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Abstract. An inspection and replacement policy for a protection system is described in which 
the inspection process is subject to error, and false positives (false alarms) and false negatives 
are possible. We develop two models: one in which a false positive implies renewal of the 
protection system; the other not. These models are motivated by inspection of a protection 
system on the production line of a beverage manufacturer. False negatives reduce the 
efficiency of inspection. Another notion of imperfect maintenance is also modelled: that of 
poor installation of a component at replacement. These different aspects of maintenance 
quality interact: false alarms can, in a worst case scenario, lead to the systematic and 
unnecessary replacement of good components by poor components, thus reducing the 
availability of the system. The models also allow situations in which maintenance quality 
differs between alternative maintainers to be investigated.  
 
1. Introduction 

In this paper we model an inspection policy for a protection or stand-by system [1] with a 
single component. Our particular focus is upon the effect of imperfect maintenance, and this 
is the novelty of our approach. The protection system is composed of a component and a 
socket which together provide an operational function [2]. The protection system is required 
to function only on demand, for example, in the event of an emergency. The functional status 
(good or failed) of the protection system is established only by a test carried out at inspection. 
This test is imperfect; both a false positive (test says failed but protection system is good) and 
a false negative (test says good but protection system is failed) are possible. Such imperfect 
testing is analogous to that encountered in quality control [3] and screening procedures in 
medicine [4]. It may also arise in modern electronic systems, such as that used in the latest 
automotive technology to monitor oil levels, tyre pressures, and such like (eg. [5]). 

To illustrate the ideas in our paper, we consider a complex machine that fills a flexible 
package with a non-carbonated beverage. The protection system is a safety device whose 
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purpose is to prevent misalignment of the machine that is responsible for cutting, forming and 
sealing the flexible package. This latter machine (the carton maker) may be irreparably 
damaged if undue misalignment of its parts is not prevented by the safety device. 
Misalignments are events that occur randomly in time. The safety device is itself subject to 
failure, and we are concerned with maintenance planning for the safety device. The purpose 
of the maintenance is purely to support a high level of production output for the carton 
maker. Inspection of the safety device to determine its functional state (good or failed) is 
carried out by the equipment operator: the beverage manufacturer. We evaluate two 
situations. In the first, when the beverage manufacturer detects a fault with the protection 
system, the maintenance team of the original equipment manufacturer (OEM) of the carton 
maker is required to take appropriate action. In the second, all maintenance actions for the 
protection system are carried out by the beverage manufacturer “in-house”; the OEM merely 
supplies replacement components. Thus in the former situation, when a fault is “detected”, 
the OEM is called out at significant expense to the beverage manufacturer. The first action of 
the OEM is to determine if the protection system is indeed failed. If it is not failed, a false 
positive has occurred and no further action is taken. In the second situation, when a fault is 
detected, the protection system is replaced by the maintenance team of the beverage 
manufacturer. The response to detection of a fault is then different in the two situations, and 
we develop a model for each situation. In the first, a false positive implies only an additional 
cost to the beverage manufacturer; the protection system reliability is not affected. In the 
second, a false positive implies a renewal of the protection system. These two models are 
described in the following sections. Notionally, the two situations reflect variation in the 
quality of maintenance between the OEM and the operator; the additional maintenance 
experience of the OEM has a direct cost premium. This idea of quality of maintenance has 
been developed by Scarf and Cavalcante [6]. Quality of maintenance is a notion that is also 
related to concepts in maintenance outsourcing [7-9]. We should note that it is not necessarily 
the case that “in-house” maintenance is of a lower quality than outsourced maintenance, 
although in the case study we describe there is the expectation that it is so. The models we 
develop are flexible in this respect however. 

False negatives have a more straightforward effect in our models. The occurrence of a 
false negative has no direct effect on the reliability of the protection system or the cost of 
maintenance; at inspection the failed protection system remains failed so that the failure is 
unrevealed in spite of the inspection. There are however consequences for the cost of lost 
production if a misalignment event occurs that requires the protection system to operate. This 
cost is potentially very large.  

In the standard manner, we suppose that a component (used in the protection system) 
deteriorates over time. On replacement of the system, the existing component in the socket is 
substituted by a new component; we describe this throughout as component replacement. 
However, we further suppose that a component arises from a heterogeneous population; that 
is, a component may be weak, with a short life, or strong, with long life. The source of such 
component heterogeneity may be variation in component manufacture or may be variation in 
the quality of installation; some installations may be poorly executed. Whatever the source of 
heterogeneity, the failure time (or lifetime) distribution is a mixture in our models. In this 
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way, notionally, the lifetime of the protection system is also influenced by maintenance 
quality. When the component lifetime distribution is a mixture, it has been argued that a two 
phase inspection policy may be appropriate [10,11], with frequent inspections in early life 
and infrequent inspections in later life; although the case may reverse if the mixture is 
dominated by the wear phase of the good component sub-population. The papers [10,11] 
describe a perfect inspection policy that is a special case of that introduced by Barlow and 
Proschan [12], and an extension of the policy considered by Vaurio [13]. Badía et al. [14,15] 
consider pure inspection policies with a single phase (a single, constant inspection interval) 
and imperfect testing. In [14], failures are unrevealed, that is, they are detected only by 
inspection. We extend this work here by allowing for the possibility of renewal at a false 
positive, and by supposing that, at the final inspection, preventive replacement is carried out 
provided that the system is not renewed beforehand. A different model is considered in [15], 
in which failures can be either revealed (detected as soon as they occur) or unrevealed. 

From a reliability point of view, mixture distributions have been well studied (e.g. [16-
20]). Maintenance policies appropriate for such systems comprising components with mixed 
lifetimes have been less well studied; early work is described in [21], and more recently 
studies that describe extensions of age based replacement and block replacement to such 
systems have been published [22,23]. From these, the notion of quality of preventive 
maintenance has been developed [6,24]. Our paper here then develops this notion of quality 
of preventive maintenance further in the context of a protection system with unrevealed 
failures.  

The structure of the paper is as follows. In the next section, we describe the system, the 
failure model, the general maintenance policy, and the cost structure. In section 3 we consider 
the situation in which a false positive at inspection incurs an additional cost. In section 4, an 
alternative model is developed in which the system is renewed at a false positive. Section 5 
presents our application of the models. We then conclude with a short discussion.  

Finally, we should point out that although we build models here for idealized situations, 
we would hope that these models will be useful for supporting decision-making about the 
maintenance management of real systems and contexts that are inherently more complex. 
 
2. General considerations 

For the two models, some elements of the model are common, in particular the inspection 
schedule. We also have some common notation. This is listed below. Notation that is model 
specific is listed in the corresponding sections.  
 
Common notation 

X    time to failure of a component 
)(xR    reliability function of a component, a mixture: 

)()1()()()( 21 xRpxpRxXPxR −+=>=  
1M  number of inspections in phase 1 
2M  number of inspections in phase 2 

1T   time between scheduled inspections in phase 1 
2T   time between scheduled inspections in phase 2 
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α   probability of a false positive (false alarm) 
β  probability of a false negative i.e. of not detecting a failure at an inspection 

when it is present 
0c   unitary cost of inspection 
rc   cost of renewal of a failed system ≡ replacement of a failed component 
mc  cost of renewal of an unfailed system ≡ replacement of an unfailed component 

µ   rate of occurrence of demands for the protection system 
dc   cost of a single unmet demand 
0t   time duration of an inspection 
rt  time duration of renewal of a failed system (replacement of a failed 

component) 
mt  time duration of renewal of an unfailed system (replacement of an unfailed 

component) 

We consider a single-component protection system that undergoes an inspection or test 
to detect failure. If the system fails between inspections, then the failure is unrevealed, so that 
an inspection provides the only opportunity at which to detect a failure. Inspections are 
scheduled for when the system reaches ages 1jT ; 1,...,2,1 Mj =  (phase 1) and ages 

211 jTTM + ;  2,...,2,1 Mj =  (phase 2). There are thus 1,...,2,1 Mj =  inspections in phase 1 
and 2,...,2,1 Mj =  in phase 2. At age 2211 TMTM +  (the final scheduled inspection), a 
replacement of the component is also scheduled. At component replacement, the system is 
renewed and system age is reset ( 0=t ).  

The decision variables in the maintenance policy are 211 ,, MTM and 2T  and we 
determine the long-run cost per unit time and average availability of a ),,,( 2211 TMTM  
policy. 

Testing is imperfect. A false positive (false alarm) can occur on inspection, that is if the 
system is considered to have failed when it is actually in the good functional state 
(test=failed, system=good). Furthermore the test can fail to detect a real failure of the system 
(test=good, system=failed); this is a false negative. This classification and the associated 
probabilities are summarized in table 1. We assume that on inspection, if the test says failed 
and the system is failed (test=failed, system=failed), then the component is replaced and the 
system is renewed. With respect to false positives, we consider two models. In the first 
model, the consequence of a false positive is that a cost is incurred, but the component is not 
replaced so that a false positive does not change the system reliability. For example, on alarm 
(test=failed), engineers prepare to carry out a replacement, but on further investigation, the 
component is found to be good and is not replaced. Such a maintenance action might incur 
significant cost. In the second model, the consequence of a false positive is that the 
component is replaced and consequently the system is renewed.  Here for example, engineers 
may not have the capability to investigate an alarm or the cost of component replacement 
might be such that investigation of the alarm may not be economic. 

We take into account the costs derived from inspections, component replacement, false 
positives, and those due to the downtime incurred while a failed system remains undetected. 
For this latter cost of downtime, we assume that the demand for the function of the protection 
system occurs according to a Poisson process with rate µ  and that dc  is the cost of a single 
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unmet demand (a constant). This implies that if the protection system is down for time τ, the 
cost of the downtime is τµ )( dc× . The cost-rate for unmet demand is thus dc×µ . This 
implies that a high cost of unmet demand and a low rate of occurrence of demands is 
equivalent to a low cost of unmet demand and a high rate of occurrence of demands. Whether 
the maintenance policy should be the same in each of these cases is another matter. As is 
customary in the literature, we assume that unmet demands do not impact upon maintenance 
of the protection system, i.e. that µ  is small. To do otherwise is beyond the scope of this 
paper; nonetheless, the development of a model in which unmet demand events impacted 
upon maintenance would make an interesting study. 

 
Table 1: Classification of system and inspection status with associated probabilities. 
 

System status 

Inspection outcome 

System good System failed 

Test says system good True positive, 1-α False negative, β 

Test says system failed False positive, α True negative, 1-β 

 
We consider two different time durations for replacements. The first, rt , corresponds to a 

replacement of a failed component when test=failed and system=failed. The second, mt , 
corresponds to a replacement of an unfailed component that occurs at age  2211 TMTM +  if 
the system reaches this age and is unfailed at this age or following a false positive in model 2. 
The corresponding costs are rc  and mc . Downtime due to inspection is assumed to be zero. 

This distinction between costs (and times) of replacement of a failed and an unfailed 
system may exist in practice because system failure may involve additional action on the part 
of the maintainer. Alternatively, unfailed components may be recycled by the maintainer as 
part of their spares provisioning policy. One might formulate our models by considering a 
distinction between planned and unplanned replacements, so that the only replacement that is 
planned can occur at age 2211 TMTM + . Planned and unplanned replacements being different 
allows one to take into account possible delays to replacement when an inspection reveals a 
failed item. Such a delay might be due to an unavailable part. However a planned 
replacement would not be likely to experience such a delay. In this case, there is no sense in 
scheduling an inspection at age 2211 TMTM + . The cost and availability functions that we 
derive in models 1 and 2 below then change to a small extent. Further, we might suppose that 

rc = mc  and rt = mt , so there is no distinction between replacement of failed and unfailed 
components or between planned and unplanned replacements. In this case, the inspection 
works like a setup with the maintainer prepared to make a routine component replacement if 
required.  

We assume that in practice the costs thus discussed are quantifiable and known. Where 
they are not, and indeed the estimation of µ  in the cost rate of unmet demand may be 
difficult, receiver operating characteristic analysis is a useful tool for the optimization of 
inspection policies. For a recent interesting paper on this topic and which also considers the 
existence of sub-populations of weak and strong components, albeit in a burn-in maintenance 
context, see [25].  
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Finally, in our models, the existence of an inspection at 2211 TMTM +  at the time of 
replacement can be justified in terms of cause identification or the benefit of component 
recycling. The maintainer may be prepared to pay for additional information about the system 
state at this time.  
 
3.  Model 1: no renewal at a false positive inspection 

In this first model, false positives (false alarms) result in a cost but have no effect on system 
reliability. We effectively model the case in which, when an alarm occurs, its cause is 
investigated further at additional cost and this further investigation reveals the true system 
state. Thus, in the case of a false positive, the component is found to be good and is not 
replaced. Such a maintenance action might incur significant cost, which we denote by Ic . 
This cost in our formulation is not incurred at the final inspection at 2211 TMTM + . As we 
describe above, for a given inspection schedule, false negatives only have an effect upon the 
availability of the protection system.  

For the two phase inspection policy, we have the following additional notation.   
 
Specific notation for model 1 

Ic :   cost of a false positive (false alarm) 
1K :  number of inspections in phase 1 previous to failure or to the beginning of 

phase 2 whichever comes first. 
2K :  number of inspections in phase 2 (from 11TM  onwards) previous to failure. 
3K :  number of inspections in phase 1 after failure until its detection or to the 

beginning of phase 2 whichever comes first. 
4K :  number of inspections in phase 2 after failure until its detection or the system 

is renewed at 2211 TMTM +  whichever comes first. 
In :  number of false positives in a cycle. 

First we consider the case 0, 21 >MM , that is, there is at least one inspection in each 
phase.  

The range of 1K  is },...,1,0{ 1M . For 1,...,1,0 1 −= Mi , 

))1(()())1(()( 11111 TiRiTRTiXiTPiKP +−=+<≤== . 

For 1Mi = ,   
)()()( 111111 TMRTMXPMKP =≥== . 

Next, the expected value of 1K  is obtained:  

∑∑ =

−

=
=++−= 11

1 1111
1

1 111 )()()})1(()({)( M
i

M
i

iTRTMRMTiRiTRiKE .              (1) 

The number of inspections in phase 2 previous to failure, 2K , takes a value in },...,1,0{ 2M  
with corresponding probabilities: 

)(1)()0( 2112112 TTMRTTMXPKP +−=+<== , 

))1(()())1(()( 2112112112112 TiTMRiTTMRTiTMXiTTMPiKP ++−+=++<≤+== , 

( 1,...,1 2 −= Mi ), and  
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)()()( 2211221122 TMTMRTMTMXPMKP +=+≥== . 

The mean value of 2K  is therefore given by 

)2(.)(

)()})1(()({)(

2

2

1 211

22112
1

1 2112112

∑
∑

=

−

=

+=

++++−+=

M
i

M
i

iTTMR

TMTMRMTiTMRiTTMRiKE
 

The range of 3K  (number of inspections in phase 1 after failure until it is detected or 
until inspections in the phase 2 begin whichever occurs first) is },...,1,0{ 1M . Its probability 
function is as follows: 

)()()0( 11113 TMRTMXPKP =>== . 

For 1,...,1 Mi = ,  
1

1111
1

113 )})1(())(({)1()})(()0({)( −− +−−−+−−−== ii TiMRTiMRTiMRRiKP βββ . 

The first term in the equation above corresponds to a failure that is detected at the ith 
inspection after it occurs. The second term is the probability of a failure that takes place in the 
first phase and the failure is not detected in the first i-1 inspections and the ith inspection 
takes place at 11TM . In this latter case iK =3  regardless of whether the failure is detected or 
not; if not, phase 2 begins. The expression then simplifies to:  

1
1111

1
3 ))1(())(()1()( −− +−−−+−== iii TiMRTiMRiKP ββββ , ( Mi ,...,1= ). 

Then 

)3(.)(
1

1

)(
1

1)(

1 1
1

1 11
111

1 1

1 11

1
11

3

∑

∑

=
−

=
−

+

−
−

−
=
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−+−
=

M
i

iM
M

M
i
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MMM

iTR

iTRMMMKE

β
β

β

ββ
β

βββ

 

Let A denote the following event: a failure occurs in ),0( 11TM  and it is not detected in 
this interval. Then 

),,()}())1(({)( 111
)1(

11
1 1 ββ MTSiTRTiRAP M

i
iM =−−= ∑ =
−− . 

In addition let B represent the event that a failure occurs in ),0( 11TM  and is detected in that 
interval. Then 

)1)}(())1(({)( 1 1
1

)1(
11∑ =

−−−−−=
M
i

iMiTRTiRBP β . 

These probabilities are used in the consideration of the distribution of 4K , the number of 
inspections in phase 2 after failure until it is detected or the preventive replacement is carried 
out at 2211 TMTM + , whichever comes first. The range of 4K  is },...,1,0{ 2M . Consequently 

)()1)}(())1(({)0( 22111
)1(

114
1 1 TMTMRiTRTiRKP M

i
iM ++−−−== ∑ =
−−β , 
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).1,...,1(,)}))1((())(({

)1()})(()({)1(),,()(

2
1

22112211

221111
1

114

−=−−+−−++

−−+−+−==
−

−
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TiMTMRTMRMTSiKP
i

ii

β

βββββ
 

The first term above corresponds to a failure occurring in (0, 11TM ) and not detected in that 
interval but after i inspections in the second phase. The second term represents a failure that 
occurs in the second phase and detected after i inspections. The third term is the probability 
of a failure that takes place in the second phase and not detected in the following i-1 
inspections and the ith inspection happens to coincide with the preventive replacement at 

2211 TMTM + . The expression then simplifies to:  

,)))1(((

))(()1()}(),,({)(
1

2211

2211
1

11114
−

−

−−+−

−++−+==
i

ii

TiMTMR

TiMTMRTMRMTSiKP

β

ββββ
, 

( 1,...,1 2 −= Mi ), and  
1

211111124
2)}()(),,({)( −+−+== MTTMRTMRMTSMKP ββ . 

The expectation of 4K  turns out to be  

∑
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The following expression can be derived from this: 

∑ =
− −−+−+

−
−

= 2
2

1 2211
1

11114 )))1((()}(),,({
1

1][ M
i

i
M

TiMTMRTMRMTSKE ββ
β

β .    (4) 

By using the expressions in (1), (2), (3) and (4), the expected length of a renewal cycle is 
obtained:  

)5().(
)(])[][)((])[][)((][

2211m

2211r42023101

TMTMRt
TMTMFtKEKEtTKEKEtTE

++
+++++++=τ

 

The expected uptime in a cycle is 

∫
+

= 2211

02211 )(),,,(
TMTM

dttRTMTMU . 

Hence the expected downtime is 

),,,(][),,,( 22112211 TMTMUETMTMD −= τ . 

The mean cost of inspections in a cycle is 

])[][][][( 42310 KEKEKEKEcCin +++= . 

Let the number of false positives in a cycle be In . Then In  conditional on 21 KK +  
inspections previous to failure, 21I | KKn + , has a binomial distribution with parameters 

21 KK +  and α. Therefore α)(]|[ 2121I KKKKnE +=+ , so that  
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∑∑ ==
++=+= 21

1 2111121I )}.()}(.{][][ M
i

M
i

iTTMRiTRKKEnE αα  

The expected cost of a renewal cycle including the cost of inspection, the cost of false 
positives (noting that a false positive if it occurs at 2211 TMTM +  does not incur a cost), the 
cost of replacement, and the expected cost of unmet demand is given by 

)6().,,,()()(

})()(.{)]([

2211d2211m2211r

1
1 21111I
21

TMTMDcTMTMRcTMTMFc

iTTMRiTRcCCE M
i

M
iin

+++++

+++= ∑∑ −

==
ατ

 

The long run cost per unit time is given by  

][/)]([),,,( 2211 ττ ECETMTMQ = .                                            (7) 

In addition, the average availability is  

][

)(

][][
][),,,(

2211

0
2211 τE

dttR

DEUE
UETMTMA

TMTM

∫
+

=
+

= . 

The long-run cost per unit time and the average availability are the measures we use to 
compare policies.   

Some preliminary work on this model was developed in Berrade et al. [26]. The model in 
Cavalcante et al. [10] constitutes a special case of the model when 0== βα , and the model 
in Berrade [27] is another special case with .2 ∞=M   

The single phase inspection and replacement policy 1,0 21 >== MMM  can be 
obtained by setting 21 TT =  and 121 >=+ MMM  in the expressions for the general policy. 
This is because these cases are equivalent.  

The expressions above simplify when 1,0 21 == MM . In this case, the policy is 
effectively a pure replacement policy with a single phase, with preventive replacement at 2T  
(although as we state in section 2 we suppose that there is an inspection at preventive 
replacement). The expected length of a renewal cycle is  

)()()(][ 2m2r02 TRtTFttTE +++=τ  

The expected downtime in a cycle is 

∫−= 2

02 )(][)(
T

dttRETD τ . 

The expected cost of a cycle is 

)()()( 2d2m2r0 TDcTRcTFcc +++ ,  

and the long run average cost per unit time is  

)()()(

)()()(
)(

2m2r02

02m2r0
d2

2

TRtTFttT

dttRTRcTFcc
cTQ

T

+++

−++
+= ∫ . 

Notice that this expression does not involve the false positive parameter, α . This is because 
the only inspection is the final inspection, and the false alarm cost cannot be incurred at the 
final inspection.  
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We do not consider the case 0,1 21 == MM . This is because if we formulate the 
general policy such that preventive replacement immediately follows the final inspection, 
then this case is the same as 1,0 21 == MM . If we formulate the general policy such that the 
preventive replacement follows the final inspection in the second phase, but not the first 
phase, then as there is no second phase if 0,1 21 == MM ; the policy consists of a single 
inspection at 1T  only. If the component fails before this time and there is no false negative at 

1T , then the component is replaced and the cycle length is 1T ; otherwise the system is never 
replaced and the cycle length is non-finite and the average availability is zero, and thus the 
policy, in this case, has no practical relevance. Finally, the policy is degenerate for 

021 == MM .  
 
4. Model 2: renewal at a false positive inspection 

Model 2 is as model 1 except in one key aspect. In model 1, the consequence of a false 
positive is that a cost is incurred but the component is not replaced, so that a false positive 
does not change the system reliability. In model 2, if a false positive (false alarm) occurs then 
the component is replaced and the system is renewed. Here engineers are not interested to 
investigate an alarm (when the test says the protection system is failed), and carry out 
component replacement regardless of the real state of the protection system. The cost of a 
false positive is then mc , the cost of replacement of an unfailed component.  

The inspection policy is the same as in model 1: inspect at ages 1jT ; 1,...,2,1 Mj =  
(phase 1) and at ages 211 jTTM + ;  2,...,2,1 Mj =  (phase 2). Additional notation is as 
follows.  
 
Specific notation for model 2 

1I :  number of inspections in phase 1 previous to failure, to a false positive, or to the 
beginning of phase 2 whichever comes first 

2I :  number of inspections in phase 2 (from 11TM  onwards) previous to failure, to a 
false positive, or to preventive replacement at 2211 TMTM +  whichever comes 
first. 

3I :  number of inspections in phase 1 after failure until its detection or to the 
beginning of phase 2 whichever comes first. 

4I :  number of inspections in phase 2 after failure until its detection or the system is 
renewed at 2211 TMTM +  whichever comes first. 

Again, we consider first the case 0, 21 >MM . When 1,0 21 == MM , the policy under 
model 2 is the same as under model 1, because renewal follows the only inspection in both 
models. The policy 0,1 21 == MM  has no practical relevance so we do not consider it. The 
case 021 == MM  is degenerate. 

For 0, 21 >MM , the range of 1I  is },...,1,0{ 1M . For 0=i , 

)(1)0( 11 TRIP −== . 
For 1,...,1 1 −= Mi ,  

ααα 1
11111 )1}(()()1}()1(()({)( −−−+−+−== ii iTRiTRTiRiTRiIP . 
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For 1Mi = ,   
1

1111
1)1)(()( −−== MTMRMIP α . 

The expected value of 1I  is obtained:  

∑ =
−−= 1

1
1

11 )1)(()( M
i

iiTRIE α . 

Next, 2I , takes a value in },...,1,0{ 2M  with corresponding probabilities 

1)1)((1)0( 2112
MTTMRIP α−+−== , 

ααα 1
2112112112

11 )1)(()1)}()1(()({)( −++ −++−++−+== iMiM iTTMRTiTMRiTTMRiIP , 

for 1,...,1 2 −= Mi , and  
1

221122
21)1)(()( −+−+== MMTMTMRMIP α . 

Therefore 
1

1 2112
12 )1()(][ −+

=
−+= ∑ iMM

i
iTTMRIE α .                                      (9) 

Next, 3I  takes values on },...,1,0{ 1M with 

1
11

11
1 13

11 )1)(()1()()0( −−−

=
−+−== ∑ MiM

i
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Next, 4I  takes values on },...,1,0{ 2M . In what follows, we consider the function: 
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which represents the probability of a failure occurring in ),0( 11TM  and not detected in that 
interval and in addition no false positive occurrence in ),0( 11TM . Now 
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The first term represents a failure occurring in ),0( 11TM  which is detected in that interval 
and no false positive occurrence therein. The second term and the third terms are respectively 
the probabilities of a false positive in ),0( 11TM  and ))1(,( 221111 TMTMTM −+ . The last 
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term corresponds to the probability of a cycle that ends with a preventive maintenance at 
2211 TMTM +  provided that no false positive and no failure has occurred before. 

For 1,...,1 2 −= Mj , 
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The first term corresponds to a failure that occurs in ),0( 11TM  not detected in that interval 
but after  j inspections in the second phase. The second term is a failure that takes place in 

))(,( 221111 TjMTMTM −+  and detected after j inspections. The third term represents a 
failure in the second phase which is corrected at 2211 TMTM +  after j inspections. In all the 
cases the probability of no false positive is also included. 

Finally, we have 
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24
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The first term is the probability of a failure occurring in ),0( 11TM  not detected in that 
interval and no false positive occurrence. The second term indicates a failure in 

),( 21111 TTMTM +  and no false positive. In both cases the detection after 2M  inspections of 
the phase 2 implies that the renewal occurs at 2211 TMTM + . 

After some algebra we have  
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The replacement time takes values as follows: 
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The probability that the replacement time takes the value rt  is  
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The foregoing expression can also be expressed as  

)11().()1(

)()1()()1(1)(

2211
1

1
1 211

1
1 1

1
r

21

2 11

aTMTMR

iTTMRiTRtP

MM

M
i

iMM
i

i

+−−






 +−+−−=

−+

−

=
−+

=
− ∑∑

α

ααα
 

The probability that the replacement time takes the value mt  is  

)(1)( rm tPtP −= .                                                            (11b) 

Therefore, the expected length of a renewal cycle is 
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)()()])([][()])([][(][ mmrr02420131 tPttPttTIEIEtTIEIEE +++++++=τ .     (12) 

with ][ 1IE , ][ 2IE , ][ 3IE , and ][ 4IE  given by (8)-(11) respectively. 
The following calculation gives the expected uptime: 
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After additional calculations we obtain 
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Hence the expected downtime is 

),,,(][),,,( 22112211 TMTMUETMTMD −= τ .                             (14) 

The cost derived from the replacement of the system takes two possible values: 
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so that )()( mm tPcP =  and )()( rr tPcP =  in the notation of equations (11a&b). Note 
)(1)( rm cPcP −= , and )()( 24m MIPcP =≠  because mc  is the associated cost not only for 

the preventive replacement at 2211 TMTM +  but also when a false positive occurs. 
The expected total cost of a renewal cycle turns out to be 
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In the particular case ccc == mr , the previous expression becomes 

),,,(])[][][][()]([ 2211d43210 TMTMDccIEIEIEIEcCE +++++=τ . 

The long-run cost per unit time and the average availability can then be obtained from 
expressions (15) and (12), and (13) and (14), respectively. 

Again, the case 1,0 21 >== MMM  can be obtained by setting 21 TT =  and 
121 >=+ MMM  in the expressions for the general policy. This is because they are 

equivalent.  
 
5. Case study: inspection of a production line protection system 

5.1 Specification of parameter values 

Our example looks at a complex machine that fills a flexible package with a non-carbonated 
beverage. The protection system is a safety device whose purpose is to prevent misalignment 
of the carton maker; misalignments occur randomly in time; if the safety device fails to 
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operate during a misalignment event then the carton maker may be irreparably damaged. The 
cost of failure of the carton maker due to misalignment has been estimated by the beverage 
manufacturer. This cost is based upon the cost of lost production time (72 hours), and the cost 
of replacement of the carton maker (more precisely the jaws that are responsible for cutting, 
forming and sealing the packaging). For reasons of confidentiality, all costs are given with 
respect to an unspecified unit cost. The beverage manufacturer inspects the protection system 
(safety device) to determine if it is good or failed. In fact at inspection, cleaning and 
lubrication tasks are also carried out. Inspection time is 2 hours. In terms of the unit of cost, 
inspection costs 5 units. Further, this inspection takes place during a scheduled shutdown, so 
there is no lost production arising due to inspection. (This is something of a simplification 
because the carton maker operates for 2 or 3 shifts a day, and the number of shifts used is 
dependent to some extent on demand for the beverage.) The cost of an unmet demand, cd,  is 
27,000 units. The demand rate has been estimated to be of the order of 1 demand every 4 
years.  

We evaluate two situations. In the first, when the beverage manufacturer detects a fault 
with the protection system, the OEM of the carton maker takes appropriate action. In the 
second, all maintenance actions for the protection system are carried out by the beverage 
manufacturer “in-house”; the OEM supplies replacement components. The situations then 
broadly correspond to the two policies: OEM maintenance; and “in-house” maintenance.  

Thus in the first situation (model 1), when a fault is detected, the OEM is called out at 
significant expense to the beverage manufacturer. The call-out charge is 50 units; this is 
essentially a set-up cost that includes the cost of travel for the OEM maintenance engineer. 
The first action of the OEM engineer is to determine if the protection system is indeed failed. 
If it is unfailed, a false positive has occurred and no further action is taken and the call-out 
charge is incurred: that is, the cost of a false positive, cI, is 50 units. If the protection system 
is failed then it is replaced at cost cr=150. This implies that the cost of the component spare 
part is 100 units. We further suppose that there is no lost production during these activities 
because they are scheduled during a production stoppage. Finally if the device reaches its 
critical age for replacement then the OEM replaces it with cost 100=cm< cr=150. The 
difference between cm and cr here (50 units) we attribute to the value of the unfailed 
component part which may be reconditioned and returned to the stock of spare parts. 

In the second situation (model 2), when a fault is detected, the protection system is 
replaced by the maintenance team of the beverage manufacturer. The cost incurred is now 
cr=105 if the device is failed (the cost of the spare part, plus the set up cost for the beverage 
manufacturer which we set equal to the cost of inspection i.e. 5 units), and cm=55 if the 
device is unfailed (the cost of the component minus its value as a spare plus the set up cost 
for the beverage manufacturer). If the device reaches its critical age for replacement then the 
beverage manufacturer replaces it with cost cm=55.  

These are the base case values for the cost parameters in the two situations. We will in 
what follows also consider the effect on the optimal policies of variations in these costs.  

Notionally, the two situations reflect variation in the quality of maintenance between the 
OEM and the operator; the additional maintenance experience of the OEM has a direct cost 
premium. This variation in quality is also reflected in the value of the probability of a false 
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positive, α. In practice, if the first situation applies then this is the percentage of unnecessary 
calls to the OEM following inspection and should be straightforward to estimate in practice. 
We take this to be 0.2 in our base case. The probability, β, of not detecting a failure present at 
an inspection (false negative) depends on the skill level of the maintainer and the complexity 
of the device and is more difficult to evaluate. We therefore use a value similar to α.  

The downtime for preventive replacement of a failed component, tr, is taken to be 6 
hours. The downtime for preventive replacement of an unfailed component, tm, is taken to be 
the same. 

Finally, we specify the failure model parameters. The mean time to failure of the device 
is estimated to be of the order of 5000 hrs; the variance is unknown. There are some early 
failures in approximately 10% of the cases. Therefore we set p=0.1. The main reason for 
early failure is unknown. Weibull distributions are used for the two mixture distribution 
components with characteristic lives and shape parameters η1=500, β1=2.5 and 
η2=500, β2=4.5, respectively. These values imply a mean time to failure of 5800 hrs with 
standard deviation 2350 hours. 

 
5.2 Results 

Our results are shown in Table 2 (for situation 1) and in Table 3 (for situation 2). The base 
case is in the top row of each table. Where parameter values are varied from the base case, 
the values are emboldened for ease of inspection of the tables. In our discussion of these 
results, we first consider the effect of the imperfect inspection parameters for both situations. 
Then we consider the effect of the failure model parameters; then the cost parameter effects. 
We finish with a comparison of the two situations: OEM maintenance versus “in-house” 
maintenance.  

As the probability of a false positive, α, increases in both situations both ∗
1T  and ∗

2T   
increase and ∗

1M  and ∗
2M  decrease such that ∗∗∗∗ + 2211 TMTM  stays broadly constant. 

Recalling that 2211 TMTM +  is the time to preventive replacement, this implies that one 
should do less inspection as α increases but keeping the frequency of preventive replacement 
constant. This is as we might have expected. As α increases the long-run cost increases and 
the average availability decreases accordingly. As the probability of a false negative, β, 
increases there is a tendency to do more inspections, but more so in situation 1 than in 
situation 2. One can afford to do more inspections to mitigate against false negatives only if 
false positives are unlikely. Again the long-run cost increases with  β and the rate of increase 
with respect to β appears to be similar to that with respect to α. Therefore, false negatives and 
false positives are comparable issues economically.  

Regarding failure model parameter effects, the effect of η2 on cost and availability in 
both situations is as expected; also as η2 decreases ∗

2T  decreases, even to the extent that, in 
situation 2,  ∗

2T < ∗
1T  for small η2. The effect of η1 on ∗

1T  is similar, supporting the idea for 
two phases. The effects of β1 and  β2 are as expected; as they increase failures become more 
predictable and inspection intervals can be extended. The effect of p is dramatic and is again 
as expected; as the probability of early failure increases the number of inspections increases 
and the interval between inspections in the first phase decreases markedly, while the time to 
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preventive replacement stays broadly static.  This further supports our case for a two phase 
policy.   

The effect of the cost of inspection is greater on ∗
2T  than on ∗

1T  in situation 1 and similar 
in situation 2; this is perhaps because in situation 2 the inspection cost is a greater proportion 
of the maintenance costs. In situation 2, decreasing cm leads to more frequent preventive 
replacement and vice versa. In situation 1 the effect is not so large but the proportional 
change in cm is not so large here. The effect of cr on the optimum policy in both models is 
very small; cr does not appear to be driving the optimum  policy at all, although the long-run 
cost increases with cr. This is not unexpected; in a simple maintenance policy such as age 
based replacement if the cost of failure replacement is merely 1.5 times the cost of preventive 
replaced then preventive replacement is only marginally cost-efficient with respect to failure 
based replacement. The effects of replacement downtimes, tr and tm, appear to be negligible. 

 With regard to the cost of unmet demand, we see that as dc×µ  increases one should do 
more inspections and more frequent replacements in both situations.   

The similarity between the two situations is reassuring; cost parameter effects are 
comparable, as are imperfect inspection parameter effects. However, it is the effect on the 
long-run cost in the two situations that is interesting; in particular the effect of the imperfect 
inspection parameters on the long-run cost is greater in situation 2 than in situation 1. This 
means that while in the base case and the perfect inspection case ( α=β=0), situation 1 is a 
more expensive policy than situation 2,  when either of the false imperfect inspection 
probabilities reaches 0.4 then situation 1 becomes a cheaper policy than situation 2. The long-
run cost of OEM maintenance is in fact approximately 25% higher than “in-house” 
maintenance in the perfect inspection case. This cost advantage is lost when α and β are of 
the order of 0.3. Furthermore, if imperfect inspection probabilities are at these values, the 
average availability is also significantly lower with “in-house” maintenance.   
 
6. Discussion 

In this paper we compare two broad maintenance policies: maintenance carried out by the 
original equipment manufacturer (OEM); and maintenance carried out “in-house”. This 
comparison is made in the context of a protection system that has to operate on demand and 
that is subject to imperfect inspection of its status. We develop two models, each to describe 
an idealized situation. In the first, imperfect inspection is manifest in that a false alarm 
implies an additional cost to the system owner; in the second, a false alarm implies renewal 
of the protection system. In both cases, there can occur false negative inspections, in which 
the system is regarded as good when it is in fact failed. A further complicating factor is that 
on replacement of the system, the lifetime of “new” system has a mixed distribution with two 
elements: one with a short characteristic life representing a poor replacement (with a weak 
component, say); the other with a long characteristic life representing a good replacement 
(with a strong component, say); thus, we also consider imperfect replacement in the models.  

The models we describe might be further developed in order to consider a system in 
which failures are immediately revealed but are preceded by a defective state. The effect of 
false positive and false negative inspections upon the cost and reliability of a critical system 
may then be investigated. Berrade et al. [28] outline such a development. Following [29], one 
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might also consider these models over a finite planning horizon, so that there is an 
operational requirement for the system only up to some time S. Such a “stopping time” S 
might itself be a random variable, with the stoppage caused by an unmet demand.  

The ideas in the paper here are illustrated using a case study that describes a protection 
system used on the production line of a beverage manufacturer. The case study provides the 
motivation for the models of the two maintenance policies. The comparison of the long-run 
costs and average availabilities is carried out for values of model parameters that relate to the 
case study. When OEM maintenance costs are significantly higher than “in-house” 
maintenance costs, if inspection is imperfect to a large degree then we find that it is optimal 
to use the OEM for maintenance. 

The models we develop cannot exactly mirror the problem contexts because our models 
are approximations to the reality. Therefore, our principle message here is not that one policy 
is better than another. Instead, our message is that it is possible to make comparisons using 
these models, and that such comparisons can inform policy about maintenance planning, 
provided one has reasonable information about maintenance costs and the failure behaviour 
of the protection system. Furthermore, this paper highlights the importance of considering 
some aspects of maintenance that are commonly neglected, such as the judgment errors in 
maintenance actions. In some circumstances, a maintenance plan, under a high level of false 
alarms, can impose more harmful effects than beneficial ones. That is, false alarms can lead 
to the systematic and unnecessary replacement of strong components by weak ones, thus 
reducing the reliability and availability of the system. 
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Table 2. Situation (policy) 1: OEM maintenance. Top row is the base case. Parameter values are emboldened where they vary from the base case. 
Mixed failure distribution 
parameters 

     cost parameters    downtimes    false alarm 
                       parameters 

optimum values of decision variables,  
long run cost (Cost), and average availability 

β1 η1 β2 η2 p c0 cm cr μ cd cI tr tm β α  M1 M2 T1 T2 Cost A  
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 2 360 1356 0.0744 0.981 1 
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0  5 6 193 533 0.0591 0.988 2 
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.4  2 2 555 1377 0.0839 0.975 3 
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.6  2 2 571 1406 0.0914 0.975 4 
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0 0  3 7 272 508 0.0546 0.989 5 
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0 0.2  2 2 456 1424 0.0669 0.983 6 
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.4 0.2  4 2 304 1302 0.0838 0.976 7 
2.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.6 0.2  6 2 227 1259 0.0978 0.971 8 
1.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 3 379 950 0.0761 0.980 9 
3.5 500 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 2 332 1391 0.0741 0.981 10 
2.5 400 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 2 305 1427 0.0734 0.982 11 
2.5 600 4.5 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 2 413 1287 0.0753 0.980 12 
2.5 500 3 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 4 352 658 0.0919 0.976 13 
2.5 500 6 7000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 2 360 1577 0.0645 0.981 14 
2.5 500 4.5 5000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 2 346 925 0.0954 0.976 15 
2.5 500 4.5 9000 0.1 5 100 150 0.00005 27000 50 6 6 0.2 0.2  3 2 375 1766 0.0617 0.983 16 
2.5 500 4.5 7000 0.01 5 100 150 0.00005 27000 50 6 6 0.2 0.2  1 2 814 1345 0.0533 0.990 17 
2.5 500 4.5 7000 0.05 5 100 150 0.00005 27000 50 6 6 0.2 0.2  2 2 577 1263 0.0647 0.984 18 
2.5 500 4.5 7000 0.15 5 100 150 0.00005 27000 50 6 6 0.2 0.2  4 2 273 1401 0.0826 0.978 19 
2.5 500 4.5 7000 0.25 5 100 150 0.00005 27000 50 6 6 0.2 0.2  5 3 211 1059 0.0973 0.974 20 
2.5 500 4.5 7000 0.1 2 100 150 0,00005 27000 50 6 6 0.2 0.2  3 3 335 969 0.0701 0.982 21 
2.5 500 4.5 7000 0.1 10 100 150 0,00005 27000 50 6 6 0.2 0.2  3 2 367 1387 0.0811 0.980 22 
2.5 500 4.5 7000 0.1 5 70 150 0,00005 27000 50 6 6 0.2 0.2  3 2 354 1303 0.0670 0.982 23 
2.5 500 4.5 7000 0.1 5 130 150 0,00005 27000 50 6 6 0.2 0.2  3 3 345 1018 0.0815 0.981 24 
2.5 500 4.5 7000 0.1 5 100 110 0,00005 27000 50 6 6 0.2 0.2  3 2 361 1361 0.0726 0.980 25 
2.5 500 4.5 7000 0.1 5 100 190 0,00005 27000 50 6 6 0.2 0.2  3 2 359 1350 0.0762 0.981 26 
2.5 500 4.5 7000 0.1 5 100 150 0,0001 27000 50 6 6 0.2 0.2  4 3 251 874 0.0961 0.986 27 
2.5 500 4.5 7000 0.1 5 100 150 0,000005 27000 50 6 6 0.2 0.2  1 2 837 2203 0.0385 0.941 28 
2.5 500 4.5 7000 0.1 5 100 150 0,00005 10000 50 6 6 0.2 0.2  2 2 619 1568 0.0540 0.970 29 
2.5 500 4.5 7000 0.1 5 100 150 0,00005 50000 50 6 6 0.2 0.2  4 3 252 885 0.0933 0.986 30 
2.5 500 4.5 7000 0.1 5 100 150 0,00005 27000 50 2 2 0.2 0.2  3 2 359 1348 0.0730 0.982 31 
2.5 500 4.5 7000 0.1 5 100 150 0,00005 27000 50 10 10 0.2 0.2  3 2 361 1363 0.0759 0.979 32 
2.5 500 4.5 7000 0.1 5 100 150 0,00005 27000 10 6 6 0.2 0.2  4 5 240 630 0.0633 0.986 33 
2.5 500 4.5 7000 0.1 5 100 150 0,00005 27000 100 6 6 0.2 0.2  2 2 555 1377 0.0839 0.975 34 
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Table 3. Situation (policy) 2: “in-house” maintenance. Top row is the base case. Parameter values are emboldened where they vary from the base case. 
Mixed failure distribution 
parameters 

     cost parameters    downtimes    false alarm 
                       parameters 

optimum values of decision variables,  
long run cost (Cost), and average availability 

β1 η1 β2 η2 p c0 cm cr μ cd  tr tm β α  M1 M2 T1 T2 Cost A  
2.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0.2 0.2  2 3 497 975 0.0683 0.975 1 
2.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0.2 0  4 5 229 580 0.0468 0.988 2 
2.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0.2 0.4  2 2 616 1386 0.0894 0.965 3 
2.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0 0  3 5 278 612 0.0425 0.989 5 
2.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0 0.2  2 2 457 1395 0.0569 0.982 6 
2.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0.4 0.2  3 3 408 901 0.0842 0.967 7 
1.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0.2 0.2  2 5 440 693 0.0707 0.975 9 
3.5 500 4.5 7000 0.1 5 55 105 0.00005 27000  6 6 0.2 0.2  2 2 609 1246 0.0668 0.974 10 
2.5 500 4.5 5000 0.1 5 55 105 0.00005 27000  6 6 0.2 0.2  4 3 597 288 0.0819 0.970 15 
2.5 500 4.5 9000 0.1 5 55 105 0.00005 27000  6 6 0.2 0.2  2 4 489 1042 0.0594 0.977 16 
2.5 500 4.5 7000 0.01 5 55 105 0.00005 27000  6 6 0.2 0.2  2 2 1360 442 0.0376 0.990 17 
2.5 500 4.5 7000 0.25 5 55 105 0.00005 27000  6 6 0.2 0.2  4 3 253 1130 0.1059 0.961 20 
2.5 500 4.5 7000 0.1 2 55 105 0.00005 27000  6 6 0.2 0.2  3 1 449 788 0.0638 0.976 21 
2.5 500 4.5 7000 0.1 10 55 105 0.00005 27000  6 6 0.2 0.2  2 2 565 1326 0.0748 0.972 22 
2.5 500 4.5 7000 0.1 5 25 105 0.00005 27000  6 6 0.2 0.2  3 2 348 1239 0.0551 0.978 23 
2.5 500 4.5 7000 0.1 5 85 105 0.00005 27000  6 6 0.2 0.2  2 3 564 1006 0.0795 0.972 24 
2.5 500 4.5 7000 0.1 5 55 70 0.00005 27000  6 6 0.2 0.2  2 3 498 977 0.0664 0.974 25 
2.5 500 4.5 7000 0.1 5 55 140 0.00005 27000  6 6 0.2 0.2  2 3 496 973 0.0701 0.974 26 
2.5 500 4.5 7000 0.1 5 55 105 0.0001 27000  6 6 0.2 0.2  3 3 324 902 0.0976 0.979 27 
2.5 500 4.5 7000 0.1 5 55 105 0.000005 27000  6 6 0.2 0.2  1 1 908 3682 0.0282 0.940 28 
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