, we focused our study on theevaluation of stationary variants. We selected as benchmark the best-performing stationary versions of LDDMM and PDE-LDDMM in [29](NCC or lNCC image similarity and Gauss–Newton–Krylov optimiza-tion) and ANTS (lNCC image similarity) [47]. From the deep-learning

https://www.oasis-brains.org/
https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg
https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg
https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg
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Fig. 3. NIREP. Sagittal view of the differences after registration 𝐼0 ◦𝜑−1 − 𝐼1 in a representative experiment. Red arrows point out (in order of appearance) the parieto-occipitalsulcus, the corpus callosum, the parietal lobe, the central sulcus and the occipital lobe. These are the locations where the methods showed the most remarkable intensity differences.

methods we selected VoxelMorph [21], SyMNet [30], LapIRN [31] andthe B-Spline version of TransMorph [32]. NODEO-CVPR22 with thedefault parameters was also selected as a benchmark [23].
4.3. Implementation details and parameters

The experiments were run on a machine equipped with one NVidiaGeForce RTX 3090 Ti with 24 GBS of video memory and an IntelCore i7 with 64 GBS of DDR3 RAM. The C++ code of ANTS librarywas used for the SyN method. The LDDMM codes were developed inthe GPU with Matlab. The Python codes available in the GIT reposi-tory https://github.com/yifannnwu/NODEO-DIR served as a basis forthe implementation of our proposed methods.For the traditional methods, we used the same implementationand parameters as in [29]. All methods were embedded into a multi-resolution scheme of three levels. Gauss–Newton and Gauss–Newton–Krylov were implemented with an efficient method for the update ofthe step size based on offline backtracking line-search combined witha check on Armijo’s condition. We used the stopping conditions in [12].Otherwise, the optimization was stopped after 50 iterations in the caseof Gauss–Newton and after 5 inner × 10 outer iterations in the case ofGauss–Newton–Krylov.

8 
Regularization parameters were selected from a search of the op-timal parameters in NIREP16 and OASIS datasets. Thus, we used 𝜎2 =
1.0, 𝑠 = 2, and a unit-domain discretization of the image domain 𝛺. Theregularization parameter 𝛼 was selected from a search of the optimalparameter value in NIREP and OASIS-L2R22 validation datasets. Thedetails can be found in the Appendix.ANTS was run with the following parameters
synconvergence="[50x50x50,1e−6,10]",
synshrinkfactors="4x2x1",
synsmoothingsigmas="3x2x1vox".The selection of the number of iterations was in agreement with thenumber of iterations used in Gauss–Newton and the number of inner ×outer iterations used in Gauss–Newton–Krylov optimization for PDE-LDDMM. The selection of the Gaussian smoothing parameters resultedin a minimal regularization with the objective of obtaining a maximalimage matching.NODEO-CVPR22 was executed with the default parameters. Themean filter was used as smoothing kernel. The number of time stepswas 2, yielding a stationary parametrization. The weighting parameterswere 𝜆lddmm = 0.0005, 𝜆g r ad = 0.05, and 𝜆Jdet = 2.5. The same parameterswere used in NODEO-LDDMM and NODEO-PDE-LDDMM.

https://github.com/yifannnwu/NODEO-DIR
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Fig. 4. OASIS-L2R22. Sagittal view of the differences after registration 𝐼0 ◦𝜑−1 − 𝐼1 in a representative experiment.

4.4. Evaluation metrics

In this study, we use the widely extended Dice Similarity Coefficient(DSC) for the evaluation of the accuracy of non-rigid registration in thetask of atlas-based segmentation [48,49]. As a proxy to transformationquality, we measure the invertibility and smoothness of the transfor-mations using different metrics based on the Jacobian determinantof the transformations (in the following, we use the word Jacobianto refer to its determinant). Namely, we use the Jacobian extrema(min and max), the number of negative Jacobians, and the standarddeviation of the logarithm of the positive Jacobians (SDlogJ). TheJacobian extrema allow measuring the greatest changes in volume,whether there are foldings in the transformations, and how aggressivethey are. The number of negative Jacobians allows measuring whetherthere is a general tendency to fold, or foldings occur in a few isolatedexamples. The SDlogJ allows measuring the uniformity of the amountof deformation. In our evaluation, we depart from just showing resultsof DSC accuracy, or recommending the methods yielding the best DSCmetrics. Instead, we analyze the compromise between accuracy andsmoothness depending on the values of the regularization parameter
𝛼 defining operator 𝐿 in Eq. (2) in a similar way as conducted in [39].In the last decade, we have witnessed a trend where the evaluationof non-rigid registration is performed exclusively in terms of the DSC
9 
accuracy. Some methods have become popular due to their high DSCaccuracies, obtained at the expense of reducing smoothness or givingup invertibility. These accuracies are considered the only criterion toprevail over the state of the art. It has been shown that propertiessuch as smoothness, invertibility, or statistics enabling are obtained atthe expense of reducing the DSC accuracy. Therefore, it is usual thatmethods with these desirable properties are reported to be of inferiorperformance, and the unfair use of DSC accuracy as the only criterion toestablish superior performance is not discussed in the evaluations pre-sented in the literature. In [34] we tried to break this inercy proposingthe combination of segmentation overlap metrics with different metricsreflecting the smoothness and invertibility of the transformations suchas the Jacobian extrema and the number of negative Jacobians. Ourproposal justifies the selection of the evaluation metrics used in thiswork.
4.5. Evaluation results

Table 1 shows the mean and standard deviation of the DSC valuesafter registration and the measurements obtained from the Jacobians.In addition, Fig. 1 shows, in the shape of box and whisker plots, thestatistical distribution of the DSC values after averaging across the 32and 35 segmented structures for NIREP and OASIS, respectively.
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Fig. 5. NIREP. Sagittal view of the displacement fields in a representative experiment. The RGB color map proposed in VoxelMorph paper is used for the color representation ofthe vector fields (see Fig. 2). NODEO-LDDMM methods are shown with 𝛼 = 0.0005.
Fig. 6. OASIS-L2R22. Sagittal view of the displacement fields in a representative experiment. The RGB color map proposed in VoxelMorph paper is used for the color representationof the vector fields (see Fig. 2). NODEO-LDDMM methods with are shown with 𝛼 = 0.0010.

In NIREP database, all NODEO methods with 𝛼 ≤ 0.0005 reachedor overpassed the baseline established by the best-performing deep-learning and traditional benchmarks in terms of the DSC. The min(J)-max(J) range and the number of negative Jacobians were relatedto the amount of regularization established with parameter 𝛼. Themethods with 𝛼 = 0.0005 may yield a good compromise betweenhigh DSC and moderate Jacobian values. Although the number ofnegative Jacobian reaches several hundreds, the minimum Jacobianvalues indicate that the foldings are not aggressive, leading to nearlydiffeomorphic solutions. In this case, our proposed NODEO methods
10 
obtain competitive DSC values compared with VoxelMorph and StLD-DMM. StLDDMM and NODEO-LDDMM perform similarly, and the twovariants of NODEO-PDE-LDDMM overpass PDE-LDDMM variants.In OASIS database, all NODEO methods with 𝛼 ≤ 0.0010 reachedor overpassed the baseline of deep-learning and traditional methodsin terms of the DSC. In this case, the good compromise between highDSC and moderate Jacobian values is obtained with 𝛼 = 0.0010. Thenumber of negative Jacobians greatly increased with respect to NIREPresults. The performance is competitive with the best deep-learning andtraditional benchmark methods. Again, the two variants of NODEO-PDE-LDDMM surpassed PDE-LDDMM variants. The differences betweenOASIS-L2R22 validation and test set in terms of the DSC were similar
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Fig. 7. Zoom of the displacement fields shown in Figs. 5 and 6 for the enhancement of the comparison between NODEO-CVPR22 and NODEO-LDDMM. The artifacts in NODEO-CVPR22 flows are neatly appreciated in the left figures.

Fig. 8. NIREP. Sagittal view of the transformation grids in a representative experiment. NODEO-LDDMM methods are shown with 𝛼 = 0.0005. The white arrows point out locationswhere the similarities and differences among the methods can be neatly appreciated.
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Fig. 9. OASIS-L2R22. Sagittal view of the transformation grids in a representative experiment. NODEO-LDDMM methods are shown with 𝛼 = 0.0010. The white arrows point outlocations where the similarities and differences among the methods can be neatly appreciated.

Fig. 10. NIREP. Maximum intensity projection in the sagittal direction of the number of negative Jacobians obtained with NODEO methods through the 15 experiments.
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Fig. 11. OASIS-L2R22 validation set. Maximum intensity projection in the sagittal direction of the number of negative Jacobians obtained with NODEO methods through the 19experiments.

within the methods and consistent across them. The Jacobian extremaremained within a similar min–max range. However, the number ofnegative Jacobians increased considerably in the test set.

In both NIREP and OASIS, NODEO-CVPR22 outperformed in DSCaccuracy our selected configurations. However, this is at the cost ofgreatly increasing the number of negative Jacobians and the minimumJacobian values. It is well-known that high regularization constraintsreduce the ability of a method from obtaining high DSC values while

13 
constraints leading to low regularization facilitate increasing DSC ac-curacy. The performance of NODEO-CVPR22 in terms of DSC andJacobians is a consequence of a lower regularization.
4.6. Qualitative results

Apart from the quantitative evaluation, it is important to show someillustrative examples for a qualitative assessment. Figs. 3 and 4 showsagittal views of the differences after registration of the benchmarkand our proposed methods for the different 𝛼 values. The methods
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Fig. 12. OASIS-L2R22 test set. Maximum intensity projection in the sagittal direction of the number of negative Jacobians obtained with NODEO methods through the 39experiments.

reduce the differences after registration to different extents. Our pro-posed methods are found within the methods with the smallest visualdifferences. The intensity differences among the methods can be betterappreciated in NIREP database. The deep-learning methods are notable to reduce intensity differences in the parietal lobe. In particular,LapIRN-Diff and TransMorph-Bspl show notable intensity differencesall over the cortex, at the parieto-occipital sulcus, and the boundariesof the corpus callosum. Traditional LDDMM methods show intensitydifferences in a small area close to the central sulcus. The pattern ofdifferences of our proposed methods with 𝛼 = 0.0005 is similar to
14 
traditional methods. Differences are mostly located in the parietal lobeand the cortex boundary of the occipital lobe.Figs. 5 and 6 show sagittal views of the RGB coded maps of thedisplacement fields of the methods considered in this work. Fig. 2shows the RGB cube for the interpretation of the colormaps. The visualsmoothness of traditional LDDMM methods can be also appreciatedin VM-GIT, LapIRN-Diff, and TransMorph-Bspl. While NODEO-CVPR22flows exhibit artifacts typical of ODE numerical instabilities, our pro-posed methods do not show such artifacts and the visual smoothness iscomparable with their traditional counterparts (see Fig. 7). In OASIS, it
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drives our attention the boundary artifact shown by the displacementields of the deep-learning methods in the cortex boundary of thearietal and frontal lobes.Figs. 8 and 9 show sagittal views of the transformation grids. Theisual exploration and zooming of the transformation grids is evenmore informative than the visualization of the displacement fields.Strong qualitative differences can be neatly appreciated in the figures.hite arrows point out some relevant ones. We can appreciate thatthe deformation of traditional methods are concentrated in the centralbrain structures, such as the corpus callosum, caudate nucleus, andhe ventricles. NODEO-CVPR22, NODEO-LDDMM, and NODEO-PDE-DDMM specialize in obtaining deformations not only in the centraltructures but also all over the cortex, a challenging location for non-igid registration. Their patterns of deformation greatly differ fromheir corresponding traditional methods. The transformations showny NODEO-CVPR22 in the corpus callosum region or the frontal re-ion seem much less plausible than the transformations shown by ourroposed methods. The patterns of deformation in VM-GIT look muchore similar to StLDDMM and PDE-LDDMM than any of the NODEOethods. This ability to capture deformations in the cortex could bene of the reasons for the exceptional DSC accuracy shown in NIREPvaluation.Last, but not least, Figs. 10, 11, and 12 depict the locations of thenegative Jacobians obtained with NODEO methods throughout all theregistration experiments represented as maximum intensity projectionsof an image displaying the count of negative Jacobians in the sagittalirection. For NIREP, the negative Jacobians are primarily situated inthe cortex, a challenging region for diffeomorphic registration. Com-pared with NODEO-CVPR22, the distribution of negative Jacobians forour NODEO methods is reduced for our recommended 𝛼 = 0.0005. ForOASIS-L2R22, NODEO-CVPR22 shows negative Jacobians spread acrossthe entire image. For our NODEO methods, the distribution of negativeJacobians is significantly decreased for our recommended 𝛼 = 0.0010.
4.7. Computational complexity

To give closure to our analysis, we show in Table 2 the timeand memory requirements of our proposed methods in comparisonwith the benchmark methods. Regarding the memory requirements,NODEO-CVPR22 and NODEO-LDDMM show similar values. They areof the same order as LapIRN-Diff and PDE-LDDMM. On the contrary,the memory requirements of both variants of NODEO-PDE-LDDMMrise to the order of 10 GBs. Regarding time requirements, NODEO-CVPR22 and NODEO-LDDMM take around one minute, while StLD-DMM take around half a minute. The PDE-LDDMM version of NODEO-PDE-LDDMM st eq takes around 68 s less. However, the PDE-LDDMMersion of PDE-LDDMM def eq is less efficient with around 71 s more.Thus, our proposed NODEO-LDDMM can be considered a time-efficientethod with reasonable memory consumption. From NODEO-PDE-DDMM, the variant based on the deformation equation outperformshe time efficiency of PDE-LDDMM methods. We will explore in fu-ure work the improvement in complexity yielded by the band-limitedarametrization.
5. Conclusions

In this paper, we have introduced three different methods at the in-tersection of LDDMM and PDE-LDDMM families andeep-learning: NODEO-LDDMM, NODEO-PDE-LDDMMst eq, andNODEO-PDE-LDDMMdef eq. By blending the well-established mathe-matical formulation of LDDMM with the adaptability of NODEs to learnthe solutions of the ordinary differential equations, our proposed meth-ods have bridged gaps regarding optimization robustness and accuracyfrom traditional methods, and training complexity and generalizationcapability from learning.

15 
Our method has been evaluated in NIREP and OASIS-L2R22, twoatasets posing complementary challenges to the non-rigid registrationproblem. NIREP provides manual segmentations while OASIS-L2R22provides automatically segmented structures. The results of our eval-uation reveal that our proposed methods are able to compete withtraditional LDDMM and deep-learning-based techniques. Our qualita-ive assessment has shown the superiority obtained with respect toODEO-CVPR22. Although our results show a solid proof of the poten-ial of our methods in the problem of non-rigid registration, we believethat regularization could be improved in order to get better control overhe number of negative Jacobians without reducing accuracy.The main difference between NODEO methods and deep-learningethods such as VoxelMorph, SymNet, LapIRN, or TransMorph ishat the neural networks in NODEO are specific for the given imageair while deep-learning methods intensively train on a large datasetf image pairs, and the resulting neural networks are intended forcomputing the solution for every test image pair. In terms of compu-ational efficiency, the inference of deep-learning methods is in therder of seconds while the inference of NODEO methods is in therder of minutes. However, NODEO methods are much easier to train.onitoring training gives information on the performance of the modelor the specific image pair. Indeed, the time complexity for NODEOethods is in the order of minutes while for deep-learning methodst ranges from hours to days. The memory complexity is much loweror NODEO than deep-learning methods (the memory for training aatch size of 1 is close to 24 GBs for VoxelMorph). Indeed, NODEOethods are optimizing the networks specifically for the image pair.herefore, they have much greater generalization ability than deep-earning methods. Increasing the generalization ability in deep-learningethods goes through either training in a larger database or performingnstance optimization [50] and, in both cases, this is at the expense offacing the problems with training complexity.In future work, we will explore ways to increase the regularization.We will also work on the extension of our methods from the stationaryto the non-stationary parametrization. This will involve adding the tem-poral dimension to the networks and developing time-varying NODEsin our methods. These enhancements will allow our systems to betterapture the evolution of the dynamics of the velocity fields over time.e anticipate that the resulting models will offer great flexibility anddaptability in addressing challenging image registration scenarios.Moreover, we will explore the inclusion of physically meaningfulonstraints in our NODEO-PDE-LDDMM framework, such as incom-ressibility [13]. This will require the integration of physical laws(such as conservation of mass) into the loss function, ensuring thatthe learned dynamics respect the fundamental principles of physics.Techniques like Lagrange multipliers or penalty losses could be usedto enforce incompressibility constraints during training. Furthermore,e will investigate how these constraints can be generalized to otherhysical properties, to make our PDE-LDDMM approach applicable indifferent contexts. We believe that incorporating these physically in-ormed elements will not only improve the performance of our methodsbut also increase their robustness, making them applicable to a broadrange of clinical problems.
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Table 3Scheme with the evolution of our proposed methods from the original NODEOproposal [23].
NODEO-PDE-LDDMMst eq

NODEO-CVPR22 NODEO-LDDMM
NODEO-PDE-LDDMMdef eq

lddmm=∫ 1
0 ‖𝑣𝜃𝑡 (𝜙𝑡,0 )‖2𝑉 𝑑𝑡

𝑚 and 𝜆

𝜕𝑡𝜙𝑡,0+𝐷𝜙𝑡,0𝑣𝑡=0
t

𝛼
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Appendix A. Methodological landscape of our proposed methods

Table 3 shows a diagram of the methodological landscape of ourroposed methods illustrating the main differences between NODEO-VPR22 and NODEO-LDDMM and between NODEO-LDDMM andODEO-PDE-LDDMM.
Appendix B. Algorithms

Algorithms 1 and 2 gather the steps for a gradient-descent versionf LDDMM and NODEO-LDDMM. Both algorithms share common stepsuch as the computation of 𝜙𝑛+1
𝑡,0 , 𝐼0 ◦𝜙𝑡,0, and the energy values. How-ever, in the case of LDDMM the solution of the transport equation ispproached using Semi-Lagrangian or Scaling and Squaring solvers [16,51,52]. In the case of NODEO, the solution is approached using Eulersolvers, and the right-hand-side of the equation is computed from theNODE neural representation. The other fundamental difference is in theoptimization. In the case of LDDMM, the energy gradient is computedrom the expression analytically derived in [5] and used in the updatef 𝑣𝑡. In the case of NODEO, the loss gradient is computed usingutomatic differentiation and used to perform backpropagation andpdate the neural representation of −𝑣𝜃𝑡 (𝜙𝑡,0).Algorithms 3 and 4 gather the steps for both variants of our NODEO-PDE-LDDMM. Using the algorithm of NODEO-LDDMM as a backbone,the algorithms compute the ingredients needed in the computation of

𝑣𝑡 and backpropagation leads to the update of the right-hand-side ofthe ODEs involved in both approaches.
Algorithm 1. LDDMM.
Data: 𝐼0, 𝐼1, 𝑣0𝑡 ∈ 𝑉 , 𝐿, 𝐾, 𝜎, 𝜖.
Results: 𝑣𝑡 ∈ 𝑉 , arg min of Eq 1.
for 𝑛 ← 0 to convergence do1) Compute 𝜙𝑛+1

𝑡,0 (𝑡) from the corresponding transport equation.2) Compute 𝐼0 ◦𝜙𝑡,0 from 𝐼0 and 𝜙𝑛+1
𝑡,0 (𝑡).3) Compute |𝐷 𝜙𝑡,1|.4) Compute ∇𝑣𝐸(𝑣) from Eq 6.5) Compute 𝑣𝑛+1𝑡 = 𝑣𝑛𝑡 − 𝜖∇𝑣𝐸(𝑣𝑡).6) Compute the image similarity, the regularization energy, and the globalenergy and check for algorithm convergence. Apply the selected line-searchstrategy.

end
 t
16 
Algorithm 2. NODEO-LDDMM.
Data: 𝐼0, 𝐼1, (𝑣𝜃𝑡 )0, 𝐿, 𝐾, 𝜎, 𝑛𝑖𝑡𝑠.
Results: −𝑣𝜃𝑡 (𝜙𝑡,0), arg min of Eq 12, 𝜙𝑡,0, solution of Eq 11 through the NODEsolver.
Build the NODE network. Initialize randomly −𝑣𝜃𝑡 (𝜙𝑡,0).
for 𝑛 ← 0 to 𝑛𝑖𝑡𝑠 do1) Compute 𝜙𝑛+1

𝑡,0 from Eq 11.2) Compute −𝑣𝑡(𝜙𝑡,0) from −𝑣𝜃𝑡 (𝜙𝑡,0).3) Compute 𝐼0 ◦𝜙𝑡,0 from 𝐼0 and 𝜙𝑛+1
𝑡,0 using a spatial transformer.4) Compute the image similarity, the regularization losses, and the lossfunction.5) Perform backward propagation on −𝑣𝜃𝑡 (𝜙𝑡,0).6) Update (−𝑣𝜃𝑡 (𝜙𝑡,0))𝑛+1.

endSelect the best-performing −𝑣𝜃𝑡 (𝜙𝑡,0) according to the stopping strategy.
Algorithm 3. NODEO-PDE-LDDMMst eq.
Data: 𝐼0, 𝐼1, ((𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 )0, ((𝐷 𝜙0,𝑡 ⋅ 𝑣𝑡)𝜃 )0, 𝐿, 𝐾, 𝜎, 𝑛𝑖𝑡𝑠.
Results: 𝑣𝑡, arg min of Eq 18 with lNCC metric, 𝜙𝑡,0 and 𝜙0,𝑡, solutions of Eq 22through the NODE solvers.
Build the NODE network. Initialize randomly (𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 and (𝐷 𝜙0,𝑡 ⋅ 𝑣𝑡)𝜃 .
for 𝑛 ← 0 to 𝑛𝑖𝑡𝑠 do1) Compute 𝜙𝑛+1

𝑡,0 and 𝜙𝑛+1
0,𝑡 through the NODE solvers.2) Compute 𝑚(𝑡) from Eq 23 using a spatial transformer.3) Compute 𝜆(𝑡) from Eq 23 using a spatial transformer.4) Compute 𝑣(𝑡) from Eq 26.5) Compute the image similarity, the regularization losses, and the loss function.6) Perform backward propagation on (𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 and (𝐷 𝜙0,𝑡 ⋅ 𝑣𝑡)𝜃 .7) Update ((𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 )𝑛+1 and ((𝐷 𝜙0,𝑡 ⋅ 𝑣𝑡)𝜃 )𝑛+1.

endSelect the best-performing ((𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 )𝑛+1 and ((𝐷 𝜙0,𝑡 ⋅ 𝑣𝑡)𝜃 )𝑛+1 according to thestopping strategy and provide as solution the associated 𝑣𝑡.
Algorithm 4. NODEO-PDE-LDDMMdef eq.
Data: 𝐼0, 𝐼1, ((𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 )0, ((∇ ⋅ (𝜌𝑡 ⋅ 𝑣𝑡))𝜃 )0, 𝐿, 𝐾, 𝜎, 𝑛𝑖𝑡𝑠.
Results: 𝑣𝑡, arg min of Eq 18 with lNCC metric and 𝜙𝑡 solution of Eq 22 throughthe NODE solver.
Build the NODE network. Initialize randomly (𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 and (∇ ⋅ (𝜌𝑡 ⋅ 𝑣𝑡))𝜃 .
for 𝑛 ← 0 to 𝑛𝑖𝑡𝑠 do1) Compute 𝜙𝑛+1

𝑡,0 through the NODE solver.2) Compute 𝜌(1) from Eq 24 using a spatial transformer for 𝑚(1).3) Compute 𝜌(𝑡) through the NODE solver.4) Compute 𝑣(𝑡) from Eq 27.5) Compute the image similarity, the regularization losses, and the loss function.6) Perform backward propagation on (𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 and (∇ ⋅ (𝜌𝑡 ⋅ 𝑣𝑡))𝜃 .7) Update ((𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 )𝑛+1 and ((∇ ⋅ (𝜌𝑡 ⋅ 𝑣𝑡))𝜃 )𝑛+1.
endSelect the best-performing ((𝐷 𝜙𝑡,0 ⋅ 𝑣𝑡)𝜃 )𝑛+1 and ((∇ ⋅ (𝜌𝑡 ⋅ 𝑣𝑡))𝜃 )𝑛+1 according to thestopping strategy and provide as solution the associated 𝑣𝑡.

Appendix C. Regularization in LDDMM and NODEO-LDDMM
In our study, regularization parameters were selected from a searchof the optimal parameter 𝛼 in NIREP and OASIS-L2R22 datasets. Inhis appendix, we present the details of the study conducted for suchselection. Table 4 shows the quantitative results in LDDMM and PDE-LDDMM for the different values of the regularization parameter 𝛼.In NIREP, the highest DSC values are obtained with 𝛼 = 0.0005 or
= 0.0010. However, looking at the Jacobian metrics we appreciatehat the regularization is too weak and some variants of the methods
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Table 4LDDMM and PDE-LDDMM. Quantitative results on NIREP and OASIS-L2R22 for the selection of the regularization parameter 𝛼. Mean and standard deviation of the Dice SimilarityCoefficient (DSC), maximum and minimum of the Jacobian determinant, number of negative Jacobian determinants, and standard deviation of the logarithm of the Jacobianeterminant for those points with positive values. The abbreviation st eq is used for the PDE-LDDMM method based on the state equation. The abbreviation def eq is used for thePDE-LDDMM method based on the deformation equation. The arrows indicate that high DSC values while not extreme Jacobian determinant values are preferable. In the columnailed J we indicate the number of experiments with failed Jacobian computation (extremely large 𝑚𝑎𝑥(𝐽 ) values, > 1000, or nan) due to numerical issues with low regularization.hese values were removed from the computation of the corresponding Jacobian-based quantitative results.NIREP
Method Metric 𝛼 DSC (%) ↑ max (J) ↓ min (J) ↑ # of |𝐽𝜙| ≤ 0 ↓ SDlogJ ↓ failed J
Stationary LDDMM lNCC 0.0005 63.39 ± 1.62 – – – – 15Stationary LDDMM lNCC 0.0010 62.10 ± 1.54 15.09 ± 4.46 0.02 ± 0.22 39 0.27 ± 0.01 –Stationary LDDMM lNCC 0.0015 60.85 ± 1.47 15.09 ± 4.46 0.02 ± 0.22 0 0.27 ± 0.01 –Stationary LDDMM lNCC 0.0025 58.98 ± 1.30 8.03 ± 1.94 0.19 ± 0.08 0 0.21 ± 0.01 –
PDE-LDDMM st eq lNCC 0.0005 60.39 ± 2.46 11.78 ± 8.41 0.00 ± 0.01 0 0.24 ± 0.02 –PDE-LDDMM st eq lNCC 0.0010 60.11 ± 2.81 7.41 ± 3.56 0.01 ± 0.01 0 0.23 ± 0.02 –PDE-LDDMM st eq lNCC 0.0015 60.19 ± 2.64 6.37 ± 2.43 0.02 ± 0.02 0 0.22 ± 0.02 –PDE-LDDMM st eq lNCC 0.0025 59.84 ± 2.53 5.17 ± 1.64 0.02 ± 0.02 0 0.21 ± 0.02 –
PDE-LDDMM def eq NCC 0.0005 59.41 ± 4.47 9.56 ± 3.47 0.06 ± 0.03 0 0.23 ± 0.03 1PDE-LDDMM def eq NCC 0.0010 60.92 ± 1.88 15.59 ± 5.89 0.05 ± 0.03 0 0.24 ± 0.03 –PDE-LDDMM def eq NCC 0.0015 60.67 ± 2.38 29.95 ± 33.66 0.05 ± 0.03 0 0.24 ± 0.01 –PDE-LDDMM def eq NCC 0.0025 60.10 ± 1.45 13.19 ± 10.59 0.09 ± 0.03 0 0.21 ± 0.01 –
OASIS-L2R22
Method Metric 𝛼 DSC (%) ↑ max (J) ↓ min (J) ↑ # of |𝐽𝜙| ≤ 0 ↓ SDlogJ ↓ failed J
Stationary LDDMM lNCC 0.0005 78.55 ± 3.20 1062.09 ± 1065.20 −217.73 ± 287.48 39 300 0.63 ± 0.12 –Stationary LDDMM lNCC 0.0010 78.35 ± 3.20 227.49 ± 235.54 −14.89 ± 41.82 6578 0.41 ± 0.06 –Stationary LDDMM lNCC 0.0015 78.15 ± 2.87 75.27 ± 132.66 −1.11 ± 1.42 2729 0.34 ± 0.04 –Stationary LDDMM lNCC 0.0025 77.47 ± 2.81 32.16 ± 70.55 −0.52 ± 1.05 2976 0.30 ± 0.05 –
PDE-LDDMM st eq lNCC 0.0005 73.64 ± 2.99 33.00 ± 45.70 0.00 ± 0.00 76 0.27 ± 0.04 3PDE-LDDMM st eq lNCC 0.0010 71.19 ± 10.73 16.85 ± 12.67 0.00 ± 0.00 0 0.26 ± 0.04 3PDE-LDDMM st eq lNCC 0.0015 72.35 ± 7.13 11.63 ± 7.13 0.00 ± 0.01 0 0.26 ± 0.03 1PDE-LDDMM st eq lNCC 0.0025 73.30 ± 5.32 11.51 ± 6.83 0.00 ± 0.01 0 0.26 ± 0.04 1
PDE-LDDMM def eq NCC 0.0005 74.33 ± 6.19 533.71 ± 267.12 0.02 ± 0.01 0 0.32 ± 0.03 9PDE-LDDMM def eq NCC 0.0010 77.07 ± 2.72 116.90 ± 71.31 0.02 ± 0.02 0 0.30 ± 0.02 8PDE-LDDMM def eq NCC 0.0015 77.14 ± 2.64 147.54 ± 159.86 0.04 ± 0.02 0 0.27 ± 0.02 4PDE-LDDMM def eq NCC 0.0025 76.12 ± 2.61 47.39 ± 80.02 0.08 ± 0.03 0 0.22 ± 0.02 –
show failed Jacobian computations, which is not desirable. From thisnalysis, we selected 𝛼 = 0.0010.In OASIS-L2R22, PDE-LDDMM methods obtain the highest DSCalues with 𝛼 = 0.0005 or 𝛼 = 0.0015, while StLDDMM obtains theighest DSC values with 𝛼 = 0.0005. PDE-LDDMM is a fragile methodhere the numerics for the computation of the Jacobian may explodewhen using weak regularization parameters. Since the obtained DSCvalues are still competitive with the best-performing regularizations,we selected 𝛼 = 0.0025 as an optimal regularization parameter.In the case of NODEO based methods, we did not experiencefailed Jacobian computations in any of the methods, even for 𝛼 =
0.0001, which provided the weakest regularization. Therefore, the useof NODEs in PDE-LDDMM yields a more robust optimization.In addition, it drives our attention that the range for 𝛼 selectionn NIREP should be between 0.0025 and 0.0005 for LDDMM, between0.0010 and 0.0001 for NODEO-LDDMM and NODEO-PDE-LDDMM. InOASIS-L2R22, the range changes between 0.0025 and 0.00025. There-fore, the estimations of acceptable regularization ranges in LDDMMcannot be extended to NODEO and viceversa.
Data availability

Data will be made available on request.
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