Bounding Uncertainty in State Estimation Under Dynamic Event-Triggered Communication
Resumen: In the stochastic estimation context, the absence of measurement information at the state estimator during large intervals can cause a divergence in the uncertainty of the estimates. This issue is aggravated when strategies to reduce communication, such as event-triggering mechanisms (ETMs), are used if an appropriate design is not made. Particularly, dynamic ETMs (DETMs) may exhibit this problem, since they are designed to further reduce the number of communication instants. Motivated by this problem, we propose a novel state estimator that integrates discrete transmitted measurements and implicit information between events provided by the proposed DETM. Our proposal guarantees a uniformly bounded mean-squared error in the stochastic context, regardless of transmission instants. Moreover, compared to static ETMs, our proposal adaptively reduces the number of transmissions according to the behavior of the measured signal. Our proposal’s advantages are verified formally and through several numerical experiments.
Idioma: Inglés
DOI: 10.1109/TSMC.2024.3465232
Año: 2025
Publicado en: IEEE transactions on systems, man, and cybernetics. Systems 55, 1 (2025), 209-220
ISSN: 2168-2216

Financiación: info:eu-repo/grantAgreement/EUR/AEI/TED2021-130224B-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T45-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-124137OB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2025-01-17-14:37:04)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > ingenieria_de_sistemas_y_automatica



 Notice créée le 2025-01-17, modifiée le 2025-01-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)