000148559 001__ 148559
000148559 005__ 20250120165542.0
000148559 0247_ $$2doi$$a10.1080/00207160.2020.1792449
000148559 0248_ $$2sideral$$a118898
000148559 037__ $$aART-2021-118898
000148559 041__ $$aeng
000148559 100__ $$aVijender, N.
000148559 245__ $$aQuantum alpha-fractal approximation
000148559 260__ $$c2021
000148559 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148559 5203_ $$aFractal approximation is a well studied concept, but the convergence of all the existing fractal approximants towards the original function follows usually if the magnitude of the corresponding scaling factors approaches zero. In this article, for a given functionf is an element of C(I), by exploiting fractal approximation theory and considering the classicalq-Bernstein polynomials asbase functions, we construct a sequence{fn(q, alpha)(x)}n=1 infinity of(q, alpha)-fractal functions that converges uniformly tofeven if the norm/magnitude of the scaling functions/scaling factors does not tend to zero. The convergence of the sequence{fn(q, alpha)(x)}n=1 infinity of(q, alpha)-fractal functions towardsffollows from the convergence of the sequence ofq-Bernstein polynomials offtowardsf. If we consider a sequence{fm(x)}m=1 infinity of positive functions on a compact real interval that converges uniformly to a functionf, we develop a double sequence{{fm, n(q, alpha)(x)}n=1 infinity}m=1 infinity of(q, alpha)-fractal functions that converges uniformly tof.
000148559 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000148559 590__ $$a1.75$$b2021
000148559 591__ $$aMATHEMATICS, APPLIED$$b99 / 267 = 0.371$$c2021$$dQ2$$eT2
000148559 592__ $$a0.519$$b2021
000148559 593__ $$aComputer Science Applications$$c2021$$dQ2
000148559 593__ $$aApplied Mathematics$$c2021$$dQ2
000148559 594__ $$a3.4$$b2021
000148559 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000148559 700__ $$aChand, A.K.B.
000148559 700__ $$0(orcid)0000-0003-4847-0493$$aNavascues, M.A.$$uUniversidad de Zaragoza
000148559 700__ $$0(orcid)0000-0002-0477-835X$$aSebastian, M.V.
000148559 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000148559 773__ $$g98, 12 (2021), 2355-2368$$pInt. j. comput. math.$$tInternational journal of computer mathematics$$x0020-7160
000148559 8564_ $$s504074$$uhttps://zaguan.unizar.es/record/148559/files/texto_completo.pdf$$yPostprint
000148559 8564_ $$s1714543$$uhttps://zaguan.unizar.es/record/148559/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000148559 909CO $$ooai:zaguan.unizar.es:148559$$particulos$$pdriver
000148559 951__ $$a2025-01-20-14:53:05
000148559 980__ $$aARTICLE