000148725 001__ 148725 000148725 005__ 20250121150753.0 000148725 0247_ $$2doi$$a10.1002/cmm4.1118 000148725 0248_ $$2sideral$$a127284 000148725 037__ $$aART-2021-127284 000148725 041__ $$aeng 000148725 100__ $$aVijender N. 000148725 245__ $$aQuantum Bernstein fractal functions 000148725 260__ $$c2021 000148725 5060_ $$aAccess copy available to the general public$$fUnrestricted 000148725 5203_ $$aIn this article, taking the quantum Bernstein functions as base functions, we have proposed the class of quantum Bernstein fractal functions. When (Formula presented.) the base function is taken as the classical q-Bernstein polynomials, we propose the class of quantum fractal functions through a multivalued quantum fractal operator. When (Formula presented.) the base function is assumed as q-Kantorovich-Bernstein polynomial to construct the sequence of (Formula presented.) -Kantorovich-Bernstein fractal functions that converges uniformly to f. Some approximation properties of these new class of quantum fractal interpolants have been studied. 000148725 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000148725 592__ $$a0.255$$b2021 000148725 593__ $$aComputational Mechanics$$c2021$$dQ3 000148725 593__ $$aComputational Mathematics$$c2021$$dQ3 000148725 594__ $$a1.3$$b2021 000148725 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000148725 700__ $$aChand A. K. B. 000148725 700__ $$0(orcid)0000-0003-4847-0493$$aNavascués Sanagustín, M. A.$$uUniversidad de Zaragoza 000148725 700__ $$0(orcid)0000-0002-0477-835X$$aSebastián M. V. 000148725 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000148725 773__ $$g3, 3 (2021), 1118$$pComput. math. methods$$tComputational and Mathematical Methods$$x2577-7408 000148725 8564_ $$s323265$$uhttps://zaguan.unizar.es/record/148725/files/texto_completo.pdf$$yPostprint 000148725 8564_ $$s2363738$$uhttps://zaguan.unizar.es/record/148725/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000148725 909CO $$ooai:zaguan.unizar.es:148725$$particulos$$pdriver 000148725 951__ $$a2025-01-21-14:44:13 000148725 980__ $$aARTICLE