000148684 001__ 148684
000148684 005__ 20250121150753.0
000148684 0247_ $$2doi$$a10.1016/j.ijfoodmicro.2017.06.002
000148684 0248_ $$2sideral$$a100757
000148684 037__ $$aART-2017-100757
000148684 041__ $$aeng
000148684 100__ $$aChueca, Beatriz
000148684 245__ $$aGlobal transcriptional response of Escherichia coli MG1655 cells exposed to the oxygenated monoterpenes citral and carvacrol
000148684 260__ $$c2017
000148684 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148684 5203_ $$aDNA microarrays were used to study the mechanism of bacterial inactivation by carvacrol and citral. After 10-min treatments of Escherichia coli MG1655 cells with 100 and 50 ppm of carvacrol and citral, 76 and 156 genes demonstrated significant transcriptional differences (p = 0.05), respectively. Among the up-regulated genes after carvacrol treatment, we found gene coding for multidrug efflux pumps (acrA, mdtM), genes related to phage shock response (pspA, pspB, pspC, pspD, pspF and pspG), biosynthesis of arginine (argC, argG, artJ), and purine nucleotides (purC, purM). In citral-treated cells, transcription of purH and pyrB and pyrI was 2 times higher. Deletion of several differentially expressed genes confirmed the role of ygaV, yjbO, pspC, sdhA, yejG and ygaV in the mechanisms of E. coli inactivation by carvacrol and citral. These results would indicate that citral and carvacrol treatments cause membrane damage and activate metabolism through the production of nucleotides required for DNA and RNA synthesis and metabolic processes. Comparative transcriptomics of the response of E. coli to a heat treatment, which caused a significant change of the transcription of 1422 genes, revealed a much weaker response to both individual constituents of essential oils (ICs).·Thus, inactivation by citral or carvacrol was not multitarget in nature.
000148684 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/AGL2012-32165
000148684 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000148684 590__ $$a3.451$$b2017
000148684 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b17 / 133 = 0.128$$c2017$$dQ1$$eT1
000148684 591__ $$aMICROBIOLOGY$$b43 / 125 = 0.344$$c2017$$dQ2$$eT2
000148684 592__ $$a1.366$$b2017
000148684 593__ $$aFood Science$$c2017$$dQ1
000148684 593__ $$aSafety, Risk, Reliability and Quality$$c2017$$dQ1
000148684 593__ $$aMedicine (miscellaneous)$$c2017$$dQ1
000148684 593__ $$aMicrobiology$$c2017$$dQ2
000148684 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000148684 700__ $$aPérez-Sáez, Elisa
000148684 700__ $$0(orcid)0000-0002-0238-6328$$aPagán, Rafael$$uUniversidad de Zaragoza
000148684 700__ $$0(orcid)0000-0002-7629-8101$$aGarcía-Gonzalo, Diego$$uUniversidad de Zaragoza
000148684 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000148684 773__ $$g257 (2017), 49-57$$pInt. j. food microbiol.$$tINTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY$$x0168-1605
000148684 8564_ $$s1054923$$uhttps://zaguan.unizar.es/record/148684/files/texto_completo.pdf$$yPostprint
000148684 8564_ $$s659501$$uhttps://zaguan.unizar.es/record/148684/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000148684 909CO $$ooai:zaguan.unizar.es:148684$$particulos$$pdriver
000148684 951__ $$a2025-01-21-14:43:23
000148684 980__ $$aARTICLE