000148614 001__ 148614
000148614 005__ 20250120165542.0
000148614 0247_ $$2doi$$a10.1016/j.jmaa.2024.129129
000148614 0248_ $$2sideral$$a141883
000148614 037__ $$aART-2025-141883
000148614 041__ $$aeng
000148614 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, Luciano$$uUniversidad de Zaragoza
000148614 245__ $$aUniversality arising from invertible weighted composition operators
000148614 260__ $$c2025
000148614 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148614 5203_ $$aA linear operator U acting boundedly on an infinite-dimensional separable complex Hilbert space H is universal if every linear bounded operator acting on H is similar to a scalar multiple of a restriction of U to one of its invariant subspaces. It turns out that characterizing the lattice of closed invariant subspaces of a universal operator is equivalent to solve the Invariant Subspace Problem for Hilbert spaces. In this paper, we consider invertible weighted hyperbolic composition operators and we prove the universality of the translations by eigenvalues of such operators, acting on Hardy and weighted Bergman spaces. Some consequences for the Banach space case are also discussed.
000148614 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000148614 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000148614 700__ $$aGonzález-Doña, F. Javier
000148614 700__ $$0(orcid)0000-0001-8546-5883$$aOliva-Maza, Jesús$$uUniversidad de Zaragoza
000148614 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000148614 773__ $$g545, 1 (2025), 129129 [13 pp.]$$pJ. math. anal. appl.$$tJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS$$x0022-247X
000148614 8564_ $$s470222$$uhttps://zaguan.unizar.es/record/148614/files/texto_completo.pdf$$yVersión publicada
000148614 8564_ $$s1917480$$uhttps://zaguan.unizar.es/record/148614/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000148614 909CO $$ooai:zaguan.unizar.es:148614$$particulos$$pdriver
000148614 951__ $$a2025-01-20-14:54:09
000148614 980__ $$aARTICLE