

A proposal of standardization for histopathological lesions to characterize fish diseases

Journal:	Reviews in Aquaculture
Manuscript ID	
Manuscript Type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Rey, Alba Lucía; Universidad Antonio Nariño, Faculty of Veterinary Sciences; Universidad de Zaragoza, Department of Animal Pathology, Faculty of Veterinary Sciences Asín, Javier; Universidad de Zaragoza Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, Department of Animal Pathology, Faculty of Veterinary Sciences; University of California Davis, California Animal Health and Food Safety Laboratory System (CAHFS) Ruiz-Zarzuela, Imanol; Universidad de Zaragoza Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, Department of Animal Pathology, Faculty of Veterinary Sciences Luján, Lluis; Universidad de Zaragoza Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, Department of Animal Pathology, Faculty of Veterinary Sciences Luján, Lluis; Universidad de Zaragoza Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, Department of Animal Pathology, Faculty of Veterinary Sciences Iregui, Carlos Arturo; Universidad Nacional de Colombia, Department of Animal Pathology, Faculty of Veterinary Sciences de Blas, Ignacio; Universidad de Zaragoza Instituto Universitario de Investigación Mixto Agroalimentario de Aragón, Department of Animal Pathology, Faculty of Veterinary Sciences
Keywords:	Disease patterns, Circulatory disturbances, Regressive changes, Progressive changes, Inflammation, Neoplasia

SCHOLARONE[™] Manuscripts Page 1 of 28

1	A proposal of standardization for histopathological lesions to characterize fish
2	diseases
3	
4	Alba Lucía Rey ^{a,b} *, Javier Asín ^{b,c} *, Imanol Ruiz Zarzuela ^b , Lluís Luján ^b , Carlos A.
5	Iregui ^d , Ignacio de Blas ^b
6	
7	^a Faculty of Veterinary Sciences, Universidad Antonio Nariño, Bogotá, Colombia
8	^b Department of Animal Pathology, Faculty of Veterinary Sciences, Instituto
9	Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad
10	de Zaragoza, Spain
11	^c California Animal Health and Food Safety Laboratory System (CAHFS)-University of
12	California Davis, San Bernardino, CA, United States
13	^d Laboratory of Veterinary Pathology and Pathobiology, Faculty of Veterinary Sciences,
14	Universidad Nacional de Colombia, Bogotá, Colombia
15	* These authors contributed equally to this work and are considered to be co-first
16	authors
17	Corresponding author: Dr. Ignacio de Blas
18	Department of Animal Pathology, Faculty of Veterinary Science
19	Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA)
20	c/ Miguel Servet 177, 50013 Zaragoza, Spain.
21	e-mail: deblas@unizar.es / Phone: +34 976 761609
22	Short running title: Standardization of fish histopathology

23 ABSTRACT

The use of histopathogy in fish sciences is broadly extended, although it is currently 24 25 devoid of standardization across the literature. There have been initiatives to standardize every step of the histological evaluation, including description, diagnosis, interpretation, 26 27 data recording and reporting, and statistical analysis, but, in general, the histopathological systems applied to date present a series of limitations that hamper the reproducibility of 28 the derived data. On top of these limitations, an agreed, organ-by-organ list of lesions to 29 30 be recorded is currently lacking. Therefore, this communication proposes a validated and comprehensive list of features to record in skin, head, eye, nervous system, 31 gastrointestinal tract, gonads, kidney, and other organs of farmed red and Nile tilapias 32 (Oreochromis sp. and Oreochromis niloticus L., respectively), white cachama (Piaractus 33 34 brachypomus), rainbow trout (Oncorhynchus mykiss), and other species. Once this list is agreed and accepted by fish pathologists and other fish scientists, it could be the 35 36 cornerstone for the development of well-established and reproducible histopathological scoring systems. This communication highlights the importance of standardization 37 initiatives in fish histology to produce reliable and high-quality data. 38

39

Key words: Disease patterns; Circulatory disturbances; Regressive changes; Progressive
changes; Inflammation; Neoplasia

42 INTRODUCTION

Since the beginning of the 18th century, animal histopathology has remained as a major
tool in health sciences (Titford 2006). It is indeed an essential part of basic research that
permits to evaluate the effects of a given disruptive stimulus (e.g. chemical compound,
infectious agent, etc.) on the microscopic structure of an organ system (O'Dowd *et al.*2019).

The cornerstones of histopathology are description and its subsequent interpretation, 48 which largely depends on the experience of the pathologist. Therefore, there may be a 49 50 degree of subjectivity that requires initiatives for standardization across the scientific literature, especially nowadays, in light of the rising era of digital pathology (Bertram & 51 52 Klopfleisch 2017, Egevad et al. 2017). Indeed, much work has been done on standardization of pre-analytic and analytic phases, such as fixation times or staining 53 optimization, and currently most of the effort is focused on post-analytic parameters, like 54 reporting and interpretation of the results (Barisoni et al. 2017, Egevad et al. 2017). 55 56 Histopathological data usually consist of semiguantitative and quantitative scores that are also susceptible to standardization in order to harmonize the information derived from the 57 corresponding studies (Meyerholz et al. 2019). 58

The use of histopathology in fish sciences is also broadly extended (Table 1), but most of fish tissues present intrinsic phenotypic differences with mammalian structures (Ferguson 2006, Roberts 2012). These peculiarities demand specific efforts for lesion scoring standardization in fish species in order to guarantee comparability across the different studies. Thus, the present communication inquiries into the different aspects subjected to standardization in fish histopathology and proposes an organ-by-organ comprehensive list of histopathological lesions in fish.

67 Potential aspects to standardize and common limitations in fish histopathology

Bernet et al. (1999) developed a histopathological scoring system in fish that has been 68 69 widely used across the literature (Zimmerli et al. 2007, Poleksic et al. 2010, Saraiva et al. 2015, Steinbach et al. 2016, Gregorc et al. 2018, Lei et al. 2018), with more than 800 70 citations in Google Scholar[®] and 450 citations in Web of Science[®] (Table 1). Originally, 71 this system was designed to assess changes induced by aquatic pollutants on the most 72 susceptible organs (gills, kidney, liver, and skin), and did not include other tissues 73 74 susceptible to alteration by other different disease processes. The strength of Bernet's protocol lies on a comprehensive combination of parameters evaluated. For each organ, 75 five reaction patterns are established: i) Circulatory disturbances; ii) Regressive changes; 76 77 iii) Progressive changes; iv) Inflammation; and v) Tumors; each one encompassing 78 specific alteration features. Then, for each alteration feature, an importance factor (1 to 3, according to the relevance of the lesion in the specific organ function), and a score 79 80 value (0 to 6, depending on the degree and extent of the alteration) are added. Up to four different indexes can be subsequently calculated based on those parameters, which gives 81 precise information on the degree and quality of the lesions assigned to each organ, as 82 well as on the overall health status of the fish. 83

The Bernet's protocol has been adapted to other disease processes and organ systems, 84 such as heart or intestine (Steinbach et al. 2016, Lei et al. 2018), but it is rarely used to 85 86 characterize infectious or parasitic diseases. For instance, Steinbach et al. (2016) recently proposed a standardization method to evaluate heart lesions in the rainbow trout 87 (Oncorhynchus mykiss), which may be also applied to other species. Indeed, a well-88 89 developed and harmonized scoring system should be transferable to other fish species with minor adjustments. Furthermore, some authors have highlighted a paucity on 90 standardization terminology and suggested reviewing potential misinterpretations, such 91

as physiologic changes or processing artifacts, within the scoring systems (Wolf & 92 93 Wheeler 2018). Remarkably, misdiagnosis and misinterpretation have been identified as the two most common pitfalls in fish histopathological studies: misdiagnosis refers to 94 morphologic observations that are incorrectly considered abnormal or just to the use of 95 improper/imprecise descriptive terminology; on the other hand, misinterpretation 96 accounts for incorrect conclusions achieved from correctly-described morphologic 97 98 findings (Wolf et al. 2015). On top of this, there is specific terminology for certain organs that has to be discussed, agreed, and recorded in official documents, aiming to generate 99 wider consensus among fish pathologists. In this line, an international project was 100 101 established to develop a toxicological test system using Japanese medaka (Oryzias latipes), named the Medaka One Generation Reproduction Test (MEOGRT). MEOGRT 102 103 regularly releases a series of documents on testing and assessment, which include some 104 comprehensive guidelines for histopathological evaluation that are mainly focused on gonads (OECD 2015). Similarly, initiatives of standardization for zebrafish (Danio rerio) 105 106 histopathology have been undertaken, which promotes this species as a non-mammal 107 alternative to rodents in toxicology, reproduction, and many other biomedical studies (Menke et al. 2011, Copper et al. 2018). There are fewer articles that explore these aspects 108 109 in farmed fish species. Recently, a study established some guidelines to differentiate normal and pathological findings in histology of farmed Nile tilapias (Oreochromis 110 niloticus) (Steckert et al. 2018); additionally, other authors applied a standardized 111 112 histopathology scoring system, proposed by Zimmerli et al. (2007), to establish the health status of farmed seabass (Dicentrarchus labrax L.) (Saraiva et al. 2015). 113

Once described, diagnosed, and interpreted, the histopathological findings have to be recorded into proper data managing systems (i.e. data sheets or databases). Data recording is also susceptible to standardization, which may facilitate a consensus also in statistical

analysis (Wolf et al. 2015). One of the main targets of a proper recording system is to 117 118 convert qualitative data into semiquantitative or, preferable, quantitative (Gurcan *et al.* 119 2009). After that, a proper statistical approach has to be applied. In this line, a new test system called Rao-Scott Cochran-Armitage by Slides (RSCABS) has been developed 120 (Green et al. 2014). The RSCAS system is easy to perform and interpret and it has been 121 122 already adopted in some wider studies because it presents major advantages, as it allows 123 to establish: i) Experimental designs with multiple replicates; ii) Lesion severity scores of individual animals in addition to group-wise lesion prevalence; iii) Dose-response 124 relationships (OECD 2015). 125

Steckert et al. (2018) used an adapted semiquantitative system proposed by Schwaiger et 126 127 al. (1997), which permitted to determine some common histopathological findings in gills and other organs of farmed Nile tilapias (Oreochromis niloticus). In this system, data are 128 converted to an increasing scale of mean values of change (MVA), depending on the 129 130 degree of severity of the lesions according to a scale (0, no alteration; 1, mild alteration) or focal process; 2, moderate alteration or multifocal process; and 3, severe alteration or 131 diffuse process). Based on this scale, an MVA is given for each animal, which classifies 132 them as mild (0.1-1.0), moderate (1.1-2.0), and intense (2.1-3.0). Additionally, the 133 134 prevalence for each lesion is calculated.

Other studies on farmed and wild life fish species, such as farmed seabass (*Dicentrarchus labrax*), common carp (*Cyprinus carpio*), and brown trout (*Salmo trutta*) have successfully applied (either directly or adapted) the semiquantitative Bernet's protocol to monitor health status (Bernet *et al.* 1999, Zimmerli *et al.* 2007, Rašković *et al.* 2013, Saraiva *et al.* 2015). A common limitation of some of these studies is the lack of an exhaustive array of organs evaluated, even though some of them were crucial for the parameters studied. For instance, Rašković *et al.* (2013), despite applying a proper set of

statistical analyses, did not study histological features of the alimentary system, which 142 143 would have been appropriate considering that diet was one of the clue management factors described in the study. Another frequent limitation is evaluating a series of organs 144 without establishing a scoring system or a pre-designed list of histopathological features 145 to record (Schwaiger et al. 1997, Benli et al. 2008). In order to improve both reliability 146 and comparability of the histopathological results, an organ-specific combination of 147 148 features has to be established together with a well-defined, reproducible protocol of 149 scoring.

150 An organ-by-organ proposal of histopathological findings

A comprehensive, organ-by-organ list of histopathological features to be recorded is 151 152 proposed in Tables 2-7. This list is based on available atlas of fish lesions, comprehensive reviews, and the authors' experience (Verjan et al. 2001, Rey et al. 2002, Iregui et al. 153 2004, Ferguson 2006, Wolf et al. 2015). The different categories of changes per organ 154 ("Reaction Patterns") are established according to Bernet et al. (1999). This protocol has 155 been established and validated by the Laboratory of Veterinary Pathology and 156 Pathobiology of the Universidad Nacional de Colombia in studies using farmed red and 157 Nile tilapias (Oreochromis sp. and Oreochromis niloticus L., respectively), white 158 cachama (Piaractus brachypomus), rainbow trout (Oncorhynchus mykiss), and other 159 species. 160

161

162 DISCUSSION

163 A list of histopathological findings grouped by organs is proposed in this communication.

164 This list aims to set the cornerstone for future studies that include histological evaluation

of farmed red and Nile tilapias (*Oreochromis* sp. and *Oreochromis niloticus* L.), and
likely others farmed and wild fish species.

167 Once an agreed list is established, it will be possible to create a systematic atlas of lesions and the further development of histopathological scores. Similar initiatives have been 168 169 undertaken in other species, such as laboratory rodents, which evolved into the availability of online atlas with guidelines for toxicology studies (National Toxicology 170 Program 2019). There are plenty of atlas of fish microanatomy and histopathology 171 (Ferguson 2006, Roberts 2012), but there are fewer examples of comprehensive 172 compendiums that guide on how to evaluate, grade, and report specific findings in 173 different organs of these species. There exist some examples in the species most 174 175 commonly used on basic research: an atlas that includes normal and abnormal histological 176 findings in zebrafish (Danio rerio) is available online (van der Ven & Wester 2019); and the MEOGRT initiative remains as one of the most solid projects on standardization in 177 178 Japanese medaka (Oryzias latipes) to date (OECD 2015). Therefore, our protocol contributes to some of the main objectives of MEOGRT and similar projects, as it aims 179 to provide a common technical "language" for histopathology and to create a reference 180 atlas of both microanatomical structures and potential pathological findings (OECD 181 182 2015).

183 The next step will be the establishment of updated, agreed, and comprehensive 184 histopathological scoring systems in order to delve into major advantages on fish 185 researches that include histological evaluation of different organs.

This communication also highlights some of the limitations of the histological scoringsystems applied to date:

Reviews in Aquaculture

A comprehensive, organ-by-organ protocol is currently lacking. Studies have
 classically included gills, liver, kidney, and skin, only (Bernet *et al.* 1999, Steinbach
 et al. 2016).

 Most of the scoring systems have been focused on the effects of pollution and contamination (Bernet *et al.* 1999, Au 2004). There are fewer standardized systems established to evaluate infectious and parasitic diseases (Roberts & Pearson 2005, Mitchell & Rodger 2011, Laurin *et at.* 2019), and they are mostly disease- and/or organ-specific, with minimal comparability among them.

196 3. Furthermore, no scoring system has considered the effects of coinfections to date,

197 which are very common in farmed and wild fishes (Kotob *et al.* 2016, Laurin *et at.*

198 2019), and may indeed affect the histopathological assessments.

4. There is a wide variation on the quality of the representative graphic material provided
in the different articles, which hampers the comparison with other studies and their
reliability as models for similar findings obtained by other authors (Wolf *et al.* 2015,
Barisoni *et al.* 2017).

5. Several studies do not establish proper scoring systems (i.e. precise descriptions of the
findings to evaluate, grades given to each of them, relevance in the organ function,
etc.) in the methods sections. Contrarily, they directly provide with a descriptive list
of findings in the results section, which hampers the comparison of the outcomes, both
with the corresponding controls and with animals from other studies (Schwaiger *et al.*1997, Benli *et al.* 2008).

6. There are scarce published records of common background findings and/or
characteristics that may lead to defects on the diagnosis and interpretation of
histopathological features (Wolf *et al.* 2015).

If lists of lesions like the one proposed herein are validated and their use extended as part 212 213 of scoring systems, major improvements on statistical evaluation will be also gained. Statistical standardization across the literature will promote the application of meta-214 analyses, which seems to be one of the main fields to improve in pathology studies overall 215 (Liu et al. 2017). Actually, there have been interesting proposals of histological 216 evaluation systems for fish species; however, the lack of lesion and statistical 217 218 standardization difficulties not only the implementation of meta-analyses, but also the 219 comparison of the findings among different species (Laurin et al. 2019). Standardization of the statistical approaches applied to different tissue score systems is also necessary, 220 221 especially to avoid some of the typical mistakes made in such studies (Meyerholz et al. 2019). Remarkably, improper assumptions of normality are rather common, probably 222 related to the application of verifying tests (e.g. Shapiro-Wilk) to the whole data set 223 224 irrespectively of the categorization, thus leading to an incorrect application of a parametric test (Reiczigel et al. 2019). This being so, if the proposed list is eventually 225 226 agreed and validated, specific statistical analyses will be established in an attempt to 227 standardize every step of the process. Thus, diagnosis, interpretation, reporting, and statistical standardization will also contribute to the improvement of inter-observer 228 agreement across studies, which is one of the main goals of modern pathology (Egevad 229 et al. 2017), and is currently lacking in ichthyopathology. 230

The proposed list (Tables 2-7) may have some limitations, such as the lack of a similar system to evaluate macroscopic lesions. There are some excellent systems with guidelines for necropsy evaluation published elsewhere and our work could be considered complementary to them (Yanong 2003, Kande 2005 Blazer *et al.* 2018). Indeed, Blazer *el al.* (2018) remarked that some of the limitations of their system may be addressed by the implementation of histopathology and other diagnostic techniques. Additionally, the number of features proposed to evaluate infectious and parasitic diseases ("Pathogen
Presence" reaction pattern in Tables 2-7) may look scarce at this point. These features
aim to establish a general list of findings that, once agreed, will serve as a basis for the
development of broader lists and scoring systems focused on specific diseases, as other
authors have done in the past (Wolf & Smith 1999, Guevara Soto *et al.* 2017).

242 CONCLUSIONS

A list of histopathological findings focused on the development of a scoring system that covers all major organs must be proposed and agreed upon by fish scientists. In the future, a fish pathologist should be able to peer-review any given research study or diagnostic report and reach similar conclusions to the reported therein. Improvements on a variety of fields, such as reliability on the data, reproducibility, worldwide meta-analyses, and educational value will be further gained by these kind of initiatives.

249

250 **REFERENCES**

Abdelhamed H, Ibrahim I, Baumgartner W, Lawrence ML, Karsi A (2017)
Characterization of Histopathological and Ultrastructural Changes in Channel Catfish
Experimentally Infected with Virulent *Aeromonas hydrophila*. *Frontiers in Microbiolology* 8: 1519. doi:10.3389/fmicb.2017.01519

Adams MB, Ellard K, Nowak BF (2004) Gross pathology and its relationship with

histopathology of amoebic gill disease (AGD) in farmed Atlantic salmon, Salmo salar

L. Journal of Fish Diseases 27(3): 151-161. doi:10.1111/j.1365-2761.2004.00526.x

Ale A, Bacchetta C, Rossi AS, Galdopórpora J, Desimone MF, de la Torre FR, Gervasio
S, Cazenave J (2018) Nanosilver toxicity in gills of a neotropical fish: Metal
accumulation, oxidative stress, histopathology and other physiological effects.

261 *Ecotoxicology and Environmental Safety* 148: 976-984.
 262 doi:10.1016/j.ecoenv.2017.11.072

Altun S, Diler A, Diler Ö, Basak K, Isikli BT (2005) Histopathology of streptococcosis

in rainbow trout (Oncorhynchus mykiss Walbaum). Bulletin of the European
Association of Fish Pathologists 25(3): 131-135.

- Au DWT (2004) The application of histo-cytopathological biomarkers in marine
 pollution monitoring: a review. *Marine Pollution Bulletin* 48: 817–834.
 doi:10.1016/j.marpolbul.2004.02.032
- 269 Barisoni L, Gimpel C, Kain R, Laurinavicius A, Bueno G, Zeng C, Liu Z, Schaefer F,
- 270 Kretzler M, Holzman LB, Hewitt SM (2017) Digital pathology imaging as a novel

271 platform for standardization and globalization of quantitative nephropathology.

272 *Clinical Kidney Journal* **10(2)**: 176–187. doi:10.1093/ckj/sfw129

- 273 Benli AÇK, Köksal G, Özkul A (2008) Sublethal ammonia exposure of Nile tilapia
- 274 (*Oreochromis niloticus* L.): Effects on gill, liver and kidney histology. *Chemosphere*

275 **72**: 1355–1358. doi:10.1016/j.chemosphere.2008.04.037

- 276 Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in
- fish: proposal for a protocol to assess aquatic pollution. *Journal of Fish Diseases* 22:

278 25–34. doi:10.1046/j.1365-2761.1999.00134.x

- 279 Bertram CA, Klopfleisch R (2017) The Pathologist 2.0: An update on digital pathology
- 280 in veterinary medicine. *Veterinary Pathology* 54(5): 756–766.
- 281 doi:10.1177/0300985817709888
- Blazer VS, Fournie JW, Wolf JC, Wolfe MJ (2006) Diagnostic criteria for proliferative
- 283 hepatic lesions in brown bullhead Ameiurus nebulosus. Diseases of Aquatic Organisms
- **72(1):** 19-30. doi:10.3354/dao072019

285	Blazer VS, Walsh HL, Braham RP, Smith C (2018) Necropsy-based wild fish health
286	assessment. Journal of Visualized Experiments 139: 57946. doi:10.3791/57946

- Carbis CR, Rawlin GT, Mitchell GF, Anderson JW, McCauley I (1996) The
 histopathology of carp, *Cyprinus carpio* L., exposed to microcystins by gavage,
 immersion and intraperitoneal administration. *Journal of Fish Diseases* 19(3): 199-
- 290 207. doi:10.1111/j.1365-2761.1996.tb00126.x
- 291 Cengiz EI (2006) Gill and kidney histopathology in the freshwater fish *Cyprinus carpio*
- after acute exposure to deltamethrin. *Environmental Toxicology and Pharmacology*
- **293 22(2):** 200-204. doi:10.1016/j.etap.2006.03.006
- 294 Chang PA, Plumb JA (1996). Histopathology of experimental *Streptococcus* sp. infection
- in tilapia, Oreochromis niloticus (L.), and channel catfish, Ictalurus punctatus
- 296 (Ratinesque). Journal of Fish Diseases 19(3): 235-241. doi:10.1111/j.1365297 2761.1996.tb00130.x
- 298 Copper JE, Budgeon LR, Foutz CA, van Rossum DB, Vanselow DJ, Hubley MJ, Clark
- 299 DP, Mandrell DT, Cheng KC (2018) Comparative analysis of fixation and embedding
- 300 techniques for optimized histological preparation of zebrafish. *Comparative*
- 301 Biochemistry and Physiology Part C: Toxicology & Pharmacology 208: 38–46.
- doi:10.1016/j.cbpc.2017.11.003
- Darwish A, Plumb JA, Newton JC (2000) Histopathology and Pathogenesis of
 Experimental Infection with *Edwardsiella tarda* in Channel Catfish. *Journal of Aquatic Animal Health* 12:4, 255-266. doi:10.1577/15488667(2000)012<0255:HAPOEI>2.0.CO;2

- 307 De Buron I, Roumillat WA (2010) Histopathology of two philometrid parasites of the
- 308 southern flounder, *Paralichthys lethostigma*. Journal of Wildlife Diseases 46(1): 277-
- 309 282. doi:10.7589/0090-3558-46.1.277
- 310 Egevad L, Cheville J, Evans AJ, Hörnblad J, Kench JG, Kristiansen G, Leite KRM, Magi-
- Galluzzi C, Pan C-C, Samaratunga H, Srigley JR, True L, Zhou M, Clements M,
- 312 Delahunt B & The ISUP Pathology Imagebase Expert Panel (2017) Pathology
- 313 Imagebase a reference image database for standardization of pathology.
- 314 *Histopathology* **71:** 677–685. doi:10.1111/his.13313
- Ferguson HW (2006) *Systemic pathology of fish* (2nd edition). Scotian Press. 366 pp.
- Giovannini S, Bergmann SM, Keeling C, Lany C, Schütze H, Schmidt-Posthaus H (2016)
- 317 Herpesviral hematopoietic necrosis in goldfish in Switzerland: early lesions in
- 318 clinically normal goldfish (*Carassius auratus*). *Veterinary Pathology* **53(4)**: 847-852.
- doi:10.1177/0300985815614974
- 320 Green JW, Springer TA, Saulnier AN, Swintek J (2014) Statistical analysis of
- 321 histopathological endpoints. *Environmental Toxicology and Chemistry* **33(5)**: 1108–
- 322 1116. doi:10.1002/etc.2530
- 323 Gregorc A, Alburaki M, Rinderer N, Sampson B, R. Knight PR, Karim S, Adamczyk J
- 324 (2018) Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae)
- 325 lifespan and antioxidant gene regulations in laboratory experiments. *Scientific Reports*
- **8:** 15003. doi:10.1038/s41598-018-33348-4
- 327 Grim KC, Wolfe MJ, Edwards M, Kaufman J, Onjukka S, Moran P, Wolf JC (2009).
- 328 Epizootic ameloblastomas in Chinook salmon (*Oncorhynchus tshawytscha*) of the
- northwestern United States. *Veterinary Pathology* **46(4)**: 622-635. doi:10.1354/vp.08-
- 330 VP-0150-W-FL

331	Guevara Soto M, Vidondo B, Vaughan L, Rubin JF, Segner H, Samartin S,
332	Schmidt-Posthaus H (2017) Investigations into the temporal development of
333	epitheliocystis infections in brown trout: a histological study. Journal of Fish Diseases
334	40(6): 811-819. doi:10.1111/jfd.12562
335	Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B (2009)
336	Histopathological image analysis: a review. IEEE Reviews in Biomedical Engineering
337	2 : 147–171. doi:10.1109/RBME.2009.2034865
338	Hirose E, Uyeno D (2014) Histopathology of a mesoparasitic hatschekiid copepod in
339	hospite: does Mihbaicola sakamakii (Copepoda: Siphonostomatoida: Hatschekiidae)
340	fast within the host fish tissue? Zoological Science 31(8): 546-552.
341	doi:10.2108/zs140064.
342	Iregui CA, Hernández E, Jiménez AP, Pulido EA, Rey AL, Comas J, Peña LC, Rodríguez
343	M (2004) Primer Mapa Epidemiológico de las lesiones y enfermedades de los peces
344	en Colombia. Universidad Nacional de Colombia, Bogotá DC, Colombia.
345	Jabeen G, Manzoor F, Javid A, Azmat H, Arshad M, Fatima S (2018) Evaluation of fish
346	health status and histopathology in gills and liver due to metal contaminated sediments
347	exposure. Bulletin of Environmental Contamination and Toxicology 100(4): 492-501.
348	doi:10.1007/s00128-018-2295-7
349	Kane AS. (2005) Descriptive guide to observing fish lesions. Available at URL:
350	http://aquaticpath.phhp.ufl.edu/Lesionguide/Lesionguide.pdf [Last accessed: April 6,

- 351 2020]
- 352 Knüsel FO, Knüsel R, Doherr MG, Schmidt-Posthaus H (2016) Frequency and histologic
- 353 characterization of coelomatic neoplasms in koi Cyprinus carpio koi. Diseases of
- 354 Aquatic Organisms **119(3)**: 219-229. doi:10.3354/dao03001

- 355 Kotob MH, Menanteau-Ledouble S, Kumar G, Abdelzaher M, El-Matbouli M (2016) The
- impact of co-infections on fish: a review. *Veterinary Research* 47: 98.
 doi:10.1186/s13567-016-0383-4
- 358 Laurin E, Jaramillo D, Vanderstichel R, Ferguson H, Kaukinen K, Schulze AD, Keith IR,
- 359 Gardner IA, Miller KM (2019) Histopathological and novel high-throughput
- 360 molecular monitoring data from farmed salmon (*Salmo salar* and *Oncorhynchus* spp.)
- in British Columbia, Canada, from 2011-2013. Aquaculture 499: 220–234.
- doi:10.1016/j.aquaculture.2018.08.072
- Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D (2018)
- 364 Microplastic particles cause intestinal damage and other adverse effects in zebrafish
- 365 Danio rerio and nematode Caenorhabditis elegans. Science of the Total Environment
- **619–620:** 1–8. doi:10.1016/j.scitotenv.2017.11.103
- Liu X, Kinzler M, Yuan J, He G, Zhang L (2017) Low reporting quality of the meta-
- analyses in diagnostic pathology. Archives of Pathology & Laboratory Medicine

141(3): 423–430. doi:10.5858/arpa.2016-0144-OA.

- 370 Menke AL, Spitsbergen JM, Wolterbeek APM, Woutersen RA (2011) Normal Anatomy
- and Histology of the Adult Zebrafish. *Toxicologic Pathology* **39:** 759–775.
- doi:10.1177/0192623311409597
- 373 Meyerholz DK, Tintle NL, Beck AP (2019) Common pitfalls in analysis of tissue scores.
- 374 *Veterinary Pathology* **56(1):** 39–42. doi:10.1177/0300985818794250
- 375 Mitchell SO, Rodger HD (2011) A review of infectious gill disease in marine salmonid
- fish. *Journal of Fish Diseases* **34:** 411–432. doi:10.1111/j.1365-2761.2011.01251.x

377	Monteiro SM, Rocha E, Fontaínhas-Fernandes A, Sousa M (2008) Quantitative
378	histopathology of Oreochromis niloticus gills after copper exposure. Journal of Fish
379	<i>Biology</i> 73(6): 1376-1392. doi:10.1111/j.1095-8649.2008.02009.x
380	Murray KN, Wolf JC, Spagnoli ST, Lains D, Budrow N, Kent ML (2018). Reversibility
381	of Proliferative Thyroid Lesions Induced by Iodine Deficiency in a Laboratory
382	Zebrafish Colony. Zebrafish 15(6): 558-565. doi:10.1089/zeb.2018.1603
383	National Toxicology Program (2019) Nonneoplasic Lesion Atlas. A guide for
384	standardizing terminology in toxciologic pathology for rodents. US Department of
385	Health and Human Services. Available at URL: https://ntp.niehs.nih.gov/nnl/
386	O'Dowd G, Bell S, Wright S (2019) Wheater's Pathology: A text, atlas and review of
387	histopathology. Elsevier Health Sciences. 380 pp.
388	OECD (Organisation for Economic Co-operation and Development) (2015) Guidance
389	document on medaka histopathology techniques and evaluation for the medaka
390	extended one-generation reproduction test (MEOGRT). Series on Testing and
391	Assessment, No. 227. ENV/JM/MONO(2015)36/PART1-4. Paris, France. 84 pp.
392	Ovcharenko M, Dezfuli BS, Castaldelli G, Lanzoni M, Giari L (2017) Histological and
393	ultrastructural study of Myxobolus mugchelo (Parenzan, 1966) with initial
394	histopathology survey of the Liza ramada host intestine. Parasitology Research
395	116(6): 1713-1721. doi:10.1007/s00436-017-5447-5

Paschoalini AL, Savassi LA, Arantes FP, Rizzo E, Bazzoli N (2019) Heavy metals
accumulation and endocrine disruption in *Prochilodus argenteus* from a polluted
neotropical river. *Ecotoxicology and Environmental Safety* 169: 539-550.
doi:10.1016/j.ecoenv.2018.11.047

- 400 Poleksic V, Mirjana Lenhardt M, Jaric I, Djordjevic D, Gacic Z, Cvijanovic G, Raskovic
- 401 B (2010) Liver, gills, and skin histopathology and heavy metal content of the Danube
- 402 sterlet (Acipenser ruthenus Linnaeus, 1758). Environmental Toxicology and
- 403 *Chemistry* **29(3):** 515–521. doi:10.1002/etc.82
- 404 Rašković B, Jarić I, Koko V, Spasić M, Dulić Z, Marković Z, Poleksić V (2013)
- 405 Histopathological indicators: a useful fish health monitoring tool in common carp
- 406 (Cyprinus carpio Linnaeus, 1758) culture. Open Life Sciences 8(10): 975–985.
- 407 doi:10.2478/s11535-013-0220-y
- 408 Reiczigel J, Marozzi M, Fábián I, Rózsa L (2019) Biostatistics for parasitologists a
 409 primer to quantitative parasitology. *Trends in Parasitology* (in press).
 410 doi:10.1016/j.pt.2019.01.003
- Rey AL, Iregui CA, Verjan N (2002) Diagnóstico clínico patológico de brotes de
 enfermedad en tilapia roja (*Oreochromis* spp.). Revista Medicina Veterinaria y
 Zootecnia Universidad Nacional de Colombia 49: 13–21. Available at URL:
- 414 https://revistas.unal.edu.co/index.php/remevez/article/view/27934/28195
- 415 Roberts RJ (2012) *Fish pathology* (4th edition). Wiley-Blackwell. 581 pp.
- Roberts RJ, Pearson MD (2005) Infectious pancreatic necrosis in Atlantic salmon, *Salmo salar* L. *Journal of Fish Diseases* 28: 383–390. doi:10.1111/j.13652761.2005.00642.x
- 419 Saraiva A, Costa J, Serrão J, Cruz C, Eira JC (2015) A histology-based fish health
- 420 assessment of farmed seabass (*Dicentrarchus labrax* L.). Aquaculture 448: 375–381.
- 421 doi:10.1016/j.aquaculture.2015.06.028

422	Sayyaf Dezfuli B, Castaldelli G, Giari L (2018) Histopathological and ultrastructural					
423	assessment of two mugilid species infected with myxozoans and helminths. Journal of					
424	Fish Diseases 41(2): 299-307. doi:10.1111/jfd.12713					
425	Schmidt-Posthaus H, Diserens N, Hjortaas MJ, Knüsel R, Hirschi R, Taksdal T (2014)					
426	First outbreak of sleeping disease in Switzerland: disease signs and virus					
427	characterization. Diseases of Aquatic Organisms 111(2): 165-171.					
428	doi:10.3354/dao02766					
429	Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of					
430	histopathological indicators to evaluate contaminant-related stress in fish. Journal of					
431	Aquatic Ecosystem Stress and Recovery 6: 75–86. doi:10.1023/A:1008212000208					
432	Steckert LD, Cardoso L, Jerônimo GT, de Pádua SB, Martins ML (2018) Investigation of					
433	farmed Nile tilapia health through histopathology. Aquaculture 486: 161-169.					
434	doi:10.1016/j.aquaculture.2017.12.021					
435	Steinbach C, Kroupová HK, Wahli T, Klicnarová J, Schmidt-Posthaus H (2016)					
436	Histopathological alterations of the heart in fish: proposal for a standardized					
437	assessment. Diseases of Aquatic Organisms 118: 185–194. doi:10.3354/dao02971					
438	Straus DL, Meinelt T, Farmer BD, Beck BH (2012). Acute toxicity and histopathology					
439	of channel catfish fry exposed to peracetic acid. Aquaculture 342: 134-138.					
440	doi:10.1016/j.aquaculture.2012.02.024					
441	Titford M (2006) A short history of histopathology technique. The Journal of					
442	Histotechnology 29(2): 99–110. doi:10.1179/his.2006.29.2.99					
443	van der Ven L, Wester P (2019) Histology and histopathology atlas of the zebrafish					
444	V2.01. Available at URL: http://zfin.org/hh_atlas/index.html [Last accessed: April 6,					
445	2020]					

446	Verjan N, Iregui	i CA, Rey AL, E	Donado P (2001) Sistematizac	ión y caracterizacio	ón de las
447	lesiones bran	nquiales de la	cachama blanc	ea (Piaractus	brachypomus) de	cultivo
448	clínicamente	sana: algunas	interacciones	hospedero-pa	atógeno-ambiente.	Revista
449	AquaTIC	15:	1–15.	Available	at	URL:
450	http://revistaa	aquatic.com/ojs/	index.php/aqua	tic/article/viev	vFile/143/132	[Last
451	accessed: Ap	ril 6, 2020]				

452 Wolf JC, Baumgartner WA, Blazer VS, Camus AC, Engelhardt JA, Fournie JW, Frasca

S Jr, Groman DB, Kent ML, Khoo LH, Law JM, Lombardini ED, Ruehl-Fehlert C,
Segner HE, Smith SA, Spitsbergen JM, Weber K, Wolfe MJ (2015) Nonlesions,
misdiagnoses, missed diagnoses, and other interpretive challenges in fish
histopathology studies: a guide for investigators, authors, reviewers, and readers. *Toxicologic Pathology* 43(3): 297–325. doi:10.1177/0192623314540229

- 458 Wolf JC, Smith SA (1999) Comparative severity of experimentally induced
- 459 mycobacteriosis in striped bass *Morone saxatilis* and hybrid tilapia *Oreochromis* spp.
- 460 *Diseases of Aquatic Organisms* **38(3):** 191-200. doi:10.3354/dao038191
- 461 Wolf JC, Wheeler JR (2018) A critical review of histopathological findings associated
- 462 with endocrine and non-endocrine hepatic toxicity in fish models. *Aquatic Toxicology*
- 463 **197**: 60–78. doi:10.1016/j.aquatox.2018.01.013
- 464 Yanong RPE (2003) Necropsy techniques for fish. Seminars in Avian and Exotic Pet
- 465 *Medicine* **12(2)**: 89-105. doi:10.1053/saep.2003.127885
- 466 Zimmerli S, Bernet D, Burkhardt-Holm P, Schmidt-Posthaus H, Vonlanthen P, Wahli T,
- 467 Segner H (2007) Assessment of fish health status in four Swiss rivers showing a
- decline of brown trout catches. *Aquatic Sciences* **69(1)**: 11–25. doi:10.1007/s00027-
- 469 006-0844-3

470 Table 1. Literature examples of the use of histopathology as a basic research tool for evaluate changes in organs in different fish species and

471 disease conditions

Fish species	Disease condition	Organ/s evaluated	Reference
Common carp (Cyprinus carpio)	Toxicity (microcystins)	Liver, gills, intestine, kidneys, heart, and spleen	Carbis et al. 1996
Common carp (Cyprinus carpio)	Toxicity (deltamethrin)	Gill and kidney	Cengiz 2006
Common carp (Cyprinus carpio)	General health status	Liver, kidney, gills	Rašković et al. 2013*
Koi carp (Cyprinus carpio koi)	Neoplasia (coelomatic neoplasms)	Coelomatic tumors	Knüsel et al. 2016
Goldfish (Carassius auratus)	Herpesviral hematopoietic necrosis	Gills, skin, pronephros, mesonephros, heart, spleen, and liver	Giovannini et al. 2016
Loach (Barbatula barbatula)	Pollution (contaminant-related stress)	Kidney, liver, gills,	Schwaiger et al. 1997
Mrigal (Cirrhina mrigala)	Pollution (metal contamination)	Gills and liver	Jaaben <i>et al.</i> 2018 [*]
Channel catfish (Ictalurus punctatus)	Streptococcus sp. infection	Several; lesions in brain, serosae, spleen, ovary, and heart	Chang & Plumb 1996
Channel catfish (Ictalurus punctatus)	Edwardsiellosis	Several; lesions in skin, muscle, liver, kidney, and spleen	Darwish et al. 2000
Channel catfish (Ictalurus punctatus)	Toxicity (peracetic acid)	Gill, integument, liver, gastrointestinal tract, kidney	Straus et al. 2012
Channel catfish (Ictalurus punctatus)	Aeromonas hydrophila septicemia	Several; lesions in spleen, stomach, intestine, gills, kidneys, liver	Abdelhamed et al. 2017
Brown bullhead (Ameirus nebulosus)	Proliferative hepatic lesions	Liver	Blazer et al. 2006
Nile tilapia (Oreochromis niloticus)	Streptococcus sp. infection	Several; lesions in brain, serosae, spleen, ovary, and heart	Chang & Plumb 1996
Hybrid tilapia (Oreochromis spp.)	Experimental mycobacteriosis	Several; including pancreas, swimbladder, kidney, brain, eye, gastrointestinal tract, gill, hepatopancreas, spleen	Wolf & Smith 1999
Nile tilapia (Oreochromis niloticus)	Pollution (ammonia exposure)	Gills, liver, kidney	Benli et al. 2008
Nile tilapia (Oreochromis niloticus)	Pollution (copper exposure)	Gills	Monteiro et al. 2008
Nile tilapia (Oreochromis niloticus)	General health status	Gills, liver, spleen, heart	Steckert et al. 2018*
Curimbata (Prochilodus lineatus)	Pollution (nanosilver toxicity)	Gills	Ale <i>et al.</i> 2018 [*]
Curimatã-pacu (Prochilodus argenteus)	Pollution (heavy metals)	Liver, spleen, gonads	Paschoalini et al. 2019
Sterlet (Acipenser ruthenus)	Pollution (heavy metals)	Liver, gills, skin	Poleksic et al. 2010*
Zebrafish (Danio rerio)	Pollution (microplastics)	Gill, liver, kidneys, intestine	Lei <i>et al.</i> 2018 [*]
Zebrafish (Danio rerio)	Proliferative thyroid lesions	Thyroid gland	Murray et al. 2018
Brown trout (Salmo trutta)	Pollution (contaminant-related stress)	Kidney, liver, gills,	Schwaiger et al. 1997
Brown trout (Salmo trutta)	General health status	Liver, kidney	Zimmerli et al. 2007*
Brown trout (Salmo trutta)	Epitheliocystis infections	Gills	Guevara Soto et al. 2017
Rainbow trout (Oncorhynchus mykiss) Lactococcus garvieae induced streptococcosis		Liver, kidney, spleen, gills, stomach	Altun <i>et al.</i> 2005
Rainbow trout (Oncorhynchus mykiss)	Sleeping disease	Gills, heart, kidney, liver, pyloric ceca, pancreas	Schmidt-Posthaus <i>et al.</i> 2014

Raibow trout (Oncorhynchus mykiss)	Cardiovascular disease	Heart	Steinbach et al. 2016*
Atlantic salmon (Salmo salar) Amoebic gill disease O		Gills	Adams et al. 2004
Atlantic salmon (<i>Salmo salar</i>) Pacific salmon (<i>Oncorhynchus</i> spp.)	General health status (endemic and new infectious agents detection)	Heart, liver, spleen, kidney, gastrointestinal, pancreas, central nervous system, gills, skin and muscle	Laurin <i>et al.</i> 2019
Chinook salmon (Oncorhynchis tshawytscha)Neoplasia (epizootic ameloblastomas)		Suspect tumors in oral cavities and extraoral surfaces	Grim <i>et al</i> . 2009
Striped bass (Morone saxatilis) Experimental mycobacteriosis		Several; including pancreas, swimbladder, kidney, brain, eye, gastrointestinal tract, gill, hepatopancreas, spleen	Wolf & Smith 1999
Seabass (Dicentrarchus labrax)	General health status	Gills, kidney, liver, intestine	Saraiva et al. 2005*
Thinlip mullet (Liza ramada)	Intestinal Myxobolus sp. infection	Intestine, spleen, liver, kidney, gallbladder	Ovcharenko et al. 2017
Mullets (Liza ramada and Liza saliens)Myxozoa and helminth infection		Gills, stomach, liver, heart, gonads, spleen, kidney	Sayyaf Dezfuli <i>et al.</i> 2017
Southern flounder (<i>Paralichthys lethostigma</i>)	Philometrid nematodes induced lesions	Areas of nematode presence (e.g. oral mucosa, teeth, fins)	De Buron & Roumillat 2010
Darkfin hind (Cephalopholis urodeta)	Copepod infestation	Parasitized branchiostegal membrane	Hirose & Uyeno 2014

472 * These studies used the system described by Bernet *et al* (1999) for histopathological evaluation.

Stopu...

- 474 Table 2. Lesions at skin and head categorized according to the reaction patterns proposed by Bernet *et al.* (1999). Lesions to be recorded in each organ are indicated by an "X".
- 475 Special lesion findings per organ are specified in the corresponding cell.

Reaction pattern	Lesion	Skin	Skin annexes	Gills	Mouth and pharynx
	Congestion	Х	X	Х	Х
Circulatory disturbances	Oedema	Х	X	Х	Х
	Haemorrhage	Х	X	Х	Х
uistuibances	Microthrombi			Х	
	Aneurysms			Х	
	Atrophy			Lamellae	
	Pigments / Deposits	X			
Regressive changes	Vacuolar degeneration/Other degenerations	Epithelial vacuolization Interepithelial vacuolization (spongiosis)	Neuromast and epithelial cells of lateral line	Cartilage degeneration	Epithelial vacuolization
	Detritus/Organic material in lumen	*		Х	Х
	Necrosis/Cell death	Ulcers		X Lamellae loss Loss/necrosis of gill filaments	
	Activation of mucous cells	Х		In gill rakers	Х
Progressive changes	Activation melanomacrophagic centers	Х		Х	
Flogressive changes	Hyperplasia	Epidermal incl. alarm cells		Interlamellar incl. chloride cells	Lining epithelium
	Hypertrophy	Muscular	Muscular		
	Inflammation: mononuclear infiltration macrophages/lymphocytes/ polymorphonuclear cells	Epidermitis Dermatitis Myositis Steatitis	Inflammation of lateral line	Branchitis Arcobranchitis Operculitis Inflammation of gill rakers	Stomatitis Pharyngitis
Inflammation	Lymphocyte hyperplasia		In lateral line	X	
	Mast cells (Eosinophilic granular cells) hyperplasia/activation	X	In lateral line	Х	Х
	Granulomas	Х		Х	Х
Neoplastic	Neoplasia	Spindle cell tumors Schwann-like /nerve sheat origin Anomalous epidermal hyperplasia			
	Coccoid bacteria	Х	X	Х	Х
	Coccoid-bacillary bacteria	Х	X	Х	Х
Pathogen presence	Bacillary bacteria	X	X	Х	Х
1 anogen presence	Filamentous bacteria	X	X	Х	Х
	Fungi	X	X	Х	Х
	Parasites	Х	X	Х	Х

476 Table 3. Lesions at eye and nervous system categorized according to the reaction patterns proposed by Bernet *et al.* (1999). Lesions to be recorded in each organ are indicated

477 by an "X". Special lesion findings per organ are specified in the corresponding cell.

Reaction pattern	Lesion	Eye	Central nervous system: Meninges	Central nervous system: Brain	Peripheral nervous system
	Congestion	Х	X	X	
Circulatory	Oedema	Х	X	X	
disturbances	Haemorrhage	Х	X	X	Х
	Microthrombi	Х	Х	Х	
	Pigments/Deposits				Mineralization
Regressive changes	Degenerations	Lens	ns Hyaline droplets in neurons (viral inclusions) Central and peripheral chromatolysis Vacuolar degeneration		Vacuolar degeneration in ganglia of gastric and gut muscularis
	Necrosis/Cell death	Х	Х	Х	Ganglionar necrosis (gastric and gut muscularis)
Progressive changes	Hyperplasia	Q		Giant neuron cell Gliosis	
Inflammation	Inflammation: mononuclear infiltration macrophages/lymphocytes/ polymorphonuclear cells	Endophthalmitis Exophthalmitis Panophtalmitis Retinitis Choroiditis	Meningitis	Encephalitis Ventriculitis	Ganglioneuritis Hyline droplets in ganglionar cells
	Mast cells (Eosinophilic granular cells) hyperplasia/activation	Х	X	Х	Х
	Granulomas	Х	X	X	
Neoplastic	None				
	Coccoid bacteria	Х	X	X	
	Coccoid-bacillary bacteria	Х	X	X	
Pathogen presence	Bacillary bacteria	Х	X	X	
1 autogen presence	Filamentous bacteria	Х	4		
	Fungi	Х	X	X	
	Parasites	Х	Х	Х	

Reviews in Aquaculture

479 Table 4. Lesions at gastrointestinal tract (I: Stomach) categorized according to the reaction patterns proposed by Bernet *et al.* (1999). Lesions to be recorded in each organ are

480 indicated by an "X". Special lesion findings per organ are specified in the corresponding cell.

Reaction pattern	Lesion	Mucosa - Epithelium	Mucosa - Lamina propria	Submucosa	Muscularis
	Congestion		Х	Х	Х
Circulatory	Oedema	Х	Х	Х	
disturbances	Haemorrhage		Х	Х	Х
	Microthrombi		Х	Х	
	Vacuolar degeneration/Other degenerations	Epithelial vacuolization			Hyaline bands (hypercontraction bands)
Regressive changes	Detritus/Organic material in lumen	Х			
	Necrosis/Cell death	Glandular necrosis	Х	Х	Х
Progressive changes	Activation of mucous cells	Х			
Progressive changes	Hyperplasia of epithelium	Х			
	Inflammation: mononuclear infiltration macrophages/lymphocytes/ polymorphonuclear cells	Х	Х	Х	Х
Inflammation	Mast cells (Eosinophilic granular cells) hyperplasia/activation	101	Х	Х	Х
	Granulomas		Х	Х	Х
Neoplastic	None				
	Coccoid bacteria	Х	Х	Х	Х
	Coccoid-bacillary bacteria	Х	Х	Х	Х
Pathogen presence	Bacillary bacteria	Х	Х	Х	Х
	Fungi	Х	Х	Х	Х
	Parasites	Х	Х	Х	Х

482 Table 5. Lesions at gastrointestinal tract (II: Intestine) categorized according to the reaction patterns proposed by Bernet *et al.* (1999). Lesions to be recorded in each organ are

483 indicated by an "X". Special lesion findings per organ are specified in the corresponding cell.

Reaction pattern	Lesion	Mucosa - Epithelium	Mucosa - Lamina propria	Submucosa	Muscularis
Circulatory disturbances	Congestion		Х	Х	X
	Oedema	Х	Х	Х	
	Haemorrhage		Х	Х	X
	Microthrombi		Х	Х	
Regressive changes	Architectural and structural alterations	Altered intestinal folds architecture (atrophy, fusion, malformations, etc.)			
	Pigments/Deposits				Mineralization
	Vacuolar degeneration/Other degenerations	Epithelial vacuolization Hyaline droplets in enterocytes			Hyaline bands (hypercontraction bands)
	Detritus/Organic material in lumen	Х			
	Necrosis/Cell death	Х	Х	Х	X
Progressive changes	Activation of mucous cells	Х			
Progressive changes	Hyperplasia	Х			
	Inflammation: mononuclear infiltration macrophages/lymphocytes/ polymorphonuclear cells	Х	Х	Х	Х
Inflammation	Lymphocyte migration	Х			
	Mast cells (Eosinophilic granular cells) hyperplasia/activation	101	Х	Х	X
	Granulomas		Х	Х	X
Neoplastic	Lymphoma		Х	Х	
	Coccoid bacteria	Х	Х	Х	Х
Pathogen presence	Coccoid-bacillary bacteria	Х	Х	Х	X
	Bacillary bacteria	Х	Х	Х	X
	Fungi	Х	Х	Х	X
	Parasites	Х	Х	Х	X

Reviews in Aquaculture

485 Table 6. Lesions at gonads and kidney categorized according to the reaction patterns proposed by Bernet *et al.* (1999). Lesions to be recorded in each organ are indicated by an

486 "X". Special lesion findings per organ are specified in the corresponding cell.

Reaction pattern	Lesion	Gonads	Kidney - Glomerulus	Kidney - Tubules	Kidney - Interstitium
Circulatory disturbances	Congestion	Х	X		Х
	Oedema	Х			Х
	Haemorrhage	Х		Х	Х
	Microthrombi		X		Х
Regressive changes	Pigments/ deposits			Nephrocalcinosis	
	Degenerations		Extracellular hyaline droplets	Hyaline droplets in tubules	
	Necrosis/Cell death	Х		Tubular epithelium Lymphocytes	Leukocytes
D	Activation of melanomacrophagic centers				Х
Progressive changes	Hyperplasia		Nephroneogenesis	Nephroneogenesis	
Inflammation	Inflammation: mononuclear infiltration macrophages/lymphocytes/ polymorphonuclear cells	Orchitis Ovaritis	Glomerulitis	Х	Interstitial nephritis
	Lymphocyte migration			Х	Х
	Mast cells (Eosinophilic granular cells) hyperplasia/activation	Х	•		Х
	Granulomas	Х			Х
Neoplastic	None		N.		
Pathogen presence	Coccoid bacteria			Х	Х
	Coccoid-bacillary bacteria			Х	Х
	Bacillary bacteria			Х	Х
	Fungi	Х			Х
	Parasites	Х		Х	Х

- 488 Table 7. Lesions at other organs categorized according to the reaction patterns proposed by Bernet *et al.* (1999). Lesions to be recorded in each organ are indicated by an "X".
- 489 Special lesion findings per organ are specified in the corresponding cell.

Reaction pattern	Lesion	Liver	Hepato-pancreas and peritoneo/pancreas	Heart	Vessels	Spleen
Circulatory disturbances	Congestion	Х	Х	In epicardium		Х
	Oedema	Х	Х	In epicardium		Х
	Haemorrhage	Х	Х	Х		Х
	Microthrombi	Х	In pancreas/peritoneum	Х		Х
Regressive changes	Pigments/Deposits	Ceroid /lipofuscin in hepatocytes				
	Degeneration	Anatomical vacuolar degeneration Hyaline droplets in hepatocytes Hyaline degeneration Hydropic degeneration Lipoid vacuolar degeneration (micro and macrovesicular) Feathery degeneration	Lipoid degeneration			Erythrocytes degeneration
	Lymphocyte depletion					Х
	Necrosis/Cell death	Х	Х	Х	Х	Х
Progressive changes	Activation of melanomacrophagic centers	Х	Х			Х
	Hyperplasia	Hepatocyte hyperplasia Biliary canaliculi hyperplasia Giant cells Binucleated cells				Lymphocyte hyperplasia
	Hypertrophy			Endocardial		Ellipsoidal
Inflammation	Inflammation: mononuclear infiltration macrophages/lymphocytes/ polymorphonuclear cells	Hepatitis	Hepatopancreatitis Peritoneal pancreatitis Peritonitis	Endocarditis Myocarditis Epicarditis	Vasculitis	Splenitis
	Lymphoid hyperplasia (antigenic stimulus)					Х
	Mast cells (Eosinophilic granular cells) hyperplasia/activation	Х	Х	In epicardium	Х	
	Granulomas	Х	Х	Х		Х
Neoplastic	Lymphoma	Х	Х			Х
Pathogen presence	Coccoid bacteria	Х	Х	Х		Х
	Coccoid-bacillary bacteria	Х	Х	Х		Х
	Bacillary bacteria	Х	Х	Х		Х
	Filamentous bacteria					Х
	Parasites	Х	Х	Х	Х	Х