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Pública de Navarra, 31006 Pamplona, Spain
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Abstract

We study a structural functional equation that is directly related to the point-
wise aggregation of a finite number of maps from a nonempty given set into
another. First we establish links between pointwise aggregation and invari-
ance properties. Then, paying attention to the particular case of aggregation
operators of a finite number of real-valued functions, we characterize several
special kinds of aggregation operators, as strictly monotone modifications of
projections. As a case study, we introduce a first approach of type-2 fuzzy
sets via fusion operators. We develop some applications and possible uses
related to the analysis of properties of social evaluation functionals in social
choice, showing that those functionals can actually be described by using
methods that derive from this setting.
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1. Introduction and motivation

Given a finite collection of maps {f1, f2, . . . , fn} from a set X into another
set Y , a new map fn+1 : X → Y obtained someway from the given ones
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f1, f2, . . . , fn is usually said to be an aggregation of those maps. A typical
example is the arithmetic mean fn+1 = f1+...+fn

n
of n real-valued functions

(here Y = R, the real line).
Since information fusion appears in almost every application, aggregation

has become a crucial technique and it has generated a wide spread research
field (see, for example [8, 9, 15]). From an applied point of view, aggregation
functions have also been used for solving real-world problems, for example
in fuzzy set theory ([3, 13]) or image processing ([12, 38, 26]).

Having these ideas in mind, we wonder which is the information we need
in order to obtain the aggregating map fn+1. Given an element x ∈ X, to
compute fn+1(x) sometimes we should know the maps f1, . . . , fn as a whole,
maybe in all the points of its domain, or at least in several points different
from x. But it may also happen that in order to get fn+1(x) we only need
to have at hand the values of f1, . . . , fn at that point x. That is: fn+1(x)
directly comes from f1(x), . . . , fn(x), and we may then assume that there
exists a map G : Y n → Y such that fn+1(x) = G(f1(x), . . . , fn(x)) holds true
for every x ∈ X. Then we say that fn+1 depends pointwise on the collection
{f1, f2, . . . , fn}.

Let us consider the following illustrative example:

Example 1. Let f1, f2 : R → R denote two real valued functions on one
single real variable. Let f3, f4 : R → R respectively be defined, for every
x ∈ R, through the functional equations f3(x) = f1(x) + f2(x) and f4(x) =
f1(2x) + f2(3x). Despite both functional equations looking similar at first
glance, from a structural point of view they are quite different. The reason
is that, working with the former one, in order to know the value of the map
f3 at a point x ∈ R we only need to know the values that f1 and f2 take at
the same point x. However, in the second equation, to determine f4(x) it is
not enough to know the values of f1(x) and f2(x). As a matter of fact, we
need to know the values of f1 and f2 at point(s) different from x.

This nuance is essential in our approach throughout the present paper.
The first case corresponds to the so-called pointwise aggregation of maps.
The second case, despite still corresponding to aggregation of maps, cannot
be called “pointwise”, at least a priori.

In the present paper, given two abstract (nonempty) sets X, Y as well
as a natural number n and n maps {f1, f2, . . . , fn : X → Y }, we study
how to aggregate those maps to obtain a new one, say, fn+1 : X → Y in
a way such that the value of fn+1 at a point x ∈ X depends only on the
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values {f1(x), f2(x), . . . , fn(x)} at the same point x. This is what we call a
pointwise aggregation of {f1, . . . , fn}.

The structure of the paper goes as follows :

In Section 2 we formalize the notion of pointwise aggregation of maps.
In Section 3 we study the main structural functional equation linked to the
pointwise aggregations of maps. The particular case of real-valued functions
is studied in Section 4. In Section 5 we analyze a relevant case study, namely
type-2 fuzzy sets via fusion operators. In Section 6 we discuss several appli-
cations and uses in social choice theory. We conclude with a final Section 7
that includes suggestions for further research.

2. Previous concepts and notation

Definition 1. Let X, Y denote two (nonempty) sets. Let n be a natural
number. Let Y X denote the set of maps from X into Y , that is, Y X = {f :
X → Y }. Let (f1, . . . , fn) ∈ (Y X)n stand for an n-tuple of maps from X into
Y . A map fn+1 ∈ Y X is said to be:

(i) An aggregation of (f1, . . . , fn) if there exists a map T : (Y X)n → Y X

such that fn+1 = T (f1, . . . , fn). In this case the map T is said to be an
n-dimensional aggregation operator 2.

(ii) A pointwise aggregation of (f1, . . . , fn) if there exists a map W : Y n →
Y such that fn+1(x) = W (f1(x), . . . , fn(x)) holds for every x ∈ X. In
this case, the map W is said to be a pointwise n-dimensional aggrega-
tor , whereas the functional equation fn+1(x) = W (f1(x), . . . , fn(x)) is
said to be the structural functional equation of pointwise aggregation of
maps.

2Notice that our definition of “n-dimensional aggregation operator” is less restrictive
than the usual ones that are often encountered in the literature of fuzzy sets and related
topics (see e.g. [15, 9]). We have decided to keep it for the sake of completeness, bear-
ing in mind that possible applications in other settings –perhaps unrelated to fuzzy set
theory– could also come from this more general Definition 1. (See e.g. the applications in
mathematical social choice theory analyzed in Section 6 in the present manuscript).
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Remark 1. (i) When n = 1, we use the word modifier instead of aggrega-
tor. It is implicitly understood that when we aggregate maps, at least
two maps are involved in the process.

(ii) In general it is not true that an aggregation fn+1 of n maps f1, . . . , fn
from a set X into another set Y is actually a pointwise aggregation (see
the Example 2 below).

(iii) In general, the order of the elements f1, . . . , fn in the n-tuple is relevant
for the description of the problem.

Example 2. Let X = Y = N be the set of natural numbers, and let f1 :
N→ N defined as f1(1) = f1(3) = 1, and f1(n) = n otherwise. Consider the
equation f2(n) = f1(2n), for every n ∈ N. Then f2 is a modifier of f1, but it
is not a pointwise modifier of f1. Indeed, assume that there is W : N → N
such that f2(n) = W (f1(n)) holds true for every n ∈ N . Then, on the one
side, we would have W (1) = W (f1(1)) = f2(1) = f1(2) = 2. On the other
side, we would obtain W (1) = W (f1(3)) = f2(3) = f1(6) = 6, reaching a
contradiction.

Definition 2. Let X, Y be two nonempty sets. Let T : (Y X)n → Y X denote
an n-dimensional aggregation operator of maps from X into Y . Then T is
said to be:

representable if there is a map W : Y n → Y such that T (f1, . . . , fn)(x) =
W (f1(x), . . . , fn(x)) holds for every x ∈ X and every n-tuple (f1, . . . , fn) ∈
(Y X)n.

Example 3. In general, an n-dimensional aggregation operator from a set X
into another set Y may fail to be representable. To see this, let X = Y = R
be the real line, and consider any bijection f : R→ R. It is clear that given
a real number x ∈ R, the value f(x) has no relationship (in general) with the
value f(−x). In other words: despite knowing x and f(x), we cannot guess
the value f(−x). Therefore, the modifier T defined by T (f)(x) = f(−x) for
every x ∈ R and every function f : R→ R is not representable.

Remark 2. (i) The concept of a representable aggregation operator has been
considered in [19] for the particular case X finite and Y = R, and in [20], for
an arbitrary set X and Y = R.

(ii) Given a representable n-dimensional aggregation operator T : (Y X)n →
Y X , we immediately observe that the functional equation that naturally

4
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arises as T (f1, . . . , fn)(x) = W (f1(x), . . . , fn(x)) has a solution W that only
depends on the given operator T . In particular, for any fixed n-tuple of func-
tions (f1, . . . , fn) ∈ (Y X)n), by calling fn+1 = T (f1, . . . , fn), it follows that
the map W functional equation of pointwise aggregation of maps.

3. Representability of operators and the structural functional equa-
tion associated to pointwise aggregation of maps

Given two nonempty sets X and Y , our aim is to characterize the rep-
resentable n-dimensional aggregation operators T : (Y X)n → Y X . In other
words, we are interested in finding the solutions (if any) of the structural
functional equation T (f1, . . . , fn)(x) = W (f1(x), . . . , fn(x)) with x ∈ X and
(f1, . . . , fn) ∈ (Y X)n, paying attention to those solutions that only depend
on T .

Remark 3. Observe that, conceptually, the problem of solving a struc-
tural functional equation that corresponds to pointwise aggregation of maps,
namely fn+1(x) = W (f1(x), . . . , fn(x)) for every x ∈ X, in which all the maps
f1, . . . , fn, fn+1 are already known a priori, is totally different from, starting
from an n-dimensional aggregation operator T and setting T (f1, . . . , fn) =
fn+1 for every n-tuple of maps (f1, . . . , fn) ∈ (Y X)n, searching for a map
W : Y n → Y such that fn+1(x) = W (f1(x), . . . , fn(x)) holds for every x ∈ X
and every (f1, . . . , fn) ∈ (Y X)n. That is: in this second situation the maps
f1, . . . , fn are generic, and obviously not given a priori, so that W only de-
pends on T .

Nevertheless, it is also important to notice that if W is a solution of
a structural functional equation of pointwise aggregation, we may try to
study if W gives rise to an n-dimensional operator T such that fn+1(x) =
W (f1(x), . . . , fn(x)) for every x ∈ X, independently of f1, . . . , fn, where fn+1

denotes T (f1, . . . , fn). When this happens, T is representable.

We are now ready to introduce some characterizations of the representabil-
ity of n-dimensional aggregation operators from a set X into another set Y .
To do so, first we introduce a definition.

Definition 3. Let X, Y be two nonempty sets. Let T : (Y X)n → Y X be an
n-dimensional aggregation operator. Then T is said to be:

(i) fully independent if it holds that (f1(x), . . . , fn(x)) = (g1(t), . . . gn(t))⇒
T (f1, . . . , fn)(x) = T (g1, . . . , gn)(t), for every x, t ∈ X and (f1, . . . , fn),
(g1, . . . , gn) ∈ (Y X)n.

5
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(ii) independent as regards maps if (f1(x), . . . , fn(x)) = (g1(x), . . . gn(x))⇒
T (f1, . . . , fn)(x) = T (g1, . . . , gn)(x) for every x ∈ X and (f1, . . . , fn),
(g1, . . . , gn) ∈ (Y X)n.

(iii) pointwise independent whenever (f1(x), . . . , fn(x)) = (f1(t), . . . fn(t))⇒
T (f1, . . . , fn)(x) = T (f1, . . . , fn)(t) for every x, t ∈ X and (f1, . . . , fn) ∈
(Y X)n.

The next result generalizes Theorem 3.4 of [20].

Theorem 1. Let X, Y be two nonempty sets. Let T : (Y X)n → Y X be an n-
dimensional aggregation operator. The following statements are equivalent:

(i) T is representable,

(ii) T is fully independent,

(iii) T is independent as regards maps, and pointwise independent.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are straightforward. To prove (iii)
⇒ (i), let (y1, . . . , yn) ∈ Y n. Let cyi : X → Y be the constant map defined
by cyi(x) = yi for every x ∈ X (i = 1, . . . , n). Fix an element x0 ∈ X.
Define now W : Y n → Y as W (y1, . . . , yn) = T (cy1 , . . . , cyn)(x0). Observe
that the choice of x0 is irrelevant here, since T is pointwise independent.
In order to see that W represents T , fix x ∈ X and (f1, . . . , fn) ∈ (Y X)n.
Let ci : X → Y be the constant map given by ci(t) = fi(x) for every
t ∈ X (i = 1, . . . , n). Since T is independent as regards maps, it follows that
T (f1, . . . , fn)(x) = T (c1, . . . , cn)(x). But, by definition of W , we also have
that T (c1, . . . , cn)(x) = W (f1(x), . . . , fn(x)). Therefore T (f1, . . . , fn)(x) =
W (f1(x), . . . , fn(x)) and we are done.

For the particular case of modifiers of maps from a set X into itself, we
obtain the following corollary.

Corollary 1. Let X be a nonempty set and let T : XX → XX be a modifier.
If T is representable, then the map W = T (1X) ∈ XX , where 1X denotes the
identity map, is actually a representation of T .

Proof. Notice that T is fully independent by Theorem 1. Thus, given t ∈ X
and f ∈ XX , we have that f ◦1X(t) = f(t) = 1X(f(t)). Hence T (1X)(f(t)) =
T (f ◦ 1X)(t) = T (f)(t). Therefore W (f(t)) = T (1X)(f(t)) = T (f ◦ 1X)(t) =
T (f)(t) holds for every t ∈ X, so that T is representable by means of W .

6
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Example 4. Let X, Y be two nonempty sets. The following n-dimensional
aggregation operators from X into Y are obviously representable:

(i) each projection πi : (Y X)n → Y X , where πi(f1, . . . , fn) = fi for every
(f1, . . . , fn) ∈ (Y X)n (i = 1, . . . , n),

(ii) each constant operator mapping any n-tuple (f1, . . . , fn) ∈ (Y X)n to a
(fixed a priori) map g : X → Y .

Moreover, any n-ary operation in Y immediately gives rise to a repre-
sentable n-dimensional aggregation operator from X into Y . Indeed, given
a map H : Y n → Y , it is clear that the n-dimensional aggregation opera-
tor TH : (Y X)n → Y X given by TH(f1, . . . , fn)(x) = H(f1(x), . . . , fn(x)) for
every x ∈ X and (f1, . . . , fn) ∈ (Y X)n is representable through H.

Remark 4. Despite the operators mentioned in Example 4 (i) above being
a trivial case of representable aggregation operators, they play a crucial role
in many contexts coming from miscellaneous applications where it is impor-
tant to detect those operators that are actually projections. Thus, in many
contexts that study systems of voting or ranking of objects, arising in social
choice theory, it is usual to consider a set Y of m elements called alternatives.
Assuming that each voter ranks these alternatives by means of a linear order
(also known as a profile) that reflects her/his individual preferences, we have
at hand a set of n maps from X = {1, . . . ,m} to Y . (Here n is the number
of voters). If fi is the map that corresponds to the agent i (i = 1, . . . , n),
we shall understand that she/he prefers the alternative fi(1) as her/his best
one, fi(2) as her/his second best and so on. In this context, a social rule is a
map from (Y X)n to (Y X), that tries to aggregate the individual preferences
into a social one, so defining a new ranking (a linear order or a social profile)
on the set of alternatives, based on the individual profiles.

In order to obtain some suitable social ranking, that is, one that preserves
(in some sense) the individual preferences, several classical models arising in
social choice try to impose common sense restrictions to the social rules.
However, in most of these models, the unique possible social rules are the
so-called dictatorial ones, namely, the projections. (See e.g. [4, 5, 27, 41, 42,
30, 39] for a further account). We discuss some applications in this direction
later on, in Section 6.

In the spirit of Definition 3 and Theorem 1 we finish this section by
considering that an n-tuple of functions from a set X into another set Y has

7
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been fixed . We furnish a result concerning the structural functional equation
of pointwise aggregation.

Theorem 2. Let X, Y be two nonempty sets. Let (f1, . . . , fn) ∈ (Y X)n

denote a fixed n-tuple of maps from X into Y . Let fn+1 : X → Y be a map.
The following statements are equivalent:

(i) There exists a solution W : Y n → Y of the structural functional equa-
tion of pointwise aggregation so that fn+1(x) = W (f1(x), . . . , fn(x))
holds for every x ∈ X.

(ii) The implication (f1(x), . . . , fn(x)) = (f1(t), . . . fn(t)) ⇒ fn+1(x) =
fn+1(t) holds true for all x, t ∈ X.

Proof. The implication (i) ⇒ (ii) is obvious. To prove that (ii) ⇒ (i), we
choose an element y0 ∈ Y , and define W as follows: given (y1, . . . yn) ∈ Y n

we declare that W (y1, . . . yn) = fn+1(x) if there exists x ∈ X such that
(y1, . . . yn) = (f1(x), . . . fn(x)); otherwise, W (y1, . . . yn) = y0.

4. Pointwise aggregation of real-valued functions

As we have seen in Example 4, given two nonempty sets X and Y the set
of representable n-dimensional aggregation operators from X into Y could be
too big. Consequently, we do not try to give a list of all the representable n-
dimensional aggregation operators from a set X into another set Y . Not even
we intend to describe general solutions of the structural functional equation
of pointwise aggregation. Particular results , paying a special attention to
the aggregation of real-valued functions, or at least, maps from a set X into
another set Y such that either X or Y (or both) is the real line R.

To start with, we analyze some invariance properties that are closely
related to the representability of n-dimensional aggregation operators from
a set X into the real line R. To do so, first we introduce some previous
definitions.

Definition 4. Let A denote a nonempty set. Each element of AA, the set of
all maps from A into itself, is said to be a transformation of the set A.

Definition 5. Let X, Y denote two nonempty sets. Let T : (Y X)n → Y X

be an n-dimensional aggregation operator. Let φ1, . . . , φn, γ : Y → Y stand
for n+ 1 (fixed) transformations of Y . Let g : X → Y be a (fixed) map from
X into Y . Then the operator T is said to be:

8
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(i) g-constant if for any n-tuple of maps (f1, . . . , fn) ∈ (Y X)n it holds that
T (f1, . . . , fn) = g.

(ii) strongly constant (or trivial) if it is g-constant such that the correspond-
ing map g : X → Y is also a constant map, that is, there exists y0 ∈ Y
with g(x) = y0 for every x ∈ X. (In other words: T (f1, . . . , fn)(x) = y0
for every (f1, . . . , fn) ∈ (Y X)n and every x ∈ X).

(iii) (φ1, . . . , φn, γ)-invariant if for every n-tuple (f1, . . . , fn) ∈ (Y X)n it
holds that T (φ1 ◦ f1, . . . , φn ◦ fn) = γ ◦ T (f1, . . . , fn).

In the same way, if F,G are two (fixed) nonempty subsets of the set Y Y

of transformations of Y , the operator T is said to be:

(iv) (F,G)-invariant if for every {φ1, . . . , φn} ⊆ F and (f1, . . . , fn) ∈ (Y X)n

there is a map γ ∈ G, which depends on {φ1, . . . , φn} and (f1, . . . , fn),
such that T (φ1 ◦ f1, . . . , φn ◦ fn) = γ ◦ T (f1, . . . , fn).

Remark 5. It should be noted that the concept of invariance as defined
in [20] is slightly different from ours (see also Definition 1(2) in [19] for the
particular case X finite).

Definition 6. Let Y denote a nonempty set. A subset F ⊆ Y Y of transfor-
mations of Y is said to be stable if it satisfies the following properties:

(a) Each map f ∈ F is a bijection whose inverse f−1 also belongs to the
set F .

(b) The identity map 1Y (given by 1Y (t) = t for every t ∈ Y ) belongs to
F .

(c) The subset F is closed under composition of maps, that is g ◦ f ∈ F ,
for every f, g ∈ F .

Example 5. Let R be the real line. The collection I of strictly increasing
functions from R into R is stable. In addition, the collection A of positively
affine functions from R into R, given by A = {f ∈ RR: there exists a > 0
and b ∈ R such that f(x) = ax+ b for every x ∈ R} is stable, too.

Definition 7. Let X, Y denote two nonempty sets. Let F ⊆ Y Y be a
stable subset of transformations of Y . Given two n-tuples (f1, . . . , fn) and
(g1, . . . , gn) ∈ (Y X)n of maps from X to Y , we say that (f1, . . . , fn) and
(g1, . . . , gn) are F -equivalent if there exist n maps φ1, . . . , φn ∈ F such that
(g1, . . . , gn) = (φ1 ◦ f1, . . . , φn ◦ fn).

9
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Remark 6. Notice that by Definition 6, the relationship of F -equivalence
just defined is indeed an equivalence relation on (Y X)n.

Moreover, comparing with Definition 5, we observe that an n-dimensional
aggregation operator T ∈ (Y X)n is (F,G)-invariant if and only if for every
(f1, . . . , fn) and (g1, . . . , gn) ∈ (Y X)n that are F -equivalent, it holds that
T (f1, . . . , fn) and T (g1, . . . , gn) ∈ Y X are G-equivalent.

We are ready now to introduce a result that links pointwise aggregation
to invariance properties3.

Theorem 3. Let X be a set with at least two points and let T : (RX)n → RX

be an n-dimensional aggregation operator. Let A (respectively, I) denote the
set of all positively affine (respectively, strictly increasing) transformations
from R into R. The following statements are equivalent:

(i) The aggregation operator T is (A, I)-invariant and representable,

(ii) Either T is a strongly constant operator, or there exists j ∈ {1, . . . , n}
and a strictly monotone (i.e.: either strictly increasing or strictly de-
creasing) function g : R→ R such that T (f1, . . . , fn) = g ◦ fj, for every
(f1, . . . , fn) ∈ (RX)n.

Proof. The implication (ii) ⇒ (i) is straightforward. Therefore, we only
prove the fact (i)⇒ (ii).

To do so, first we observe that by the representability of T there exists
a function W : Rn → R such that T (f1, . . . , fn)(x) = W (f1(x), . . . , fn(x))
holds for every (f1, . . . , fn) ∈ (RX)n and every x ∈ X.

Let us see that the function W satisfies that:
W (u1, . . . , un) ≤ W (v1, . . . , vn)⇔ W (a1u1+b1, . . . , anun+bn) ≤W (a1v1+

b1, . . . , anvn + bn) for any (u1, . . . , un), (v1, . . . , vn), (b1, . . . , bn) ∈ Rn and
(a1, . . . , an) ∈ (0,+∞)n.

Indeed, the converse implication is obvious by taking a1 = . . . = an = 1
and b1 = . . . = bn = 0. In order to prove the direct implication, let
(u1, . . . , un), (v1, . . . , vn), (b1, . . . , bn) ∈ Rn and (a1, . . . , an) ∈ (0,+∞)n be
fixed. Take now (f1, . . . , fn) ∈ (RX)n and x, y ∈ X such that, for each

3In addition, in [20] the concept of a comparison meaningful, with respect to indepen-
dent ordinal scales, aggregation operator is studied. For the particular case of real-valued
functions of n variables, this concept turns out to be a fundamental axiom in measurement
theory (see [33, 34] for further details).
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i ∈ {1, . . . , n}, fi(x) = ui and fi(y) = vi. Notice that, since we are assuming
that the cardinality of X is strictly bigger than 1, this is always possible. So,
W (u1, . . . , un) = T (f1, . . . , fn)(x) ≤ T (f1, . . . , fn)(y) = W (v1, . . . , vn). Con-
sider, for each i ∈ {1, . . . , n}, the transformation φi(t) = ait + bi ∈ A.
Then, by (A, I)-invariance, there is a strictly increasing transformation,
say γ ∈ I, such that T (φ1 ◦ f1, . . . , φn ◦ fn) = γ ◦ T (f1, . . . , fn). So,
T (φ1 ◦ f1, . . . , φn ◦ fn)(x) = γ ◦ T (f1, . . . , fn)(x) = γ(T (f1, . . . , fn)(x)) ≤
γ(T (f1, . . . , fn)(y)) = γ ◦ T (f1, . . . , fn)(y) = T (φ1 ◦ f1, . . . , φn ◦ fn)(y).

Now, for each z ∈ X, it holds that T (φ1 ◦ f1, . . . , φn ◦ fn)(z) = W (φ1 ◦
f1(z), . . . , φn◦fn(z)) = W (a1f1(z)+b1, . . . , anfn(z)+bn). Thus, W (a1f1(x)+
b1, . . . , anfn(x)+bn) = T (φ1◦f1, . . . , φn◦fn)(x) ≤ T (φ1◦f1, . . . , φn◦fn)(y) =
W (a1f1(y) + b1, . . . , anfn(y) + bn), and the inequality is proved.

Let us see now that this last fact implies that either W : Rn → R is
a constant function, or, alternatively, there exist both j ∈ {1, . . . n} and
a strictly monotonic function g : R → R such that W (t1, . . . , tn) = g(tj)
holds true for every n-tuple (t1, . . . , tn) ∈ Rn. To that end, consider the
total preorder, say -W , on Rn defined by W as follows: (s1, . . . , sn) -W

(t1, . . . , tn)⇔ W (s1, . . . , sn) ≤ W (s1, . . . , sn).
By the properties of W , using Theorem 2 in [31] as well as Theorem 3

and its subsequent results in [18], it follows that either -W is trivial (and
consequently W is a constant function), or -W is non-trivial and, in this case,
either there is j ∈ {1, . . . , n} such that (s1, . . . , sn) -W (t1, . . . , tn)⇔ sj ≤ tj
holds for every (s1, . . . , sn) , (t1, . . . tn) ∈ Rn, or, in a dual way, there exists
j ∈ {1, . . . , n} such that (s1, . . . , sn) -W (t1, . . . , tn)⇔ tj ≤ sj holds for any
(s1, . . . , sn) , (t1, . . . tn) ∈ Rn.

Therefore, in the former of these two last situations in which -W is non-
trivial, there exists a strictly increasing function g : R→ R such that W = g◦
πj, where πj : Rn → R stands here for the projection on the j-th component,
that is, πj(t1, . . . , tn) = tj for every n-tuple (t1, . . . , tn) ∈ Rn.

And in the second of these two situations, where -W is non-trivial, there
exists a strictly decreasing function h : R→ R such that W = h ◦ πj.

The proof concludes immediately, by just taking into account that the
operator T is representable through W .

Remark 7. If the cardinality of X is 1, RX can be identified with R. Thus,
an aggregation operator T : (RX)n → RX clearly reduces to a function from
Rn into R. Therefore, in this case, any aggregation operator is trivially
representable.
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Moreover, (A, I)-invariance is also trivially met when X is a singleton.
So, in this case, the statement reads as follows:

<<For a function T : Rn → R the following assertions are equivalent:
(1) T (u1, . . . , un) ≤ T (v1, . . . , vn)⇔ T (a1u1+b1, . . . , anun+bn) ≤ T (a1v1+

b1, . . . , anvn+bn) holds true, for any n-tuples (u1, . . . , un), (v1, . . . , vn),
(b1, . . . , bn) ∈ Rn and (a1, . . . , an) ∈ (0,+∞)n,

(2) Either T is a constant function, or there exists j ∈ {1, . . . , n} and a
strictly monotone function g : R→ R such that T (u1, . . . , un) = g(uj),
for every (u1, . . . , un) ∈ Rn.>>

An immediate consequence of Theorem 3 appears when the operator T
satisfies a property of idempotence (see Definition 8 below). As a mat-
ter of fact, the subsequent Corollary 2 characterizes projections among n-
dimensional operators from a set X, whose cardinality is strictly bigger than
1, to the real line Y = R.

Definition 8. Let X, Y be two nonempty sets. An n-dimensional operator
T : (Y X)n → Y X is said to be idempotent if for every map f ∈ Y X it holds
that T (f, . . . , f) = f .

Corollary 2. Let T : (RX)n → RX be an n-dimensional aggregation op-
erator, where X has, at least, two points. The following statements are
equivalent:

(i) The operator T is (A, I)-invariant, idempotent and representable,

(ii) The operator T is a projection: there exists j ∈ {1, . . . , n} such that
T (f1, . . . , fn) = fj, for every (f1, . . . , fn) ∈ (RX)n.

Remark 8. The assumption of X having at least two points cannot be
dropped from the statement of Corollary 2. Indeed, if X is a singleton,
then, as already mentioned in Remark 7 (v), an aggregation operator T is
a function from Rn into R. Note that the function T : Rn → R defined
as T (u1, . . . , un) = max(ui), for every (u1, . . . , un) ∈ Rn, i ∈ {1, . . . , n},
is (A, I)-invariant, idempotent and representable. Nevertheless, it is not a
projection. A version of Corollary 2, in the case that X is a singleton, can
be obtained by adding to the idempotence property the fulfillment of the
condition W (u1, . . . , un) ≤ W (v1, . . . , vn) ⇔ W (a1u1 + b1, . . . , anun + bn) ≤
W (a1v1+b1, . . . , anvn+bn) for any (u1, . . . , un), (v1, . . . , vn), (b1, . . . , bn) ∈ Rn

and (a1, . . . , an) ∈ (0,+∞)n.
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5. A case study: type-2 fuzzy sets via fusion operators

5.1. Fusion of type-2 fuzzy sets

Since Zadeh introduced the concept of a fuzzy set in 1965 [44], the in-
terest for the different possible extensions of such sets has been increasingly
growing, both from a theoretical and from an applied point of view [14].
Among the extensions of fuzzy sets some of the most relevant ones are the
interval-valued fuzzy sets [40], the Atanassov’s intuitionistic fuzzy sets [6]
and the type-2 fuzzy sets [45], which encompass the two previous ones. In
this work we focus on the latter, having in mind the results introduced in
Section 2 and Section 3.

As an extension of the concept of a fusion operator relative to fuzzy sets
(functions that take m values (membership degrees) in [0, 1] and give back a
new value in [0, 1]), and taking into account that the membership values of
the elements in a type-2 fuzzy set are given in terms of new fuzzy sets over
the universe [0, 1] (that is, by means of functions defined over [0, 1]) we define
fusion operators for type-2 fuzzy sets as mappings that take m functions from
[0, 1] to [0, 1] into a new function in the same domain. That is, functions of
the type F :

(
[0, 1][0,1]

)m → [0, 1][0,1]. Our goal is to study these functions in
a way as general as possible, since in principle no restriction is imposed to
the membership values of a type-2 fuzzy set. So we do not require a priori
any property such as continuity, monotonicity, symmetry, etc. (See also [17]
for more details).

In this subsection we recall the concepts of a fuzzy set and a type-2
fuzzy set. From here on we denote by X a nonempty set that represents the
universe of discourse.

Definition 9. A fuzzy set A on the universe X is defined as the graph of a
function µA : X −→ [0, 1]. Therefore, A = {(x, µA(x))|x ∈ X} ⊂ X × [0, 1].
The function µA is said to be the membership function (also known as the
indicator) of A with respect to the universe X. Given x ∈ X, the value
µA(x) ∈ [0, 1] is called the membership degree of the element x as regards X.

In [45], Zadeh introduced the concept of a type-2 fuzzy set as a general-
ization of a fuzzy set (also called type-1 fuzzy set). In type-2 fuzzy sets, the
corresponding notion of the membership degree of an element with respect to
the universe considered is given by a fuzzy set whose universe is again [0, 1].
That is, the membership degree of an element to a type-2 fuzzy set becomes
now a function that belongs to [0, 1][0,1], the set of all possible functions from

13
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[0, 1] to [0, 1]. The mathematical formalization of the notion of type-2 fuzzy
set was made in [23, 37].

Definition 10. A type-2 fuzzy set A on the universe X is defined as A =
{(x, µA(x))|x ∈ X}, where µA : X → [0, 1][0,1].

As a particular case of Definition 1 and Definition 2 the following concepts
are introduced in this context.

Definition 11. Let (f1, . . . , fm) ∈ ([0, 1][0,1])m stand for a m-tuple of maps
from [0, 1] into [0, 1].

(i) A map fm+1 ∈ [0, 1][0,1] is said to be a fusion of (f1, . . . , fm) if there ex-
ists a map F : ([0, 1][0,1])m → [0, 1][0,1] such that fm+1 = F (f1, . . . , fm).
In this case the map F is said to be an m-dimensional fusion operator.

(ii) A map fm+1 ∈ [0, 1][0,1] is said to be a pointwise fusion of (f1, . . . , fm)
if there exists a function W : [0, 1]m → [0, 1] satisfying that fm+1(x) =
W (f1(x), . . . , fm(x)) for every x ∈ [0, 1]. In this case, the map W
is said to be a pointwise m-dimensional fusion operator, whereas the
functional equation fm+1(x) = W (f1(x), . . . , fm(x)) is said to be the
structural functional equation of pointwise fusion operators.

(iii) Let F : ([0, 1][0,1])m → [0, 1][0,1] denote an m-dimensional fusion oper-
ator of maps from [0, 1] into [0, 1]. Then F is said to be representable
if there is a map W : [0, 1]n → [0, 1] such that F (f1, . . . , fm)(x) =
W (f1(x), . . . , fm(x)) holds true for every x ∈ [0, 1] and (f1, . . . , fm) ∈
([0, 1][0,1])m.

Remark 9. Obviously Definition 3 and the subsequent results (Theorem 1,
etc.) stated in Section 2 can also be used in this setting, now working with
type-2 fuzzy sets and fusion operators.

5.2. Union and intersection of type-2 fuzzy sets as fusion operators

In this subsection we focus on two key concepts to deal with type-2 fuzzy
sets, namely the union and the intersection. Recall that the union and inter-
section of two type-2 fuzzy sets is a new type-2 fuzzy set. Therefore, we can
interpret the union and intersection of type-2 fuzzy sets as a special case of
fusion of type-2 fuzzy sets.

14
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It is important to say that there does not exist a unique definition for
union and intersection of type-2 fuzzy sets. However, the operations consid-
ered in this work cover several cases since they act in the same way. For
each element in the universe X, we use a function that fuses the membership
functions of that element to each set. So these operations can be seen as

fusion operators F :
(
[0, 1][0,1]

)2 → [0, 1][0,1].
Considering type-2 fuzzy sets as a special case of L-fuzzy sets launched by

Goguen [28], the union and intersection of type-2 fuzzy sets is stated leaning
on the union and intersection of fuzzy sets, as follows [29].

Definition 12. Let f1, f2 ∈ [0, 1][0,1] be two functions. The operations (re-

spectively called union and intersection) ∪,∩ :
(
[0, 1][0,1]

)2 → [0, 1][0,1] are
respectively defined as (f1 ∪ f2)(x) = max(f1(x), f2(x)) and(f1 ∩ f2)(x) =
min(f1(x), f2(x)) for every x in the unit interval [0, 1].

The following result is straightforward.

Proposition 1. The mappings ∪,∩ :
(
[0, 1][0,1]

)2 → [0, 1][0,1] are repre-

sentable fusion operators for all f1, f2 ∈ [0, 1][0,1].

The problem with the previous definition of union and intersection of
type-2 fuzzy sets is that these concepts do not retrieve the usual union and
intersection of fuzzy sets [24]. In order to avoid this trouble, another defi-
nition of union and intersection of type-2 fuzzy sets was introduced in this
literature, based on Zadeh’s extension principle [37, 24, 35, 43].

Definition 13. Let f1, f2 ∈ [0, 1][0,1] be two maps. The operations (again,
respectively called union and intersection, but in the sense of Zadeh’s ex-

tension principle) t,u :
(
[0, 1][0,1]

)2 → [0, 1][0,1] are respectively defined
as (f1 t f2)(x) = sup{(f1(y) ∧ f2(z)) : y ∨ z = x} and (f1 u f2)(x) =
sup{(f1(y) ∧ f2(z)) : y ∧ z = x} for every x ∈ [0, 1].

(Here, given a, b ∈ [0, 1], the standard latticial notation goes as follows:
a ∨ b = max{a, b}, whereas a ∧ b = min{a, b}).

Remark 10. Observe that the fusion operators t and u are completely
different from ∪ and ∩. In general, for any f1, f2 ∈ [0, 1][0,1] it is not possible
to know the values (f1 t f2)(x) and (f1 u f2)(x) by knowing only the values
of f1(x) and f2(x).

Proposition 2. In general, the mappings t,u :
(
[0, 1][0,1]

)2 → [0, 1][0,1] fail
to be representable fusion operators.

15
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Nevertheless, we may still notice that the union and intersection of fuzzy
sets (in the sense of Zadeh’s extension principle) indeed become pointwise
fusion operators on a suitable (smaller) restricted domain.

Theorem 4. The following statements hold true:

(i) If f1, f2 ∈ [0, 1][0,1] are increasing mappings then the operation t is a
pointwise fusion operator.

(ii) If f1, f2 ∈ [0, 1][0,1] are decreasing mappings then the operation u is a
pointwise fusion operator.

Proof. (See also [43])
(i) For the case t, let us see that {(y, z)|y ∨ z = x} = {(x, z)|z ≤ x} ∪

{(y, x)|y ≤ x}
In the first situation, namely for {(x, z)|z ≤ x}, since the function f2 is
increasing, we get
f2(z) ≤ f2(x) for all z ≤ x. So, f1(x) ∧ f2(z) ≤ f1(x) ∧ f2(x) for all z ≤ x.
In particular, supz≤x{f1(x) ∧ f2(z)} ≤ f1(x) ∧ f2(x). Moreover, since the
point (x, x) lies in the set considered, we have that supz≤x{f1(x) ∧ f2(z)} =
f1(x) ∧ f2(x).
In a similar way, in the second situation, for {(y, x)|y ≤ x}, it holds that
supy≤x{f1(y) ∧ f2(x)} = f1(x) ∧ f2(x).
Therefore (f1 t f2)(x) = sup{(f1(y) ∧ f2(z) : y ∨ z = x} =
∨(supz≤x{f1(x) ∧ f2(z)}, supy≤x{f1(y) ∧ f2(x)}) = f1(x) ∧ f2(x).
Hence the union is a pointwise fusion operator.

(ii) This case, for the intersection u, is handled in an entirely analogous
way to the case t just discussed.

6. Some applications and uses in social choice theory

6.1. Columns vs. rows in the Arrowian setting

Let X = {1, . . . ,m} be the set of the first m natural numbers. A map
f : X → X can be described through a column vector of m elements such
that the i-th entry of this column vector is f(i) ∈ X, with i varying from 1
to m. If we have at hand n such maps, say {f1, . . . , fn} from X into X, then
we can jointly represent them by a m×n matrix whose entry in the i-th row
and j-th column is fj(i). Here i ∈ {1, . . . ,m} whereas j ∈ {1, . . . , n}. A
n-dimensional operator T : (XX)n → XX can be understood as a rule that
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operates with the columns {f1, . . . , fn} of each of those matrices m × n to
accordingly get a new column vector T (f1, . . . , fn) ∈ XX .

However, when T is representable, due to the satisfaction of the struc-
tural functional equation of pointwise aggregation, there exist a map W :
Xn → X such that T (f1, . . . , fn)(i) = W (f1(i), . . . , fn(i)) holds for every
i ∈ {1, . . .m}. This means that we can get the column vector T (f1, . . . , fn)
working directly on each row of the m× n matrix that defines T .

All this has important uses in voting theory .
In fact, as already pointed out in Remark 4, the famous Arrow’s impos-

sibility theorem in social choice theory (see e.g. [4, 5, 27, 30, 42, 39, 41, 32])
deals with conditions on the rankings of preferences that n agents define on
m objects, in a way that each individual ranks the m objects by means of
a linear (total) order, thus defining a column vector that represents her/his
preferences.

Therefore, in this procedure there are n such columns, so that column
j where j varies from 1 to n reflects the preferences of the individual j.
In these contexts, the preferences of the agents are usually defined through
permutations (that is, bijective maps) stated on the given set of m objects
or alternatives . Consequently, we can visualize all the preference rankings
established by the n agents using a m × n matrix, in such a way that each
column corresponds to an individual preference, as remarked before.

A social choice aggregation rule (in the Arrowian sense) is then an n-
dimensional aggregation operator that acts over the columns of such a ma-
trix in order to define a social ranking, also given by means of a suitable
permutation on the set of m objects. In addition, some conditions of, say,
common sense are assumed to be satisfied by the aggregation operator4.

Kenneth J. Arrow established in [4, 5] a set of conditions, all of them
being quite natural, that, perhaps surprisingly, imply that the only possible
social preference that accomplishes all such conditions of aggregation is one
of the columns of the given m × n matrix, so that the social preference is
indeed a projection: it must coincide with the preference of at least one of the
m agents, who could be considered as a dictator in the social choice theory
context and terminology. (See also [42]).

4To put an obvious example, when all the columns of the matrix are identical, or, in
other words, provided that all the agents have defined exactly the same ranking, the social
preference should compulsorily agree with such columns, thus respecting the unanimity.
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Thus, Arrow’s theorem is based on vertical conditions (i.e., conditions on
the individual profiles that correspond to columns of the matrix) imposed on
the aggregation rules.

However, as already studied e.g. in [39], sometimes it is possible to achieve
similar results, now based on horizontal aggregation conditions (i.e., condi-
tions on the rows of the matrix), expressed in terms of the absolute position
of an alternative in a preference ranking. As a matter of fact, it is possible
to obtain a positional version of Arrow’s theorem for the case when the pos-
sibility of indifference is removed (so that preferences are always strict), see
[39] for further details.

This last possibility obviously links with the results introduced through-
out the present manuscript. Indeed, if a social rule, say T , is defined through
a representable n-dimensional aggregation operator (not necessarily being a
projection), it is then obvious that it can be re-obtained working by rows
instead of by columns, due to the satisfaction of the structural functional
equation of pointwise agregation.

6.2. Social evaluation operators

Now we consider a social choice model that takes as primitive the concept
of a social evaluation functional. Basically, a social evaluation functional
is an aggregation operator that maps a n-tuple of (individual) real-valued
functions defined on an unstructured setX into a (social) real-valued function
defined on X. (See [10, 36] for an excellent account of the role played by
utility methods in social choice theory. See also [2, 1, 16] to find some other
functional equations related to utility theory and/or social choice. For further
details on social evaluation functionals, see [19]).

Let X be a nonempty set (usually called the set of alternatives) and let
n ≥ 1 be a natural number (number of agents). A typical function, from X
into R, corresponding to the agent j, is denoted by fj. As in the previous
sections, the set of all real-valued functions from X into R is denoted by RX .

A typical n-tuple of real-valued functions is denoted by F = (f1, . . . , fn)
and (RX)n stands for the set of all those n-tuples.

For a given x ∈ X and F = (f1, . . . , fn) ∈ (RX)n, F (x) denotes the
n-tuple (f1(x), . . . fn(x)) ∈ Rn.

Let A stand for the set of positively affine maps from Rn into Rn. Given
n-tuples a = (a1, . . . , an) ∈ (0,+∞)n and b = (b1, . . . , bn) ∈ Rn a typical
element (that we denote by Aab ) of the set A satisfies that Aab (x1, . . . , xn) =
(a1x1 + b1, . . . , anxn + bn), for every (x1, . . . , xn) ∈ Rn.
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Given Aab ∈ A and F = (f1, . . . , fn) ∈ (RX)n, let AabF ∈ (RX)n denote
the n-tuple of maps such that AabF (x) = (a1 f1(x) + b1, . . . , an fn(x) + bn),
for every x ∈ X.

Definition 14. A social evaluation functional is an n-dimensional aggre-
gation operator T : (RX)n → RX that associates a real-valued function
T (f1, . . . , fn) ∈ RX to any n-tuple F = (f1, . . . , fn) in the domain (RX)n.
It should be noticed that, since the domain of a social evaluation functional
is (RX)n, the so-called property of universality of domain is implicitly as-
sumed. A social evaluation functional T is said to be trivial if there exists
a constant real-valued map f0 ∈ RX such that T (f1, . . . , fn) = f0, for all
(f1, . . . , fn) ∈ (RX)n and f0(t) = r0 ∈ R, for every t ∈ X (here r0 is the
constant value that f0 takes on X). In other words, the aggregation operator
T is strongly constant in the sense of Definition 5 (ii).

We now present a basic definition that essentially translates the usual
welfarist axioms involved in the definition of a social welfare functional to
the setting of social evaluation functionals.

Definition 15. A social evaluation functional T : (RX)n → RX is said to
satisfy:

(1) the property of welfarism if there is a function W : Rn −→ R such that
T (f1, . . . , fn)(x) = W (f1(x), . . . , fn(x)), for every (f1, . . . , fn) ∈ (RX)n

and x ∈ X (i.e., T is representable in the sense of Definition 2),

(2) the property of information invariance with respect to independent in-
terval scales if T (f1, . . . , fn)(x) ≤ T (f1, . . . , fn)(y) ⇐⇒ T (AbaF )(x) ≤
T (AbaF )(y), for every F = (f1, . . . , fn) ∈ (RX)n, x, y ∈ X and Aba ∈ A,

(3) the weak Pareto property, if for every F = (f1, . . . , fn) ∈ (RX)n and
x, y ∈ X such that fj(x) < fj(y) holds for every j ∈ {1, . . . , n}, it holds
that T (f1, . . . , fn)(x) < T (f1, . . . , fn)(y),

(4) the Pareto property if it already satisfies the weak Pareto property
and, in addition, for every F = (f1, . . . , fn) ∈ (RX)n and x, y ∈ X
such that fj(x) ≤ fj(y) holds for every j ∈ {1, . . . , n}, it holds that
T (f1, . . . , fn)(x) ≤ T (f1, . . . , fn)(y),

(5) the strong Pareto property if for every F = (f1, . . . , fn) ∈ (RX)n and
x, y ∈ X such that fj(x) ≤ fj(y) holds for every j ∈ {1, . . . , n}
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and fk(x) < fk(y) holds for some k ∈ {1, . . . , n}, then it holds that
T (f1, . . . , fn)(x) < T (f1, . . . , fn)(y),

(6) the strong dictatorship property if there is an individual i ∈ {1, . . . , n}
(the strong dictator) such that T (f1, . . . , fn)(x) ≤ T (f1, . . . , fn)(y) if
and only if fi(x) ≤ fi(y), for every F = (f1, . . . , fn) ∈ (RX)n and
x, y ∈ X,

(7) the inverse strong dictatorship property if there is i ∈ {1, . . . , n} (the
inverse strong dictator) such that T (f1, . . . , fn)(x) ≤ T (f1, . . . , fn)(y)
if and only if fi(y) ≤ fi(x), for every F = (f1, . . . , fn) ∈ (RX)n and
x, y ∈ X,

(8) the unanimity property if T (f, . . . , f) = f , for every f ∈ RX ,

(9) the anonymity property if T (fσ(1), . . . , fσ(n)) = T (f1, . . . , fn), for every
permutation σ of the set {1, . . . , n}.

As a direct consequence of the ideas used in the proof of Theorem 3, the
following results are reached. We only sketch the proof of Theorem 5.

Theorem 5. Let X be a set with at least two points. For a social evaluation
functional T : (RX)n → RX , the following assertions are equivalent:

(i) T satisfies welfarism and information invariance with respect to inde-
pendent interval scales,

(ii) T is trivial, or it satisfies strong dictatorship, or it satisfies inverse
strong dictatorship.

Proof. The proof of the converse implication (ii)⇒ (i) is easy. Indeed, if T is
trivial, then it is sufficient to take W (x1, . . . , xn) = r0, for some fixed r0 ∈ R,
in order to see that the assumptions in (i) hold. If T is strongly dictatorial,
then take W (x1, . . . , xn) = xi, for every (x1, . . . , xn) ∈ Rn, i being the strong
dictator, and observe that all the conditions in (i) hold too. If T is strongly
inversely-dictatorial, then take W (x1, . . . , xn) = −xi, for every (x1, . . . , xn) ∈
Rn, i being the inverse strong dictator, to conclude. So, we concentrate on the
proof of the direct implication (i)⇒ (ii). To that end, consider a real-valued
function W : Rn −→ R such that T (f1, . . . , fn)(x) = W ((f1(x), . . . , fn(x)),
for every (f1, . . . , fn) ∈ (RX)n and x ∈ X. Notice that W exists because T
satisfies welfarism. Then, since T also satisfies information invariance with
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respect to independent interval scales, it is straightforward to see that W
satisfies the key property in the proof of Theorem 3, namely, W (u1, . . . , un) ≤
W (v1, . . . , vn)⇔ W (a1u1+b1, . . . , anun+bn) ≤ W (a1v1+b1, . . . , anvn+bn) for
any (u1, . . . , un), (v1, . . . , vn), (b1, . . . , bn) ∈ Rn and (a1, . . . , an) ∈ (0,+∞)n.

So, as in the proof of Theorem 3, we have that either W is constant, or
there are both i ∈ {1, . . . , n} and a strictly monotone function g : R −→
R such that W (x1, . . . , xn) = g(xi), for every (x1, . . . , xn) ∈ Rn. If W is
constant, then T is trivial. Otherwise, if g is strictly increasing, then, for
every (f1, . . . , fn)(RX)n and x, y ∈ X, it follows that T (f1, . . . , fn)(x) =
W (f1(x), . . . , fn(x)) = g(fi(x)) ≤ T (f1, . . . , fn)(y) = W (f1(y), . . . , fn(y)) =
g(fi(y)) if and only if fi(x) ≤ fi(y). Therefore T satisfies the property of
strong dictatorship, i acting as a strong dictator. Alternatively, if g is strictly
decreasing, then, in a similar manner, we see that T satisfies the property of
inverse strong-dictatorship, i acting now as an inverse strong dictator. This
finishes the proof.

Corollary 3. Let X be a set with at least two points. For a social evaluation
functional T : (RX)n → RX , the following assertions are equivalent:

(i) T satisfies welfarism, information invariance with respect to indepen-
dent interval scales and the Pareto property (respectively, the weak
Pareto property).

(ii) Either T is trivial, or it satisfies strong dictatorship (respectively, T
satisfies strong dictatorship).

Corollary 4. Let X be a set with at least two points. For a social evaluation
functional T : (RX)n → RX , the following assertions are equivalent:

(i) T satisfies welfarism, information invariance with respect to indepen-
dent interval scales and unanimity,

(ii) There is i ∈ {1, . . . , n} such that T (f1, . . . , fn) = fi, for all (f1, . . . , fn) ∈
(RX)n.

Remark 11.

(i) Notice that, unlike the usual statements encountered in the social choice
literature where it is required that the cardinality (“size”) of X is, at
least, 3, our statements (Theorem 5 and Corollaries 3 to 4) only demand
that this cardinality is, at least, 2. In addition, n is allowed to be 1.
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(ii) In the case that the X is a singleton, then a social evaluation functional
T : (RX)n → RX , turns out to be a function from Rn into R. In this
case, both properties welfarism as well as information invariance with
respect to independent interval scales are trivially met (see Remark 7
(v) and Remark 8) and, therefore, they play no role. So, in order to
provide similar statements to those of Theorem 5 and Corollaries 3 to
4, if X is a singleton, we have to replace these two conditions by the
fulfillment of condition (1) that appears in Remark 7 (v).

(iii) It is a direct consequence of Theorem 5 above that if X has at least two
elements, then a social evaluation functional that satisfies the proper-
ties of welfarism, information invariance with respect to independent
interval scales and anonymity, is, a fortiori, trivial.

Using a counter-argument in the statement of Theorem 5, the following
impossibility result can be achieved.

Theorem 6. Let n > 1. For a set X with at least two points no social
evaluation functional exists that satisfies welfarism, information invariance
with respect to independent interval scales and the strong Pareto property.

Remark 12. If X is a singleton and n > 1, then a similar statement to that
of Theorem 6 above can be provided by taking into account the observation
done in Remark 11 (ii).

7. Final comments

In this final section, we outline some ideas that could lead to a further
development of the analysis made throughout this manuscript.

A suggestion could be the consideration of continuity properties of n-
dimensional aggregation operators from a nonempty set X into another set
Y , provided that X and Y are endowed with suitable topologies (see e.g.
[19]). By the way, the set Y X can also be endowed with a topology as, for
instance, the classical compact-open topology (see e.g. pp. 257 and ff. in [25]
for further details). Finally, on (Y X)n we may consider the product topology
(of the compact-open topology on each factor).

If we pay attention to representable operators, and depending on the
topologies considered on X and Y , the continuity of a map W : Y n → Y that
represents an aggregation operator T : (Y X)n → Y X is intimately related to
the continuity of T .
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To put an example in this direction, let Y = R be the real line endowed
with the usual (Euclidean) topology. LetX = {1, . . . ,m}. EndowX with the
discrete topology. It is then clear that Y X can be identified with Rm. More-
over, we can assume that, after this identification, the set Y X is also endowed
with the Euclidean topology, because this topology and the compact-open
topology on Y X agree in this case when X is finite and Y = R. Furthermore
(Y X)n, endowed with the product topology, can also be identified with Rmn

with the usual Euclidean topology. Notice also that Rmn can be viewed as
the collection of all m×n matrices whose entries are real numbers. (Compare
this with Remark 4 and the body of Section 6 above).

In this setting, the following straightforward result arises:

Theorem 7. Let X = {1, . . . ,m}, endowed with the discrete topology. Let
Y = R the real line, endowed with the usual topology. Let T : (Y X)n → Y X

be a representable n-dimensional aggregation operator. Let W : Rn → R be
a function that represents T , so that T (f1, . . . , fn)(x) = W (f1(x), . . . , fn(x))
holds for every (f1, . . . , fn) ∈ (Y X)N and every x ∈ X. Identify (Y X)n

to Rmn, and Y X to Rm and endow each of them with its respective usual
Euclidean topology. Then, the operator T is continuous if and only if the
function W is.

As in Section 6, this new topological setting would immediately have ap-
plications to social choice theory . For instance, in the topological Chichilnisky
model arising in social choice theory, a nonempty set Z endowed with a topol-
ogy τ is considered. Provided that n is a natural number, a social Chichilnisky
n-rule is just a continuous map F : Zn → Z satisfying the following two con-
ditions:

(i) F (z, . . . , z) = z for every z ∈ Z,

(ii) F (zσ1 , . . . , zσn) = F (z1, . . . , zn) for any permutation σ acting on the set
{1, . . . , n}.

This is actually an abstract model5, so that it is (a priori) irrelevant here if
each element z ∈ Z is interpreted as an individual preference defined through

5As a matter of fact, the theoretical background of the topological Chichilnisky model
had already appeared much earlier in the analysis of the so-called “topological spaces that
admit a topological n-mean”, see e.g. [7].

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

a total order on a set of alternatives, or if it is a different kind of ordering
on the set of alternatives, or even if it is just the best alternative that an
individual has selected as her/his best option. All this depends on the partic-
ular context considered. Perhaps, the most remarkable feature to be pointed
out at this stage is that Chichilnisky models furnish a theoretical and totally
abstract setting, alternative to the Arrowian model. Moreover, depending
on the particular context to be explored, either preference orderings or just
best individual alternatives are understood as points of a topological space.
It is important to notice here that the set Z may now be infinite. It can
be proved that the existence or nonexistence of a social Chichilnisky n-rule
strongly depends on the topology which Z is endowed with. For instance,
when (Z, τ) is a finite cellular complex, social Chichilnisky n-rules do ex-
ist for every natural number n if and only if the topological space (Z, τ) is
contractible. (See [16, 22] for further details).

In the context of the present manuscript, if X and Y are nonempty sets,
each of them endowed with a topology, we may wonder if there exist some
operator from (Y X)n into Y X that is representable through a continuous
map W : Y n → Y such that “it preserves the diagonal of Y ”, that is,
W (y, . . . , y) = y for every y ∈ Y and, in addition, “it is not affected by
permutations”, that is, W (yσ1 , . . . , yσn) = W (y1, . . . , yn) for every permuta-
tion σ of the set {1, . . . , n}. As commented before, the topology on Y may
provoke the non-existence of such a map W (see e.g. [21]).

As another interesting stream for further research we suggest matching
the ideas of Section 6 (applications to social choice) with some sort of fuzzy
approach, in the spirit of [36] and perhaps using some results introduced in
Section 5 related to type-2 fuzzy sets.
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