000148591 001__ 148591
000148591 005__ 20250120165542.0
000148591 0247_ $$2doi$$a10.1080/10717544.2018.1474966
000148591 0248_ $$2sideral$$a135596
000148591 037__ $$aART-2018-135596
000148591 041__ $$aeng
000148591 100__ $$0(orcid)0000-0002-8666-622X$$aCiriza, Jesús
000148591 245__ $$aGraphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response
000148591 260__ $$c2018
000148591 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148591 5203_ $$aThe combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160 µm diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380 µm range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380 µm-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380 µm diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation.
000148591 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000148591 590__ $$a3.829$$b2018
000148591 591__ $$aPHARMACOLOGY & PHARMACY$$b60 / 266 = 0.226$$c2018$$dQ1$$eT1
000148591 592__ $$a0.937$$b2018
000148591 593__ $$aPharmaceutical Science$$c2018$$dQ1
000148591 593__ $$aMedicine (miscellaneous)$$c2018$$dQ1
000148591 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000148591 700__ $$aSáenz del Burgo, Laura
000148591 700__ $$aGurruchaga, Haritz
000148591 700__ $$aBorras, Francesc E.
000148591 700__ $$aFranquesa, Marcella
000148591 700__ $$aOrive, Gorka
000148591 700__ $$aHernández, Rosa María
000148591 700__ $$aPedraz, José Luis
000148591 773__ $$g25, 1 (2018), 1147-1160$$pDrug deliv.$$tDrug Delivery$$x1071-7544
000148591 8564_ $$s2571824$$uhttps://zaguan.unizar.es/record/148591/files/texto_completo.pdf$$yVersión publicada
000148591 8564_ $$s3105658$$uhttps://zaguan.unizar.es/record/148591/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000148591 909CO $$ooai:zaguan.unizar.es:148591$$particulos$$pdriver
000148591 951__ $$a2025-01-20-14:53:45
000148591 980__ $$aARTICLE