000148691 001__ 148691
000148691 005__ 20250121150753.0
000148691 0247_ $$2doi$$a10.1021/acsomega.4c08258
000148691 0248_ $$2sideral$$a142023
000148691 037__ $$aART-2024-142023
000148691 041__ $$aeng
000148691 100__ $$aBidooki, Seyed Hesamoddin
000148691 245__ $$aChitosan Nanoparticles, a Novel Drug Delivery System to Transfer Squalene for Hepatocyte Stress Protection
000148691 260__ $$c2024
000148691 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148691 5203_ $$aThe Mediterranean diet is a well-known dietary pattern that has gained considerable popularity worldwide for its ability to prevent the progression of nonalcoholic fatty liver disease. This is largely attributed to the use of virgin olive oil as the primary source of fat, which contains a substantial amount of squalene, a natural antioxidant. In order to enhance the delivery of squalene and amplify its effects due to its highly hydrophobic nature, herein, squalene has been incorporated into chitosan nanoparticles. The characterization of the resulting nanoparticles was conducted via scanning electron microscopy, dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, and gas chromatography–mass spectrometry. Reactive oxygen species (ROS) generation and cell viability assays were conducted in oxidative and endoplasmic reticulum (ER) stress in AML12 and a TXNDC5-deficient AML12 cell line, which was generated by CRISPR/Cas9 technology. The results demonstrated that squalene was successfully encapsulated in chitosan nanoparticles and exhibited rapid and efficient cellular uptake at a 150 μM squalene concentration within 48 h. In conclusion, the encapsulation of squalene in chitosan nanoparticles, compared to the poly(d,l-lactide-co-glycolic acid) and ethanol drug carriers, significantly enhanced its cellular uptake. This allows the administration of higher doses, which improve hepatocyte viability and reduce ROS levels, effectively compensating for the adverse effects of TXNDC5 deficiency under the context of hepatocyte stress protection.
000148691 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B16-23R$$9info:eu-repo/grantAgreement/ES/MICINN AEI/PID2022-1364140B- I00
000148691 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000148691 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000148691 700__ $$aSpitzer, Lea
000148691 700__ $$aPetitpas, Arnaud
000148691 700__ $$0(orcid)0000-0002-9023-741X$$aSánchez-Marco, Javier
000148691 700__ $$0(orcid)0000-0002-8100-5596$$aMartínez-Beamonte, Roberto$$uUniversidad de Zaragoza
000148691 700__ $$aLasheras, Roberto
000148691 700__ $$aPellerin, Virginie
000148691 700__ $$0(orcid)0000-0002-3595-7668$$aRodríguez-Yoldi, María J.$$uUniversidad de Zaragoza
000148691 700__ $$0(orcid)0000-0002-0108-1004$$aNavarro, María Angeles$$uUniversidad de Zaragoza
000148691 700__ $$0(orcid)0000-0002-8251-8457$$aOsada, Jesús$$uUniversidad de Zaragoza
000148691 700__ $$aFernandes, Susana C. M.
000148691 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000148691 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000148691 7102_ $$11002$$2050$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Biología Celular
000148691 773__ $$g9, 52 (2024), 51379-51393$$pACS Omega$$tACS OMEGA$$x2470-1343
000148691 8564_ $$s3235996$$uhttps://zaguan.unizar.es/record/148691/files/texto_completo.pdf$$yVersión publicada
000148691 8564_ $$s3300464$$uhttps://zaguan.unizar.es/record/148691/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000148691 909CO $$ooai:zaguan.unizar.es:148691$$particulos$$pdriver
000148691 951__ $$a2025-01-21-14:43:31
000148691 980__ $$aARTICLE