1	Effect of inflammatory environment on equine bone marrow derived mesenchym	al
2	stem cells immunogenicity and immunomodulatory properties	
3		
4		
5	L. Barrachina ^{a, b} , A.R. Remacha ^a , A. Romero ^{a, b} , F.J. Vázquez ^{a, b} , J. Albareda ^{a, c} , M.	
6	Prades ^{a, d} , B. Ranera ¹ , P. Zaragoza ^a , I. Martín-Burriel ^a , C. Rodellar ^{a*}	
7		
8	^a Laboratorio de Genética Bioquímica LAGENBIO, Universidad de Zaragoza. C/Migu	ıel
9	Servet, 177. 50013 Zaragoza (Spain)	
10	^b Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de	
11	Zaragoza. C/Miguel Servet, 177. 50013 Zaragoza (Spain)	
12	[°] Servicio de Cirugía Ortopédica y Traumatología. Hospital Clínico Universitario	
13	Lozano Blesa, Zaragoza. Avda. San Juan Bosco, 15. 50009 Zaragoza (Spain)	
14	^d Departament de Medicina i Cirugia Animal, Universidad Autónoma de Barcelona.	
15	Edifici H, UAB, 08193 Bellaterra, Barcelona (Spain)	
16		
17	*Corresponding author. Telephone: +34 976 761620; Fax: +34 976 762949	
18	E-mail address: rodellar@unizar.es (C. Rodellar)	
19		
20	E-mail address of co-authors:	
21		
22	Laura Barrachina: <u>lbarrach@unizar.es</u>	
23	Ana Rosa Remacha: aremacha@unizar.es	
24	Antonio Romero: aromerol@unizar.es	
25	Francisco José Vázquez: pvazquez@unizar.es	
		1

- 26 Jorge Albareda: <u>albaredajorge@gmail.com</u>
- 27 Marta Prades: <u>marta.prades@uab.cat</u>
- 28 Beatriz Ranera: <u>beatrizranera@gmail.com</u>
- 29 Pilar Zaragoza: <u>pilarzar@unizar.es</u>
- 30 Inmaculada Martín-Burriel: <u>minma@unizar.es</u>
- 31 Clementina Rodellar: rodellar@unizar.es
- 32
- 33 Word count: 4.868
- 34

- 35 Abstract
- 36

Mesenchymal stem cells (MSCs) are being investigated for the treatment of equine joint 37 diseases because of their regenerative potential and their ability to differentiate into 38 specialized articular tissue cell types, but recently, the focus mainly has addressed to 39 their immunomodulatory capacities. Inflammation plays a central role in joint 40 41 pathologies, since the release of proinflammatory mediators to the synovial fluid (SF) leads to the activation of enzymatic degradation of the cartilage. MSCs can modulate 42 the local immune environment through direct or paracrine interaction with immune 43 44 cells, suppressing their proliferation and re-addressing their functions. Proinflammatory molecules can induce MSC immunoregulatory potential, but they could also increase 45 the expression of immunogenic molecules. Studying the effect of inflammatory 46 47 environment on MSC immunomodulation and immunogenicity profiles is a key step to improve cellular therapies. The aim of this study was to analyse the response of equine 48 49 bone marrow MSCs (eBM-MSCs) to three inflammatory conditions. Equine BM-MSCs from three animals were exposed to: a) 20% allogeneic inflammatory SF (SF); b) 50 50 ng/ml of TNFα and IFNγ (CK50) and c) 20 ng/ml of TNFα and IFNγ (CK20). After 72 51 52 hours of exposure, expression of immunogenic and immunomodulation-related molecules, including cell-to-cell contact and paracrine signalling molecules, were 53 analysed by RT-qPCR and flow cytometry. The gene expression of ALCAM and VCAM-54 *1* was significantly upregulated by inflammatory conditions. CK culture conditions 55 significantly upregulated the expression of COX-2, iNOS, IDO and IL-6. MHC-I gene 56 expression was upregulated by all the conditions, whereas MHC-II was upregulated 57 only after CK priming. The expression of *CD40* did not significantly change, whereas 58 the ligand, CD40L, was significantly downregulated in CK20 conditions. Flow 59

60	cytometry showed an increase of IL-6, MHC-I and MHC-II positive cells at CK50
61	conditions, supporting the gene expression results. These outcomes reinforce the change
62	of the immunophenotype of the eBM-MSCs according to the surrounding conditions.
63	Inflammatory synovial environment did not lead to significant changes, so the
64	environment found by eBM-MSCs when they are intraarticular administered may not be
65	enough to activate their immunomodulatory potential. CK priming at tested doses
66	enhances the immunoregulatory profile of eBM-MSCs, which may promote a
67	therapeutic benefit. Even if CK priming induced an upregulation of MHC expression,
68	costimulatory molecule expression however was not upregulated, suggesting that
69	immunogenicity could not be increased. This study provides a better understanding
70	about the behaviour of eBM-MSCs inside the inflamed joint and constitutes a previous
71	step to improve MSC-based therapies for equine joint diseases.
72	
73	Keywords: Horse, Mesenchymal stem cells, synovial fluid, proinflammatory cytokines,
74	immunomodulation, immunogenicity

76 Introduction

77

Degenerative joint diseases (DJD), such osteoarthritis (OA), are prevalent articular 78 79 pathologies in both equine and human species. In addition, horses have a double role in joint pathologies because, firstly, they commonly suffer from OA and osteochondrosis 80 (OC), important diseases for equine clinicians (Schlueter and Orth, 2004). Moreover, 81 82 horses are considered the most suitable animal model for testing cell based therapies for humans joint injuries (Cellular, Tissue and Genic Therapies Advisory Committe2005). 83 Current therapeutic strategies for DJD are focused on reducing pain, decreasing 84 85 disability, and limiting deterioration of articular structures (Walker-Bone et al., 2000; Goodrich and Nixon, 2006). Inflammation plays a central role in the pathophysiology of 86 joint diseases like OA, due to the release of proinflammatory molecules like Tumor 87 88 necrosis factor α (TNF α) or Interleukin 1 β (IL-1 β). These cytokines promote inflammation and pain, and drive to cartilage breakdown (Goodrich and Nixon, 2006; 89 90 Sellam and Berenbaum, 2010). Therefore, an optimal therapeutic approach to OA should try to limit this inflammation, the subsequent cartilage degradation and try to 91 stimulate the regeneration of articular structures. Several studies have focused on MSC 92 93 intra-articular (IA) based therapies for both horses and human, with promising results (Noth et al., 2008; Broeckx et al., 2014; Ferris et al., 2014;) demonstrating their 94 therapeutic potential. 95 96

97 Traditionally, the regenerative role of MSCs was mainly attributed to their
98 differentiation ability into target tissue cells. MSCs seem to engraft in articular tissues
99 like synovium or menisci, but not in the cartilage. However, a delaying effect on
100 progressive degeneration of OA articular cartilage has been observed associated with

101 MSCs administration. This effect has been attributed to the anti-inflammatory and 102 immunoregulatory properties of MSCs (Whitworth and Banks, 2014), suggesting that 103 the MSC therapeutic mechanism may be due to an immunoregulation exerted by cells 104 promoted by the environment (Kode et al., 2009; Meirelles Lda et al., 2009). This phenomenon seems to be a multifactorial process that requires both direct cell-to-cell 105 106 contact and contact-independent paracrine signalling governed through different molecules such interleukin 6 (IL-6), interleukin 10 (IL-10), indoleamine 2,3-107 108 dioxygenase (IDO), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2) or tumor necrosis factor-inducible gene 6 protein (TSG-6), among others. These molecules 109 110 are involved in proliferation, differentiation, migration or apoptosis in different immune cells (Ma et al., 2014), varying between species (Ren et al., 2009). The expression of 111 several molecules related to paracrine and cell-contact mechanisms, like chemokines 112 113 and adhesion molecules, is regulated in MSCs by pro-inflammatory molecules such interferon γ (IFN γ), especially in combination with TNF α , interleukin 1 α (IL-1 α) or IL-114 115 1β (Ren et al., 2008). This fact suggests that for a full regulatory function of MSCs, 116 MSC activation or licensing through exposure to an inflammatory environment might be needed (Renner et al., 2009; Cuerquis et al., 2014). 117

118

Inflammatory synovial fluid (SF) contains variable amounts of several inflammatory
molecules that may alter MSC function and characteristics. Some studies in equine and
human species have reported that changes in the composition of inflammatory
molecules of the SF might affect the expression and production of paracrine signalling
molecules by MSCs, acting as inductors of their immunomodulatory potential (Leijs et
al., 2012; Vézina Audette et al., 2013). However, the stimulus exerted by SF could be
heterogeneous because it depends on the variable amounts of the different mediators,

126	which is defined by the SF inflammatory level (Leijs et al., 2012). In vitro, the
127	combination of definite doses of $INF\gamma$ with another proinflammatory cytokine, such
128	$TNF\alpha$, has demonstrated a change in the immunoregulatory abilities of MSCs, inducing
129	the expression or the secretion of anti-inflammatory and regulatory factors and
130	suppressing T cell proliferation in co-culture experiments (Cuerquis et al., 2014;
131	Paterson et al., 2014). However, an increase of the immunogenicity has been also
132	observed due to this priming (Chan et al., 2006; Chan et al., 2008), indicating a possible
133	limitation to use allogeneic primed MSCs. The enhancement of MSC immunoregulatory
134	properties, without detriment of their immune-evasive status, could improve the MSC
135	therapeutic efficacy and allow their allogeneic use (Ankrum et al., 2014).
136	
137	Despite the recent findings, it is little known about the effects and behaviour of MSCs
138	when they are administered IA in an injured joint. Pre-existing joint inflammation may
139	impact the secretome of MSCs altering their therapeutic efficacy (Roberts et al., 2011),
140	therefore, a deep understanding of the changes induced in MSC immunogenicity and
141	immunoregulatory abilities by an inflammatory synovial environment is needed to
142	study. Since immunoregulatory potential of MSCs seems to be crucial for the
143	therapeutic potential, stimulating this ability could be of major interest in order to
144	improve the therapeutic benefit for the regenerative medicine. In consequence, knowing
145	how the synovial environment affects administered MSCs, and the way in which we can
146	stimulate them to enhance their immunoregulatory potential, will be the key for
147	developing effective joint regenerative treatments.
148	
149	The aim of the present study was to assess the effect of different inflammatory stimuli

150 on eBM-MSCs immunoregulatory ability and immunogenicity, studying the expression

151	of immunogenic and immunomodulation-related molecules. Firstly, the influence of
152	allogeneic inflammatory SF on eBM-MSCs was investigated, and subsequently, the
153	effect of priming eBM-MSCs with a combination of the two pro-inflammatory
154	molecules IFN γ and TNF α , was tested at two different doses. This work contributes to
155	understand the effects of inflammatory exposure on eBM-MSCs, as a previous step to
156	enhance the clinical use in vivo in equine joint diseases.
157	
158	Materials and Methods
159	
160	Experimental design
161	
162	Three experiments were designed to investigate the <i>in vitro</i> response of eBM-MSCs to
163	different inflammatory stimuli:
164	Experiment 1 (SF). The culture medium was supplemented with 20% of equine
165	allogeneic inflammatory SF.
166	Experiment 2 (CK50). The culture medium was supplemented with pro-inflammatory
167	cytokines: IFNy (50ng/ml) and TNFa (50ng/ml).
168	Experiment 3 (CK20). The culture medium was supplemented with pro-inflammatory
169	cytokines: IFNy (20ng/ml) and TNFa (20ng/ml).
170	
171	Equine BM-MSCs were cultured in all inflammatory conditions for 72 hours.
172	Subsequently, the expression of molecules related to immunoregulation and
173	immunogenicity was analysed by flow cytometry and RT-qPCR.
174	

175 Animals

177	Four geldings (age: 6–12 years; weight: 450–500 kg,) were used in this study, named as
178	057, 059, 060 and 063. Animals 057, 059 and 060 were patients from the Veterinary
179	Hospital of the University of Zaragoza determined to be healthy based on clinical and
180	hematologic examination. Biological samples (BM or SF) were obtained with owner
181	consent and according to local animal welfare regulations. All procedures were carried
182	out under Project License 31/11 approved by the in-house Ethic Committee for Animal
183	Experiments from the University of Zaragoza. The care and use of animals were
184	performed accordingly with the Spanish Policy for Animal Protection RD53/2013,
185	which meets the European Union Directive 2010/63 on the protection of animals used
186	for experimental and other scientific purposes.
187	
188	Isolation, culture and characterization of eBM-MSCs
189	

Forty ml of BM from sternum were aspirated in heparinized syringes using a 4" 11G Jamshidi needle from horses 057, 059 and 060. Mononuclear cells were isolated by gradient centrifugation on Lymphoprep (Atom) for 20 min at 1700 rpm. The cells were plated at 2×10^6 nucleated cells/cm² in 6-well plates (Becton Dickinson) in growth medium consisting of low glucose Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), 1% Glutamine and 1% Streptomycin/ Penicillin (all from Sigma-Aldrich) (Ranera et al., 2011). The cells were expanded until third passage and were characterized by tri-lineage differentiation and phenotype determination as previously described (Ranera et al., 2011). The MSC phenotype was examined by analysing the mRNA levels of six genes coding for the mesenchymal cell markers CD90, CD105, CD44 and CD73, and the haematopoietic

201	markers <i>CD34</i> and <i>CD45</i> , using RT-qPCR. Complementary, three mesenchymal
202	surface markers were also analysed by flow cytometry (CD90, CD105 and CD44).
203	Osteogenic, adipogenic and chondrogenic differentiation potentials were induced using
204	specific media as previously described (Ranera et al., 2011). Subsequently, cells were
205	cryopreserved in frozen medium consisting of 10% DMSO and 90% FBS (both from
206	Sigma-Aldrich) until experiments started.

208 Collection of synovial fluid

209

210 Inflammatory SF for the Experiment 1 was obtained from one tarso-crural joint of animal 063, which presented aseptic synovitis. Arthrocentesis was performed to reduce 211 the joint effusion and SF aspirated was collected in heparin-treated tubes (Beckton 212 213 Dickinson) and used for the Experiment 1. SF inflammatory status was verified 214 measuring total protein (g/dl) with a portable optical refractometer (RHB-32 Hand-held 215 brix refractometer, Spectrum Technologies) and determining the concentration of the 216 acute phase proteins (APP) serum amyloid A (SAA) and haptoglobin (Hp). The methodology for SAA and Hp determination is described in the Supplementary data 1. 217 Cytological examination of the SF was also performed. SF was centrifuged at 3000g/15 218 219 min and supernatant was stored at -80°C, whereas cellular fraction was discarded. All 220 processes were carried out in sterile conditions to prevent from culture contamination. 221 Inflammatory culture media preparation 222 223 224 Growth medium described above was used as basal culture medium. For Experiment 1,

225 20% inflammatory allogeneic SF was added to the basal culture medium (SF medium).

226	For Experiments 2 and 3, basal medium was supplemented with recombinant equine
227	$TNF\alpha$ and recombinant equine IFN γ (both from R&D Systems). Fifty ng/ml of each
228	proinflammatory cytokine was added to the basal culture medium for Experiment 2
229	(CK50 medium) whereas 20 ng/ml of every cytokine were added for Experiment 3
230	(CK20 medium). Basal medium was used as culture control in the three experiments
231	(Control medium).

233 Equine BM-MSC culture in inflammatory conditions

234

Approximately 10^6 cells in passage 3 from animals 057, 059 and 060 were thawed at 235 37°C and cultured for 3 days to allow re-adjust conditions prior to being used for the 236 different experiments. In all experiments, eBM-MSCs from each animal were seeded at 237 5000 cells/cm² with basal medium. The cells were expanded at 37°C and 5% CO₂ with 238 twice-week culture medium change. At 90-100% confluence, SF-, CK50-, CK20- or 239 240 control media were added to the cells and maintained for 72 hours. All conditions in all 241 experiments were carried out in triplicate for each animal. After 72 hours, control and inflammatory exposed eBM-MSCs were detached with 0.25% trypsin-EDTA (Sigma-242 243 Aldrich), counted and destined for different assays. 244 245 mRNA isolation from eBM-MSCs 246 Total mRNA was isolated from approximately 10⁶ of eBM-MSCs from all samples with 247

248 RNAspin Mini RNA Isolation Kit (GE Healthcare) according to manufacturer's

249 instructions. DNAse Turbo (Ambion) was used to remove genomic DNA according to

250	manufacturer's instructions. 1,5 μ g of mRNA from each sample were retrotranscripted
251	to cDNA with the Superscript Reverse Trancriptase Kit (Life Technologies).
252	
253	Real time quantitative polymerase chain reaction (RT-qPCR)
254	
255	Primers were designed using Primer Express 2.0 software based on known equine
256	sequences. Primer details, accession numbers for equine mRNA sequences and
257	amplicon sizes are shown in Table 1.
258	
259	Genes were grouped based on their functions and implications, in order to facilitate the
260	posterior analysis, as it follows:
261	
262	Adhesion molecules and chemokine receptors: Vascular Cell Adhesion Molecule 1
263	(VCAM-1 or CD106), Activated Leukocyte Cell Adhesion Molecule (ALCAM or
264	CD166), chemokine receptor 4 (CXCR4), CD90, Endoglin (CD105) and Hyaluronate
265	Receptor (CD44).
266	
267	Immunomodulation-related paracrine molecules: cyclooxygenase 2 (COX-2),
268	indoleamine 2 3-dioxygenase (IDO-1), inducible nitric oxide synthase (iNOS),
269	interleukin 6 (<i>IL-6</i>), transforming growth factor beta 1 (<i>TGF-β1</i>), tumor necrosis factor-
270	inducible gene 6 protein (TSG-6), interleukin 10 (IL-10).
271	
272	Antigen presenting-related molecules: Major Complex of Histocompatibility I (MHC-I),
273	Major Complex of Histocompatibility II (MHC-II). Co-stimulatory molecules: Cluster
274	of Differentiation 40 (CD40), Cluster of Differentiation 40 Ligand (CD40L).

RT-qPCR was performed and monitored using the StepOne Real Time PCR System 275 276 device (Applied Biosystems). All reactions were carried out in a total volume of 10 µl with 2 µl of cDNA as a template and Fast SYBR Green Master Mix (Applied 277 278 Biosystems). cDNA was amplified following the manufacturer's protocol: 20 s at 95°C of an initial activation and denaturation, followed by 40 cycles consisting of 3 s at 95°C 279 and 30 s at 60°C. Each cDNA sequence was tested in triplicate and a dissociation curve 280 281 protocol was run after all PCR reactions. The levels of gene expression were determined 282 by the comparative Ct method. A normalization factor (NF) was used to determine the expression level of each gene in each sample. The NF was calculated as the geometric 283 mean of the quantity of 2 housekeeping genes (GAPDH and B2M). Primers used for 284 housekeeping gene amplification were previously described (Kolm et al., 2006). 285

286

287 Flow cytometry of eBM-MSCs

288

289 Flow cytometry was used at two different moments. First, for immunophenotyping cells 290 prior to be used in the experiments, and second, to study the surface expression of the adhesion molecules CD90, CD105 and CD44, antigen presenting molecules MHC-I and 291 292 MHC-II, and the immunomodulatory related molecule IL-6, after inflammatory 293 exposure. The cells were suspended in PBS/2mM EDTA at 10⁶ cells/ml. Fifty µl 294 aliquots of cells were transferred to FACS tubes and incubated for 15min at 4°C with CD90-PE (BD Pharmingen), CD105-FITC (R&D Systems), CD44-FITC (Abcam), 295 296 HLA-ABC-FITC (Beckman Coulter), HLA-DR-APC (Immunostep) and IL-6-PE (BD Pharmigen) monoclonal antibodies. Anti-horse reactivity of antibodies was previously 297 298 described (Ranera et al., 2011) or tested. Subsequently, cells were washed with PBS

(Gibco) and diluted in 500 µL of PBS/2mM EDTA and analysed with the fluorescenceactivated cell sorter (FACSARIA, BD Biosciences).

301

302 Statistical analysis

303

304	Data obtained from RT-qPCR and flow cytometry analysis were subjected to statistical
305	analysis using the SPSS 15.0. Gene expression data is reported as mean (n=3) fold
306	change increase or decrease of stimulated eBM-MSC gene expression over unstimulated
307	control eBM-MSCs. Differences between eBM-MSCs from each inflammatory
308	condition (SF, CK50 and CK20) and the counterpart controls were analysed by a paired
309	Student's t test. Flow cytometry data were represented as mean (n=3) of percentage of
310	positive stimulated and unstimulated eBM-MSCs for each experiment. Differences in
311	the surface expression between stimulated and unstimulated eBM-MSCs were analysed
312	by paired Student's t test, separately for each experiment. 95% confidence intervals
313	were provided for the fold changes in gene expression and percentage of expression in
314	flow cytometry analysis. Significance level was set at P<0.05 for all analyses.
315	
316	Results
317	
318	Isolation and characterization of eBM-MSCs
319	
320	Plastic-adherent fibroblast-like cells were observed in all samples obtained from BM
321	aspirates within the first days of culture. The cells showed capacity for attachment to
322	plastic and the ability of differentiation into osteoblast, adipocyte and chondrocyte (data
323	not shown). Isolated cells from three animals were positive for the surface markers

324	CD90 (90.80% \pm 7.51), CD105 (42.53 \pm 1.67) and CD44 (97.46% \pm 0.35) by flow
325	cytometry. All the samples expressed transcripts for CD90, CD105, CD44 and CD73,
326	but not for CD34 and CD45, by RT-qPCR (data not shown).
327	
328	Inflammatory synovial fluid obtainment
329	
330	Total protein measure in the SF obtained from animal 063 was 2,25g/dl. The SAA
331	concentration was 5.85 μ g/ml and the Hp concentration was 2.38 \cdot 10 ⁻⁴ μ g/ml. These data
332	confirmed the inflammatory status of the SF and along with the cytological
333	examination, a septic origin of the joint inflammation was discarded.
334	
335	Effect of inflammatory environment on immunomodulatory and immunogenic
336	gene expression of eBM-MSCs
337	
338	Gene expression data from RT-qPCR analysis are represented in Figure 1. The
339	expression of each gene in each inflammatory condition is expressed as relative
340	expression respect to corresponding control. The results for the grouped genes were:
341	
342	Genes coding for molecules implied in MSC immunomodulatory mechanisms
343	
344	A) Molecules related with cell-to-cell contact mechanism: adhesion molecules and
345	chemokine receptors
346	
347	ALCAM gene expression was found significantly higher, whereas CXCR4 gene
348	expression non-significantly decreased, under inflammatory SF conditions. For CK50

349	and CK20 conditions, VCAM-1 expression was significantly upregulated, whereas a
350	CXCR4 significant downregulation in CK20 was observed (Figure 1.A). CD90, CD105
351	and CD44 gene expression did not display differences between control and
352	inflammatory exposed eBM-MSCs in any Experiment (data not shown).
353	
354	B) Molecules related with paracrine signalling mechanism
355	
356	In SF-Experiment (Figure 1.B), non- significant down-regulation of genes coding for
357	COX-2 and iNOS was observed. In addition, no expression for IDO was detected. Slight
358	non-significant increase for IL-6 was also observed. The opposite pattern was observed
359	in CK50-Experiment, where COX-2, IDO, iNOS and IL-6 gene expression was
360	significantly up-regulated. For CK20 conditions, similar gene expression pattern to
361	CK50-Experiment was shown, although differences for iNOS and COX-2 expression
362	were not significant. Anti-inflammatory molecules <i>IL-10</i> , <i>TGF-β1</i> and <i>TSG-6</i> presented
363	a similar pattern for three conditions (SF, CK50 and CK20): no-significant down-
364	regulation was described in general, but IL-10 significantly down-regulated in CK20
365	conditions.
366	
367	Antigen presenting-related molecules
368	
369	Gene expression data from RT-qPCR analysis is represented in Figure 1.C. Non-
370	significant gene expression increase was observed for MHC-I in all conditions. Gene
371	expression of MHC-II was up-regulated in both CK50 and CK20 conditions, being

372 significant only in CK50 conditions. *CD40* expression did not significantly change in

- any conditions, whereas *CD40L* was down-regulated, being significant for CK20conditions.
- 375

Effect of the inflammatory environment on cell immunophenotype

377

378 Cell immunophenotype was studied after inflammatory exposure. Due to the difficulty

of finding antibodies with reactivity against equine species, not all the molecules

analysed by RT-qPCR could have been also analysed by flow cytometry (Ibrahim et al.,

2007). Flow cytometry from CD90, CD105 and CD44, antigen presenting molecules

382 MHC-I and MHC-II and the immunomodulatory related molecule IL-6 were performed

in control and inflammatory exposed cells of experiments SF and CK50 (Figure 2) but

not in CK20 experiment due to the low number of available cells.

385

In the SF-experiment, the surface expression of CD105 and CD44 molecules was

387 significantly lower in SF condition respect to its control, whereas the number of positive

cells for CD90 and IL-6 was maintained (Figure 2.A). Non-significant changes were

detected in the studied surface expression pattern between CK50 condition and its

control, but the increase of 26.62% in IL-6 expression under CK50 condition is

391 remarkable (Figure 2.B).

392

393 MHC-I and MHC-II surface expression were also assessed after inflammatory

394 stimulation. MHC-I expression in SF exposed cells was very similar to their control

395 (66.90% for SF-cells and 61.45% for control cells) (Figure 2.C), whereas no significant

increase was observed for CK50 (99.3% for CK50-cells and 71.43% for control cells).

A mean expression of 8.62% for MHC-II was observed at CK50 conditions, whereas
only 0.06% of control cells were positive for this marker (Figure 2.D).

399

400 **Discussion**

401

402 The cultured cells showed capacity for attachment to plastic and the ability of 403 differentiation into osteoblast, adipocyte and chondrocyte, as criteria established to 404 define human MSCs (Dominici et al., 2006). Equine BM-MSCs displayed a gene and cell surface expression pattern similar to previous reports for this species and showed a 405 406 normal growth pattern, with a proliferation rate and viability similar to other studies (Ranera et al., 2011). Inflammatory conditioned media were prepared based on recent 407 publications on this field. Inflammatory SF was obtained from an allogeneic donor and 408 409 added in concentration and time previously described (Vézina Audette et al., 2013). SAA and Hp were used to determine the inflammatory status of the SF. Both APP were 410 411 high according to the ranges of references established by Jacobsen et al and Basile et al. 412 (Jacobsen et al., 2006; Basile et al., 2013). SAA is the major APP defined for horses and experiments marked increases, whereas Hp is a moderate APP with mild modifications 413 414 (Jacobsen and Andersen, 2007), which is in agreement with the values of SAA and Hp found in the SF used in this study. For CK-conditioned media, the synergy displayed by 415 the pro-inflammatory cytokines TNF α and IFN γ (Zimmermann and McDevitt, 2014) 416 417 supported the decision of using them to reproduce an inflammatory environment in the 418 already tested doses 20 ng/ml and 50 ng/ml (Ren et al., 2008; van Buul et al., 2012). 419 420 Several mechanisms have been proposed to participate in the immunoregulatory

421 function of MSCs. Both cell-to-cell contact and paracrine signalling appear to be

involved, including the participation of chemokine axis, adhesion molecules and soluble 422 423 factors (Ma et al., 2014). Adhesion molecules would play an essential role in the cell-tocell contact mechanism and in the induction of immune response in MSCs. The co-424 425 culture of MSCs in the presence of T cells triggers the expression of VCAM-1 (Ren et al., 2010), according to the results obtained in our CK20 and CK50 inflammatory 426 427 conditions. More adhesion molecules were up-regulated in presence of inflammatory environment, the mRNA transcripts of ALCAM increased in SF experiment. These 428 429 findings might suggest the relationship of cell-to-cell contact in the immunoregulatory mechanism. Adhesion molecules are also related to migration of MSCs, a mechanism 430 431 that could be critical for recruitment of MSCs into wound sites for tissue regeneration. Many factors and molecules are involved in this process and diverse authors gather the 432 433 complexity of MSC migration in inflammatory environments. Some studies describe the 434 enhancement of MSC migratory property under inflammatory stimulation (Ries et al., 2007; Shi et al., 2007), whereas others report a decrease in this property depending on 435 436 the time of exposure (Waterman et al., 2010). The migration-related molecules analysed 437 in this work showed that, under our tested inflammatory conditions, MSC migration might be diminished. CD44 is a hyaluronan receptor related to the migration of the cells 438 439 through the extracellular matrix by binding to the present hyaluronic acid (Zhu et al., 2006). Nevertheless, CD44 and CD105 surface expression was found significantly 440 lower in SF conditions, whereas in CK conditions no change was observed by either 441 RT-qPCR nor by flow cytometry. Furthermore, chemokine receptor CXCR4, also 442 involved in chemotaxis and migration of MSCs (Honczarenko et al., 2006), was found 443 down-regulated under exposure to CK20 inflammatory environment. The loss of this 444 chemokine receptor is accompanied by a decrease in the expression of other adhesion 445

446	molecules, while CD90 and CD105 are not modified (Honczarenko et al., 2006),
447	similarly to the gene and surface expression results described for our CK conditions.
448	

449	Paracrine mechanism also plays an important role in the MSC immunomodulation.
450	Inflammatory SF is able to modulate the transcription of paracrine signalling molecules
451	in eBM-MSCs (Vézina Audette et al., 2013) and influence the effect of human MSCs
452	on lymphocyte proliferation (Leijs et al., 2012). The slight changes observed in our
453	conditions in SF exposed MSCs may be due to the inflammatory degree of the SF used,
454	which might not have been sufficient to induce significant changes. Moreover, the
455	stimulus exerted by SF could be variable depending on the inflammatory level, which is
456	heterogeneous even in the same pathology group (Leijs et al., 2012).
457	
458	The IDO, iNOS, IL-6 and COX-2, through PGE2 secretion, are consistently reported in
459	vitro as the most important mediators in the paracrine signalling MSC
460	immunoregulatory mechanism to suppress T-cell proliferation (Noel et al., 2007;
461	Nemeth et al., 2009; Bouffi et al., 2010; Ghannam et al., 2010). These soluble
462	immunosuppressive factors are demonstrated to be produced or transcribed by MSCs
463	from veterinary species (Carrade and Borjesson, 2013). IDO and iNOS are enzymes
464	stimulated under inflammatory conditions. IDO causes depletion of local tryptophan,
465	required for immune cell proliferation, and accumulation of toxic breakdown products
466	for inflammatory cells (Ryan et al., 2007). iNOS produces nitric oxide (NO), which
467	inhibits proliferation and function of macrophage and T-cells (Sato et al., 2007). PGE2
468	and IL-6 also act as powerful immune suppressants, decreasing T-cell proliferation,
469	stopping differentiation into mature cells, and inhibiting the production of
470	proinflammatory cytokines (Jiang et al., 2005; Djouad et al., 2007; Xu et al., 2007;

Raffaghello et al., 2008; Ghannam et al., 2010). The anti-inflammatory effects 471 472 produced by the panel of molecules secreted by MSCs have been reported to act locally inside the inflamed synovium, producing the phenomena described above of decreasing 473 474 the proliferation and function of immune cells (Bouffi et al., 2010). iNOS product, NO, has vasodilatory effects, increases vascular permeability and promotes angiogenesis in 475 the inflamed joint (Sutton et al., 2009), and PGE2 inhibits the production of collagenase 476 477 MMP-1 and regulates the gene expression of extra-cellular matrix components of the 478 articular cartilage by chondrocytes (Sutton et al., 2009). Proinflammatory cytokines such TNF α and IFN γ induce the gene expression or the secretion of these anti-479 480 inflammatory and regulatory molecules by MSCs from different species and different sources (Meisel et al., 2004; Aggarwal and Pittenger, 2005; English et al., 2007; Ryan et 481 al., 2007; Ren et al., 2008; Hemeda et al., 2010; Hegyi et al., 2012). According to these 482 483 reports, both of our CK conditions would significantly up-regulate the gene expression of these molecules. Gene expression results of *IL-6* were supported by flow cytometry 484 485 as the percentage of positive cells expressing IL-6 was also higher under CK50. Taken 486 together, these findings indicate an enhancement of immunoregulatory role of eBM-MSCs after tested cytokine priming. 487

488

490 Nicola et al., 2002; Aggarwal and Pittenger, 2005; Ma et al., 2014) and some authors

491 describe an increase in the production of TGF- β 1 in rabbit BM-MSCs after IFN γ

treatment (Liu et al., 2006) and secretion of TSG-6 by TNFα-activated human MSCs

493 (Choi et al., 2011). However, some studies have described no change in *IL-10* and *TGF*-

494 βl gene expression after TNF α and IFN γ stimulation (Yoo et al., 2009), and no TGF- βl

495 secretion after exposure to activated lymphocytes in equine BM-MSCs (Carrade et al.,

496	2012). In our conditions, we have observed that the gene expression of the anti-
497	inflammatory molecule IL-10 was significantly down-regulated by CK20 treatment and
498	no significant changes for TGF - βl and TSG - δ gene expression were observed in any
499	experiment. Variability in immunoregulatory mechanisms has been described associated
500	with the species or the MSCs source (Carrade and Borjesson, 2013). Since several
501	factors could participate in the mechanisms underlying the immune suppression exerted
502	by MSCs, we hypothesize that the downregulation of some molecules could be
503	compensated by the overexpression of other factors such COX-2 (PGE2), IDO, iNOS or
504	IL-6, as commented above.
505	
506	The differences in immune-regulation mechanisms depending on species, sources and
507	inflammatory stimuli may explain some differences between our results and previous
508	reports. Despite of that fact, our data demonstrate a change in the gene expression and

509 marker surface pattern of eBM-MSC, confirming that the increase of the MSC

510 immunoregulatory potential is induced by inflammatory environments.

511

Preservation of low immunogenicity in MSCs after stimulation is important to allow 512 allogeneic transplantation. Allogeneic MSC therapy would be an "off-the-shelf" product 513 514 due to the scarcity of MSCs, especially in cases where MSC are low and the quality 515 might be committed as it happens in aged individuals and disease, and also in situations where autologous MSCs might have the same genetic defects as the patient (Chen and 516 517 Tuan, 2008). The three inflammatory conditions tested in the present work induced a non-significant increase of MHC-I gene expression, but only CK50 and CK20 518 519 conditions induced an increase in MHC-II gene expression, significant for CK50 condition. The increase in MHC-I and MHC-II surface expression detected by flow 520

cytometry was only observed for CK50 condition. Inflammatory conditions have been 521 522 reported to induce the expression of MHC (Najar et al., 2012). In fact, IFNy is considered as MHC inductor in MSCs, but not $TNF\alpha$, in a non-dose-dependent manner 523 524 (Chan et al., 2006; Chan et al., 2008; Chinnadurai et al., 2014). IFNy-upregulated MHC expression is not accompanied by an immunogenicity increase, due to the lack of 525 expression of the co-stimulatory molecules CD40, CD80 and CD86 (Tse et al., 2003) 526 527 along with the immune-suppressive properties of MSCs, which attenuate the local 528 immune system response (Ankrum et al., 2014). Some reports show that IFNy stimulated-MSCs display MHC-I molecules up-regulated and induce the expression of 529 530 MHC-II, but are not able to modify the expression of co-stimulatory molecules (Tse et al., 2003; Klyushnenkova et al., 2005). According to these authors, in CK50 conditions 531 we have observed a significant diminution in CD40L gene expression. CD40L acts as a 532 533 ligand for the co-stimulatory molecule CD40, expressed by the professional antigen presenting cells. It has been described that blocking CD40L, immune-tolerance is 534 535 allowed (Briones et al., 2011), thus the down-regulation of the gene coding for this 536 molecule might be implicated in the attenuation of the immunogenicity of eBM-MSCs. This lack of change in co-stimulatory molecule gene expression, combined with up-537 538 regulation of the immunoregulatory molecules, suggest that eBM-MSC might remain immune-evasive after inflammatory priming. 539

540

In summary, eBM-MSCs are able to change their gene expression profile in response to inflammatory stimuli, and several of these changes are correlated with modifications in the eBM-MSC surface expression profile. Inflammatory synovial environment does not promote significant and homogeneous immunoregulatory changes in the expression patterns, indicating that the inflammatory environment of an injured joint might not be

546	sufficient to activate eBM-MSCs to display immunosuppression potential. Controlled
547	concentrations of TNF α and IFN γ treatment would induce the changes in a significant
548	and more homogenous manner. In consequence, IA cellular therapy would improve the
549	efficiency by prior ex vivo priming of eBM-MSCs. The up-regulation of MHC-II
550	produced by CK priming may mean an immunogenicity increase, but it might be
551	relieved by the absence of co-stimulatory molecules to trigger an immune response and
552	the enhancement of immunomodulatory factor expression by the eBM-MSCs
553	themselves. Further studies, including in vivo experiments of immune response, would
554	be needed to elucidate the effect of cytokine priming on the immunogenicity of MSCs.
555	
556	Conclusion
557	
558	Several important findings on eBM-MSC behaviour and immunoregulatory responses,
559	relevant to their IA therapeutic applications, were identified in the current investigation.
560	Firstly, the eBM-MSC immunomodulatory gene expression pattern was modified when
561	exposed to inflammatory environment, and was dependent on the type of stimuli, but
562	not necessarily in a dose-dependent manner. Secondly, cytokine priming induced the
563	expression of MHC, but not of the co-stimulatory molecules, therefore, the
564	immunogenicity was not necessarily increased. The immunomodulatory profile
565	enhancement reached treating eBM-MSCs with $TNF\alpha$ and $IFN\gamma$ could be advantageous
566	to the modulation of the immune response, but further studies to ensure that it does not
567	affect the immune-evasive status of eBM-MSCs negatively are needed.
568	
569	Acknowledgements

571	This study was supported by the Ministerio de Economía y Competitividad, España
572	(AGL2011-28609) and by the Gobierno de Aragón (Grupo de Investigación
573	LAGENBIO). Laura Barrachina is funded by a doctoral grant from the Gobierno de
574	Aragón. Ana Rosa Remacha is funded by a doctoral grant (EPIF) from the University of
575	Zaragoza. We acknowledge the horse owners for allowing their animals to be part of
576	this study, and the Veterinary Hospital of the University of Zaragoza for facilitating
577	access to equine patients and allowing the use of its facilities for sample collection. We
578	also acknowledge the Departamento de Bioquímica y Biología Molecular y Celular
579	from the University of Zaragoza for their support in the analysis of APPs in the SF used
580	in this study.
581	
582	Authors' contribution
583	
E01	Laura Parrachina: acquisition of data analysis and interpretation of the data drafting
584	the article
202	
586	Ana Rosa Remacha: acquisition of data, analysis and interpretation of the data.
587	Antonio Romero: conception and design of the study, critical revision of the article for
588	important intellectual content, provision of study materials or patients.
500	Francisco Issá Wázquezy concention and design of the study, critical revision of the
589	Francisco Jose Vazquez: conception and design of the study, critical revision of the
590	article for important intellectual content, provision of study materials or patients.
591	Jorge Albareda: critical revision of the article for important intellectual content.
592	Marta Prades: critical revision of the article for important intellectual content
	manual rades, endear revision of the article for important inteneetaal content.

593	Beatriz Ranera: acquisition of data, analysis and interpretation of the data.
594	Pilar Zaragoza: critical revision of the article for important intellectual content,
595	obtaining of funding.
596	Inmaculada Martín-Burriel: critical revision of the article for important intellectual
597	content, obtaining of funding.
598	Clementina Rodellar: conception and design of the study, critical revision of the article
599	for important intellectual content, obtaining of funding, final approval of the version to
600	be submitted.
601	
602	Conflict of interest
603	
604	None of the authors has any financial or personal relationships that could
605	inappropriately influence or bias the content of paper.
606	
607	Role of the funding source
608	
609	The study sponsors had no involvements in the study design, collection, analysis and
610	interpretation of data; in the writing of the manuscript; and in the decision to submit the
611	manuscript for publication.
612	
613	References
614	

- Aggarwal, S., Pittenger, M.F., 2005. Human mesenchymal stem cells modulate
 allogeneic immune cell responses. Blood 105, 1815-1822.
- Ankrum, J.A., Ong, J.F., Karp, J.M., 2014. Mesenchymal stem cells: immune evasive,
- not immune privileged. Nature biotechnology 32, 252-260.
- Basile, R.C., Ferraz, G.C., Carvalho, M.P., Albernaz, R.M., Araújo, R.A., Fagliari, J.J.,
- Queiroz-Neto, A., 2013. Physiological Concentrations of Acute-Phase Proteins and
 Immunoglobulins in Equine Synovial Fluid. Journal of Equine Veterinary Science 33,
 201-204.
- Bouffi, C., Bony, C., Courties, G., Jorgensen, C., Noel, D., 2010. IL-6-dependent PGE2
 secretion by mesenchymal stem cells inhibits local inflammation in experimental
 arthritis. PLoS One 5, e14247.
- Briones, J., Novelli, S., Sierra, J., 2011. T-cell costimulatory molecules in acute-graft-
- 627 versus host disease: therapeutic implications. Bone marrow research 2011, 976793.
- Broeckx, S., Zimmerman, M., Crocetti, S., Suls, M., Marien, T., Ferguson, S.J., Chiers,
 K., Duchateau, L., Franco-Obregon, A., Wuertz, K., Spaas, J.H., 2014. Regenerative
 therapies for equine degenerative joint disease: a preliminary study. PLoS One 9,
 e85917.
- 632 Carrade, D.D., Borjesson, D.L., 2013. Immunomodulation by mesenchymal stem cells633 in veterinary species. Comparative medicine 63, 207-217.

- Carrade, D.D., Lame, M.W., Kent, M.S., Clark, K.C., Walker, N.J., Borjesson, D.L.,
 2012. Comparative Analysis of the Immunomodulatory Properties of Equine AdultDerived Mesenchymal Stem Cells. Cell medicine 4, 1-11.
- 637 Cellular, T.a.G.T.A.C., 2005. Cellular products for joint surface repair. FDA Center for
 638 Biologics Evaluation and Research March 3–4.
- Cuerquis, J., Romieu-Mourez, R., Francois, M., Routy, J.P., Young, Y.K., Zhao, J.,
 Eliopoulos, N., 2014. Human mesenchymal stromal cells transiently increase cytokine
 production by activated T cells before suppressing T-cell proliferation: effect of
 interferon-gamma and tumor necrosis factor-alpha stimulation. Cytotherapy 16, 191202.
- Chan, J.L., Tang, K.C., Patel, A.P., Bonilla, L.M., Pierobon, N., Ponzio, N.M.,
 Rameshwar, P., 2006. Antigen-presenting property of mesenchymal stem cells occurs
 during a narrow window at low levels of interferon-gamma. Blood 107, 4817-4824.
- Chan, W.K., Lau, A.S., Li, J.C., Law, H.K., Lau, Y.L., Chan, G.C., 2008. MHC
 expression kinetics and immunogenicity of mesenchymal stromal cells after short-term
 IFN-gamma challenge. Experimental hematology 36, 1545-1555.
- Chen, F.H., Tuan, R.S., 2008. Mesenchymal stem cells in arthritic diseases. Arthritisresearch & therapy 10, 223.

- Chinnadurai, R., Copland, I.B., Patel, S.R., Galipeau, J., 2014. IDO-independent
 suppression of T cell effector function by IFN-gamma-licensed human mesenchymal
 stromal cells. Journal of immunology 192, 1491-1501.
- Choi, H., Lee, R.H., Bazhanov, N., Oh, J.Y., Prockop, D.J., 2011. Anti-inflammatory
 protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse
 peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood
 118, 330-338.
- Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P.,
 Grisanti, S., Gianni, A.M., 2002. Human bone marrow stromal cells suppress Tlymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood
 99, 3838-3843.
- Djouad, F., Charbonnier, L.M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F.,
 Cantos, C., Jorgensen, C., Noel, D., 2007. Mesenchymal stem cells inhibit the
 differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem
 Cells 25, 2025-2032.
- Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D.,
 Deans, R., Keating, A., Prockop, D., Horwitz, E., 2006. Minimal criteria for defining
 multipotent mesenchymal stromal cells. The International Society for Cellular Therapy
 position statement. Cytotherapy 8, 315-317.

- English, K., Barry, F.P., Field-Corbett, C.P., Mahon, B.P., 2007. IFN-gamma and TNFalpha differentially regulate immunomodulation by murine mesenchymal stem cells.
 Immunology letters 110, 91-100.
- 674 Ferris, D.J., Frisbie, D.D., Kisiday, J.D., McIlwraith, C.W., Hague, B.A., Major, M.D.,
- 675 Schneider, R.K., Zubrod, C.J., Kawcak, C.E., Goodrich, L.R., 2014. Clinical outcome
- after intra-articular administration of bone marrow derived mesenchymal stem cells in
- 677 33 horses with stifle injury. Veterinary surgery : VS 43, 255-265.
- Ghannam, S., Bouffi, C., Djouad, F., Jorgensen, C., Noel, D., 2010. Immunosuppression
 by mesenchymal stem cells: mechanisms and clinical applications. Stem cell research &
 therapy 1, 2.
- Goodrich, L.R., Nixon, A.J., 2006. Medical treatment of osteoarthritis in the horse a
 review. Vet J 171, 51-69.
- Hegyi, B., Kudlik, G., Monostori, E., Uher, F., 2012. Activated T-cells and proinflammatory cytokines differentially regulate prostaglandin E2 secretion by
 mesenchymal stem cells. Biochemical and biophysical research communications 419,
 215-220.

Hemeda, H., Jakob, M., Ludwig, A.K., Giebel, B., Lang, S., Brandau, S., 2010.
Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine
expression and migration properties of mesenchymal stem cells. Stem cells and
development 19, 693-706.

- Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A.M., Silberstein, L.E.,
- 6922006. Human bone marrow stromal cells express a distinct set of biologically functional
- chemokine receptors. Stem Cells 24, 1030-1041.
- Ibrahim, S., Saunders, K., Kydd, J.H., Lunn, D.P., Steinbach, F., 2007. Screening of
- anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes. Vet
- 696 Immunol Immunopathol 119, 63-80.
- Jacobsen, S., Andersen, P.H., 2007. The acute phase protein serum amyloid A (SAA) as
- a marker of inflammation in horses. Equine Veterinary Education 19, 38-46.
- Jacobsen, S., Thomsen, M.H., Nanni, S., 2006. Concentrations of serum amyloid A inserum and synovial fluid from healthy horses and horses with joint disease. American
- journal of veterinary research 67, 1738-1742.
- 702 Jiang, X.X., Zhang, Y., Liu, B., Zhang, S.X., Wu, Y., Yu, X.D., Mao, N., 2005. Human

mesenchymal stem cells inhibit differentiation and function of monocyte-derived

- 704 dendritic cells. Blood 105, 4120-4126.
- 705 Klyushnenkova, E., Mosca, J.D., Zernetkina, V., Majumdar, M.K., Beggs, K.J.,
- Simonetti, D.W., Deans, R.J., McIntosh, K.R., 2005. T cell responses to allogeneic
- human mesenchymal stem cells: immunogenicity, tolerance, and suppression. Journal of
- biomedical science 12, 47-57.

Kode, J.A., Mukherjee, S., Joglekar, M.V., Hardikar, A.A., 2009. Mesenchymal stem
cells: immunobiology and role in immunomodulation and tissue regeneration.
Cytotherapy 11, 377-391.

- Kolm, G., Klein, D., Knapp, E., Watanabe, K., Walter, I., 2006. Lactoferrin expression
 in the horse endometrium: relevance in persisting mating-induced endometritis.
 Veterinary immunology and immunopathology 114, 159-167.
- Leijs, M.J., van Buul, G.M., Lubberts, E., Bos, P.K., Verhaar, J.A., Hoogduijn, M.J.,
 van Osch, G.J., 2012. Effect of Arthritic Synovial Fluids on the Expression of
 Immunomodulatory Factors by Mesenchymal Stem Cells: An Explorative in vitro
 Study. Frontiers in immunology 3, 231.
- Liu, H., Kemeny, D.M., Heng, B.C., Ouyang, H.W., Melendez, A.J., Cao, T., 2006. The
 immunogenicity and immunomodulatory function of osteogenic cells differentiated
 from mesenchymal stem cells. The Journal of Immunology 176, 2864-2871.
- Ma, S., Xie, N., Li, W., Yuan, B., Shi, Y., Wang, Y., 2014. Immunobiology of
 mesenchymal stem cells. Cell Death Differ 21, 216-225.
- Meirelles Lda, S., Fontes, A.M., Covas, D.T., Caplan, A.I., 2009. Mechanisms involved
 in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factors
 Review 20, 419-427.

727	Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., Dilloo, D., 2004. Human
728	bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-
729	dioxygenase-mediated tryptophan degradation. Blood 103, 4619-4621.

- Najar, M., Raicevic, G., Fayyad-Kazan, H., De Bruyn, C., Bron, D., Toungouz, M.,
 Lagneaux, L., 2012. Immune-related antigens, surface molecules and regulatory factors
 in human-derived mesenchymal stromal cells: the expression and impact of
 inflammatory priming. Stem cell reviews 8, 1188-1198.
- Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K.,
 Robey, P.G., Leelahavanichkul, K., Koller, B.H., Brown, J.M., Hu, X., Jelinek, I., Star,
 R.A., Mezey, E., 2009. Bone marrow stromal cells attenuate sepsis via prostaglandin
 E(2)-dependent reprogramming of host macrophages to increase their interleukin-10
 production. Nature medicine 15, 42-49.
- Noel, D., Djouad, F., Bouffi, C., Mrugala, D., Jorgensen, C., 2007. Multipotent
 mesenchymal stromal cells and immune tolerance. Leukemia & lymphoma 48, 12831289.
- Noth, U., Steinert, A.F., Tuan, R.S., 2008. Technology insight: adult mesenchymal stem
- cells for osteoarthritis therapy. Nature clinical practice. Rheumatology 4, 371-380.
- Paterson, Y.Z., Rash, N., Garvican, E.R., Paillot, R., Guest, D.J., 2014. Equine
 mesenchymal stromal cells and embryo-derived stem cells are immune privileged in
 vitro. Stem cell research & therapy 5, 90.

- Raffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F.,
 Ottonello, L., Pistoia, V., 2008. Human mesenchymal stem cells inhibit neutrophil
 apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26,
 151-162.
- Ranera, B., Lyahyai, J., Romero, A., Vazquez, F.J., Remacha, A.R., Bernal, M.L.,
 Zaragoza, P., Rodellar, C., Martin-Burriel, I., 2011. Immunophenotype and gene
 expression profiles of cell surface markers of mesenchymal stem cells derived from
 equine bone marrow and adipose tissue. Veterinary immunology and immunopathology
 144, 147-154.
- Ren, G., Su, J., Zhang, L., Zhao, X., Ling, W., L'Huillie, A., Zhang, J., Lu, Y., Roberts,
 A.I., Ji, W., Zhang, H., Rabson, A.B., Shi, Y., 2009. Species variation in the
 mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27,
 1954-1962.
- Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A.I., Zhao, R.C., Shi, Y.,
 2008. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action
 of chemokines and nitric oxide. Cell Stem Cell 2, 141-150.
- Ren, G., Zhao, X., Zhang, L., Zhang, J., L'Huillier, A., Ling, W., Roberts, A.I., Le,
 A.D., Shi, S., Shao, C., Shi, Y., 2010. Inflammatory cytokine-induced intercellular
 adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells
 are critical for immunosuppression. The Journal of Immunology 184, 2321-2328.

- Renner, P., Eggenhofer, E., Rosenauer, A., Popp, F.C., Steinmann, J.F., Slowik, P.,
 Geissler, E.K., Piso, P., Schlitt, H.J., Dahlke, M.H., 2009. Mesenchymal stem cells
 require a sufficient, ongoing immune response to exert their immunosuppressive
 function. Transplantation proceedings 41, 2607-2611.
- 771 Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M., Neth, P., 2007. MMP-2, MT1-
- MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem
- cells: differential regulation by inflammatory cytokines. Blood 109, 4055-4063.
- Roberts, S., Genever, P., McCaskie, A., De Bari, C., 2011. Prospects of stem cell
 therapy in osteoarthritis. Regenerative medicine 6, 351-366.
- Ryan, J.M., Barry, F., Murphy, J.M., Mahon, B.P., 2007. Interferon-gamma does not
 break, but promotes the immunosuppressive capacity of adult human mesenchymal
 stem cells. Clinical and experimental immunology 149, 353-363.
- Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K., Ozawa, K.,
 2007. Nitric oxide plays a critical role in suppression of T-cell proliferation by
 mesenchymal stem cells. Blood 109, 228-234.
- Schlueter, A.E., Orth, M.W., 2004. Equine osteoarthritis: a brief review of the diseaseand its causes. Equine and Comparative Exercise Physiology 1, 221-231.
- Sellam, J., Berenbaum, F., 2010. The role of synovitis in pathophysiology and clinical
 symptoms of osteoarthritis. Nature reviews. Rheumatology 6, 625-635.

786	Shi, M., Li, J., Liao, L., Chen, B., Li, B., Chen, L., Jia, H., Zhao, R.C., 2007. Regulation
787	of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in
788	homing efficiency in NOD/SCID mice. Haematologica 92, 897-904.

Sutton, S., Clutterbuck, A., Harris, P., Gent, T., Freeman, S., Foster, N., Barrett-Jolley,
R., Mobasheri, A., 2009. The contribution of the synovium, synovial derived
inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J
179, 10-24.

Tse, W.T., Pendleton, J.D., Beyer, W.M., Egalka, M.C., Guinan, E.C., 2003.
Suppression of allogeneic T-cell proliferation by human marrow stromal cells:
implications in transplantation. Transplantation 75, 389-397.

van Buul, G.M., Villafuertes, E., Bos, P.K., Waarsing, J.H., Kops, N., Narcisi, R.,
Weinans, H., Verhaar, J.A., Bernsen, M.R., van Osch, G.J., 2012. Mesenchymal stem
cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic
synovium and cartilage explant culture. Osteoarthritis and cartilage / OARS,
Osteoarthritis Research Society 20, 1186-1196.

Vézina Audette, R., Lavoie-Lamoureux, A., Lavoie, J.P., Laverty, S., 2013.
Inflammatory stimuli differentially modulate the transcription of paracrine signaling
molecules of equine bone marrow multipotent mesenchymal stromal cells.
Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 21, 1116-1124.

- Walker-Bone, K., Javaid, K., Arden, N., Cooper, C., 2000. Regular review: medical
 management of osteoarthritis. Bmj 321, 936-940.
- Waterman, R.S., Tomchuck, S.L., Henkle, S.L., Betancourt, A.M., 2010. A new
 mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1
 or an Immunosuppressive MSC2 phenotype. PLoS One 5, e10088.
- Whitworth, D.J., Banks, T.A., 2014. Stem cell therapies for treating osteoarthritis:
 prescient or premature? Vet J 202, 416-424.
- Xu, G., Zhang, Y., Zhang, L., Ren, G., Shi, Y., 2007. The role of IL-6 in inhibition of
 lymphocyte apoptosis by mesenchymal stem cells. Biochemical and biophysical
 research communications 361, 745-750.
- Yoo, K.H., Jang, I.K., Lee, M.W., Kim, H.E., Yang, M.S., Eom, Y., Lee, J.E., Kim,
- 816 Y.J., Yang, S.K., Jung, H.L., Sung, K.W., Kim, C.W., Koo, H.H., 2009. Comparison of
- 817 immunomodulatory properties of mesenchymal stem cells derived from adult human
- tissues. Cellular immunology 259, 150-156.
- Zhu, H., Mitsuhashi, N., Klein, A., Barsky, L.W., Weinberg, K., Barr, M.L., Demetriou,
- A., Wu, G.D., 2006. The role of the hyaluronan receptor CD44 in mesenchymal stem
- cell migration in the extracellular matrix. Stem Cells 24, 928-935.
- Zimmermann, J.A., McDevitt, T.C., 2014. Pre-conditioning mesenchymal stromal cell
 spheroids for immunomodulatory paracrine factor secretion. Cytotherapy 16, 331-345.

828	Table 1.	Genes a	analysed	by R'	T-qPCR.	GenBank	accession	numbers	of the	sequences
-----	----------	---------	----------	-------	---------	---------	-----------	---------	--------	-----------

- used for primers design. Primers (F: Forward and R: Reverse) and length of the
- amplicon in base pair (bp). Genes were grouped in agreement with the functions and
- implications of encoded molecules, in order to facilitate the posterior analysis: House-
- 832 keeping, characterization cell surface markers, adhesion molecules and chemokine
- 833 receptors, immunomodulation-related paracrine molecules and antigen presenting-
- 834 related molecules
- 835

GENE Accession number		Primer sequence $(5^{\circ}-3^{\circ})$	Amplicon
			size
		HOUSE-KEEPING	
GAPDH	NM_001163856	F:GGCAAGTTCCATGGCACAGT R:CACAACATATTCAGCACCAGCAT	128
5016		F: TCGTCCTGCTCGGGCTACT	102
B2M	NM_001082502.2	R: ATTCTCTGCTGGGTGACGTGA	102
CHAR	ACTERIZATION CELL	SURFACE MARKERS, ADHESION MOLECULES	S AND
	С	HEMOKINES RECEPTORS	
CD00	EU001020	F:TGCGAACTCCGCCTCTCT	02
CD90	EU881920	R:GCTTATGCCCTCGCACTTG	93
CD105	VM 001500079	F:GACGGAAAATGTGGTCAGTAATGA	100
CD105	AM_001300078	R:GCGAGAGGCTCTCCGTGTT	100
CD72	VM 001500115	F:GGGATTGTTGGATACACTTCAAAAG	00
CD75	AWI_001300113	R:GCTGCAACGCAGTGATTTCA	90
CD44	NM_001085435	F: CCCACGGATCTGAAACAAGTG	05
CD44		R: TTCTGGAATTTGAGGTCTCCGTAT	95
CD45	AV 11/250	F:TGATTCCCAGAAATGACCATGTA	100
CD45	A1_114550	R:ACATTTTGGGCTTGTCCTGTAAC	100
CD24	VM 001401506	F:CACTAAACCCTCTACATCATTTTCTCCTA	150
CD34	XM_001491596	R:GGCAGATACCTTGAGTCAATTTCA	150
VCAM-1	D0146451	F: TCTATGCTACGCTCTGGCTACG	107
(CD106)	DQ240432	R: TTGATGGTCTCCCCGATGA	127
ALCAM	VM 001404152	F: TCACGACTTCATCGAGCACATC	110
(CD166)	AWI_001494132	R: GGCGAACTTAAAGTCAGTGGCA	110
CVCD4	VM 001400165	F: TGCAGCAGCAGGTAGCAAAGT	07
CACR4	AWI_001490103	R: ATATACGGAACCCGTCCATGG	97
	IMMUNOMODULA	TION-RELATED PARACRINE MOLECULES	
COX 2	AD0/1771	F: GTTTGCATTTTTTGCCCAGC	102
COA-2	AD041//1	R: ACTTAAATCCACCCGTGACC	105

IDO-1	XM_001490681	F: TCATGACTACGTGGACCCAAAA	104		
		R: CGCCTTCATAGAGCAGACCTTC	104		
INOS	AV027882	F: CCAACAATGGCAACATCAGGT	05		
INOS	A1027005	R: TGAGCATTCCAGATCCGGA	65		
ПА	EU1/20770	F: AACAGCAAGGAGGTACTGGCA	05		
IL-0	EU438770	R: CAGGTCTCCTGATTGAACCCA	95		
ТСЕФ 1	AE175700	F: GTCCTTTGATGTCACCGGAGT	127		
10rp-1	AF1/3/09	R: TGGAACTGAACCCGTT	157		
TSG-6	A V010971 1	F: GGAAGAGGCTCACGGATGG	101		
	AY9198/1.1	R: TTCCAGACCGTGCTTCTCTGT	101		
П 10	EU1/20771	F: GACATCAAGGAGCACGTGAACT	140		
IL-10	EU438//1	R: TGGAGCTTACTGAAGGCACTCT	140		
	ANTIGEN DESENTING DELATED MOLECIILES				
	MUTIOLI	I RESERVING REEMED MOLECOLES			
MHC I	AB525081	F: CGTGAGCATCATTGTTGGC	02		
MHC-I		R: TCCCTCTTTTTTCACCTGAGG	92		
мис п	NM 001142916	F: AGCGGCGAGTTGAACCTACAGT	172		
MIIIC-II	INM_001142810	R: CGGATCAGACCTGTGGAGATGA	172		
CD40	AV514017	F: ACAAATACTGCGACCCCAACC	114		
	AY514017	R: TTTCACAGGCATCGCTGGA	114		
CD401	XM_001490011	F: AGTTCGAAGGCTTCGTCAAGG	101		
CD40L		R: CGCAATTTGAGGCTCCTGAT	101		

840	Figure 1. Equine BM-MSCs expression of genes coding for immunomodulatory related
841	molecules analysed by RT-qPCR. Gene expression of each gene in every experiment
842	(SF, CK50 and CK20) is represented as Mean \pm S.E.M (n=3) of the relative expression
843	regarding correspondent control. A) Expression of genes coding for molecules
844	participating in direct cell-cell contact mechanism of MSCs VCAM-1, ALCAM, CXCR4;
845	B) Expression of genes coding for immunomodulatory molecules implied in the MSCs
846	paracrine signalling mechanism COX-2, IDO-1, iNOS, IL-6, IL-10, TGFβ-1, TSG-6. C)
847	Expression of genes coding for immunogenic molecules participating in the antigenic
848	presentation MHC-1, MHC-II, CD40 and CD40L ($* = p < 0.05$).
849	
850	Figure 2. Equine BM-MSCs surface expression of molecules related with
851	immunomodulatory functions and immunogenic molecules related with antigenic
852	presentation, analysed by flow cytometry. Expression of each molecule in every
853	experiment (SF and CK50) is represented as Mean \pm S.E.M (n=3) of percentage of
854	positive cells. A) Control and SF-stimulated eBM-MSCs (Experiment 1) positive for
855	CD90, CD105, CD44 and IL-6. B) Control and CK50-stimulated eBM-MSCs
856	(Experiment 2) positive for CD90, CD105, CD44 and IL-6. C) Control and SF-
857	stimulated eBM-MSCs (Experiment 1) positive for MHC-I and MHC-II. D) Control and
858	CK50-stimulated eBM-MSCs (Experiment 2) positive for MHC-I and MHC-II (* =
859	p<0.05).
860	
861	
862	

Highlights

Joint inflammation did not activate the eBM-MSCs immunomodulatory potential.

Cytokine priming upregulates the immunoregulatory profile of eBM-MSCs

Cytokines lead to an increase in MHC, but not in costimulatory molecules expression.

Equine BM-MSCs change their immune-phenotype according to their environment.