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Quantum Bernstein Fractal Functions

Abstract

In this article, taking the quantum Bernstein functions as base functions, we have
proposed the class of quantum Bernstein fractal functions. When f ∈ (I), the
base function is taken as the classical q-Bernstein polynomials, we propose the class
of quantum fractal functions through a multivalued quantum fractal operator. When
f ∈ p(I), 1 ≤ p ≤ ∞, the base function is assumed as q-Kantorovich-Bernstein
polynomial to construct the sequence of (q, �)-Kantorovich-Bernstein fractal func-
tions that converges uniformly to f. Some approximation properties of these new
class of quantum fractal interpolants have been studied.
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1 INTRODUCTION

Quantum calculus (in short q-calculus) is in the homework of the classical infinitesimal calculus without the notion of limit. It
works as a bridge between mathematics and physics for the last five decades. One can find its application in different mathemat-
ical areas such as number theory, combinatorics, orthogonal polynomials, basic hypergeometric functions apart from quantum
theory, mechanics and theory of relativity in physics. In 1912, using polynomials, Bernstein gave an alternative proof of the
Weierstrass theorem: Every continuous function on [a, b] can be uniformly approximated by a sequence of polynomial functions.
Since Bernstein polynomials play an important role in approximation theory, many researchers have studied this polynomial
and its different generalizations, see for instance [1, 2, 3]. Lupas [4] first introduced the q-analogue of Bernstein polynomials
that brought into the existence of a new research area called q-approximation theory. Numerous authors [5, 6, 7, 8, 9, 10, 11, 12]
have investigated and proposed the q-extension of various results of classical approximation theory.
However, classical approximation theory and q-approximation theory deal with the approximation of functions using smooth

functions or infinitely differentiable functions. But, the classical smooth functions may not provide good representatives of
irregular functions, for instance, Weierstrass function, and real-world sampled signals such as financial series, seismic data,
speech signals, bioelectric recordings, etc. Fractal functions provide a constructive approximation theory for non-differentiable
functions. Fractal functions concern mainly at data/function which present details at different scales or some degree of self-
similarity.
By exploiting the theory of iterated function system (IFS) [13], Barnsley [14] introduced the concept of fractal interpolation

function (FIF) to provide a mathematical representation of a data set that is generated from irregularity and/or self-affine struc-
ture. The calculus of fractal functions was investigated in [15, 16] and this research provided a methodology for the construction
of r-fractal splines. Very recently, shape preserving fractal interpolation was studied in the references [17, 18, 19, 20]. In these
articles various types of fractal splines that preserve the fundamental shapes of the interpolation data were developed. Shape
preserving fractal surfaces, and their convergence and stability aspects were investigated in [21, 22, 23]. Furthermore, Barnsley
[14] has extended the idea of fractal interpolation to approximate a continuous function f defined on a real compact interval I ,
and this led to the concept of fractal approximation or �-fractal function f � of f [24, 25, 26]. In general, (i) �-fractal functions
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are non-differentiable (ii) the graph of f � is a union of transformed copies of itself (iii) fractal dimension of graph of �-fractal
function is non-integer. Owing to these fractal characteristics, f � may be treated as the fractal approximant of f. In this way,
every continuous function can be approximated by means of fractal functions. Further, shape preserving fractal approximation
was investigated in [27]. Akhtar et al. [28] calculated the box dimension of the graph of �-fractal functions by assuming suitable
conditions on the original function f and base function.
Navascués et al. [24, 25, 26, 29, 30, 31] studied various properties of the �-fractal function f � of f including approximation

properties, among various desirable properties of a good approximant. Navascués et al. [24, 25, 26, 29, 30, 31] proved that the �-
fractal function f � of f converges towards f provided the magnitude of the scaling factors of f � goes to zero. In this paper, using
the theory of fractal functions and classical q-approximation, for a given function f ∈ (I), we propose a sequence {f (q,�)n }∞n=1
of quantum fractal functions that converges to f even if the magnitude/norm of the corresponding scaling factors/functions does
not go to zero. In the construction of the sequence {f (q,�)n }∞n=1 of quantum fractal functions, we use the sequence {Bn,q(f, ⋅)}∞n=1
of q-Bernstein polynomials of f as base functions. Consequently, the convergence of the sequence {f (q,�)n }∞n=1 of quantum fractal
functions towards the function f follows from the convergence of the q-Bernstein polynomials towards f. The shape of the
quantum fractal functions depends on the choice of q ∈ (0, 1) and the scaling functions.When q → 1, the q-Bernstein polynomial
coincides with the classical Bernstein polynomial, and in this case we call quantum fractal functions simply �-fractal functions.
Further, the convergence of these �-fractal functions towards f follows from the convergence of the q-Bernstein polynomials of
f towards f. The procedure of getting a sequence {f (q,�)n }∞n=1 of quantum fractal functions that converges uniformly to f ∈ (I)
determines an operator, termed the multivalued quantum fractal operator:  (q,�) ∶ (I) ⇉ (I), f → {f (q,�)n }∞n=1. We study
some basic properties of  (q,�).
Navascués and Chand [29] extended the notion of �-fractal function to p-spaces and derived some approximation results

under the assumption that the norm of the scaling functions tends to zero. In this manuscript, we develop (q, �)-Kantorovich-
Bernstein fractal functions in p-spaces without any condition on the scaling functions for convergence. Further, we study the
approximation properties of (q, �)-Kantorovich-Bernstein fractal functions and quantum fractal versions of Müntz theorems in
p-spaces.

2 BACKGROUND AND PRELIMINARIES

In this section we endeavor to expose the reader to the requisite preliminaries on fractal interpolation functions and its
generalization through �-fractal functions.

2.1 Fractal interpolation
Let ℕk denote the first k natural numbers, I = [x1, xN ] be a closed and bounded interval of ℝ, and (I) be the Banach space of
all real-valued continuous functions on I equipped with the supremum norm. Consider the interpolation data {(xi, yi) ∶ i ∈ ℕN}
with strictly abscissae andN > 2. Let Li, i ∈ ℕN−1, be a set of homeomorphic mappings from I to Ii = [xi, xi+1] satisfying

Li(x1) = xi, Li(xN ) = xi+1. (1)

Let Fi be a function from I ×K toK (K is suitable compact subset ofℝ), which is continuous in the x-direction and contractive
in the y-direction (with contractive factor |�i| ≤ � < 1) such that

Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1, i ∈ ℕN−1. (2)

Let us consider  = {g ∈ (I) | g(x1) = y1 and g(xN ) = yN}. We define a metric on  by �(ℎ, g) = max
{

|ℎ(x) − g(x)| ∶

x ∈ I
}

for ℎ, g ∈ . Then (, �) is a complete metric space. Define the Read-Bajraktarević operator T on (, �) by

T g(x) = Fi(L−1i (x), g◦L
−1
i (x)), x ∈ Ii. (3)

Using the properties of Li and (1)-(2), T g is continuous on the interval Ii ; i ∈ ℕN−1, and at each of the points x2,… , xN−1.
Also,

�(T g, T ℎ) ≤ |�|∞�(g, ℎ),
where |�|∞ = max{|�i| ∶ i ∈ ℕN−1} < 1. Hence, T is a contraction map on the complete metric space (, �). Therefore, by the
Banach fixed point theorem, T possesses a unique fixed point (say) f ∗ on , i.e., (Tf ∗)(x) = f ∗(x) for all x ∈ I . According to
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(3), the function f ∗ satisfies the functional equation: f ∗(x) = Fi(L−1i (x), f
∗◦L−1i (x)), x ∈ Ii. Further, using (1)-(2), it is easy

to verify that f ∗(xi) = yi, i ∈ ℕN . Defining a mappingwi ∶ I ×K → Ii ×K aswi(x, y) = (Li(x), Fi(x, y)), (x, y) ∈ I ×K, i ∈
ℕN−1, the graph G(f ∗) of f ∗ satisfies:

G(f ∗) = ∪
i∈ℕN−1

wi(G(f ∗)), (4)

and hence f ∗ is called fractal interpolation function (FIF) corresponding to the IFS  = {I ×K,wi(x, y) = (Li(x), Fi(x, y)), i ∈
ℕN−1}.
Barnsley and Navascués [14, 24, 25] observed that the concept of FIFs can be used to define a class of fractal functions

associated with a given function f ∈ (I).
For a given f ∈ (I), consider a partition Δ = {x1, x2,… , xN} of [x1, xN ] satisfying x1 < x2 < ⋯ < xN , a continuous
function b ∶ I → ℝ that fulfills the conditions b(x1) = f (x1), b(xN ) = f (xN ) and b ≠ f , andN − 1 real numbers �i, i ∈ ℕN−1
satisfying |�i| < 1. Define an IFS through the maps

Li(x) = aix + bi, Fi(x, y) = �iy + f (Li(x)) − �ib(x), i ∈ ℕN−1.

The corresponding FIF denoted by f �Δ,b = f
� is referred to as �-fractal function for f (fractal approximation of f ) with respect

to a scaling vector � = (�1, �2,… , �N−1), base function b, and partitionΔ. Here the set of data points is
{(

xi, f (xi)
)

∶ i ∈ ℕN
}

.
The function f � is the fixed point of the Read-Bajraktarević (RB) operator T ∶ f (I)→ f (I) defined by

(T g)x = �ig(L−1i (x)) + f (x) − �ib(L
−1
i (x)), x ∈ Ii, i ∈ ℕN−1,

where f (I) =
{

g ∈ (I) ∶ g(x1) = f (x1), g(xN ) = f (xN )
}

. Consequently, the �-fractal function f � corresponding to f
satisfies the self-referential equation

f �(x) = �if �(L−1i (x)) + f (x) − �ib(L
−1
i (x)), x ∈ Ii, i ∈ ℕN−1. (5)

The fractal dimension (box dimension or Hausdorff dimension) of f � depends on the choice of the scaling vector �. For instance,
NasimAkhtar et. al [32] calculated box dimension of graph of �-fractal functions by assuming suitable conditions on the original
function f and base function b. The following proposition provides the details of it.

Proposition 1. Let f ∈ (I) and b ∶ I → ℝ be Lipschitz functions with b(x1) = f (x1), b(xN ) = f (xN ). Let
Δ = {x1, x2,… , xN} be a partition of I satisfying x1 < x2 < ⋯ < xN . and � = (�1, �2,… , �N−1). If the data points
(

xi, f (xi)
)

, i ∈ ℕN are not collinear, then graph G of the �-fractal function f � has the box dimension

dimB(G) =
{

D if
∑N−1
i=1 |�i| > 1,

1 otherwise,

where D is solution of
∑N−1
i=1 |�i|aD−1i = 1.

To obtain fractal functions with more flexibility, iterated function system wherein scaling factors are replaced by scaling
functions received attention in the recent literature [33] on fractal functions. That is, one may consider the IFS with maps

Li(x) = aix + bi, Fi(x, y) = �i(x)y + f (Li(x)) − �ib(x), i ∈ ℕN−1,

where �i, i ∈ ℕN−1 are continuous functions on I satisfying max{‖�i‖∞ ∶ π ∈ ℕN−1} < 1. The corresponding �-fractal
function is the fixed point of the RB-operator

(T g)x = �i(L−1i (x))g(L
−1
i (x)) + f (x) − �i(L

−1
i (x))b(L

−1
i (x)), x ∈ Ii, i ∈ ℕN−1. (6)

Consequently, the �-fractal function f � corresponding to f satisfies the self-referential equation

f �(x) = �i(L−1i (x))f
�(L−1i (x)) + f (x) − �i(L

−1
i (x))b(L

−1
i (x)), x ∈ Ii, i ∈ ℕN−1. (7)

3 QUANTUM FRACTAL APPROXIMATION

From (7), we get the following inequality:

‖f � − f‖∞ ≤
‖�‖∞

1 − ‖�‖∞
‖f − b‖∞, (8)
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where ‖�‖∞ = max{‖�i‖∞ ∶ i ∈ ℕN−1}. For a fixed base function b, the �-fractal function f � converges uniformly to f ∈ (I)
if ‖�‖∞ → 0. To get the convergence of the �-fractal function f � towards f without altering the scaling functions, we choose
the base function b as q-Bernstein polynomial Bn,q(f, x) of f , i.e., b = Bn,q(f, x) (see for instance [34]),

Bn,q(f, x) =
1

(xN − x1)n

n
∑

k=0

(

n
k

)

q
(x − x1)kf

(

x1 + (xN − x1)
[k]q
[n]q

)

n−k−1
∏

s=0

(

xN − x1 − qsx
)

, x ∈ I, (9)

where q ∈ (0, 1), n ∈ ℕ, [k]q =
1−qk

1−q
,

[k]q! =
{

[k]q[k − 1]q[k − 2]q…[2]q[1]q , if k ≠ 0,
1, if k = 0,

(

n
k

)

q
= [n]q!

[k]q![n−k]q!
, f ∈ (I), Bn,q(f, x1) = f (x1), Bn,q(f, xN ) = f (xN ). When q → 1, Bn,q(f, x) coincides with the

classical n-th Bernstein polynomial. If we take the base function as b = Bn,q(f, x) in (9), then the corresponding fractal function
 q,�
Δ,Bn

(f ) = f (q,�)n is called a quantum Bernstein fractal function associated with f ∈ (I), and

f (q,�)n (x) = f (x) + �i(L−1i (x))[f
(q,�)
n (L−1i (x)) − Bn,q(f, L

−1
i (x))], x ∈ Ii, i ∈ ℕN−1, n ∈ ℕ. (10)

Therefore, from (10), it is easy to notice that shape and properties of the quantum fractal function f (q,�)n depends on the choice
of q ∈ (0, 1) apart from the choice of scaling functions. Note that the quantum fractal function f (q,�)n , n ∈ ℕ, of f ∈ (I) is
obtained via the IFS defined by

n = {I ×ℝ, (Li(x), Fn,i(x, y)) ∶ i ∈ ℕN−1}, n ∈ ℕ, (11)

where Fn,i(x, y) = f (Li(x)) − �i(x)(y − Bn,q(f, x)).

Theorem 1. Let f ∈ (I). There exists a sequence of quantum Bernstein fractal functions {f (q,�)n (x)}∞n=1 that converges
uniformly to f on I. Further, f (q,�)n , n ∈ ℕ, satisfies the following inequalities:

1 − ‖�‖∞
1 + ‖�‖∞

‖f‖∞ ≤ ‖f (q,�)n ‖ ≤
1 + ‖�‖∞
1 − ‖�‖∞

‖f‖∞. (12)

Proof. Let f (q,�)n , n ∈ ℕ, be the quantum fractal function corresponding to f. Then, from (10), it is easy to deduce that

‖f (q,�)n − f‖∞ ≤‖�‖∞‖f (q,�)n − Bn,q(f, .)‖∞,
≤‖�‖∞[‖f (q,�)n − f‖∞ + ‖f − Bn,q(f, .)‖∞].

Hence we obtain

‖f (q,�)n − f‖∞ ≤
‖�‖∞

1 − ‖�‖∞
‖f − Bn,q(f, .)‖∞. (13)

From [34], we have
‖Bn,q(f, .) − f‖∞ → 0 as n→∞. (14)

Using (14) in (13), we conclude that the sequence {fn,q(x)}∞n=1 of quantum fractal functions converges uniformly to f. Again
from [35], we have

‖Bn,q(., .)‖∞ = 1, q ∈ (0, 1]. (15)

We can rewrite (13) as

‖f (q,�)n ‖∞ − ‖f‖∞ ≤ ‖f (q,�)n − f‖∞ ≤
‖�‖∞

1 − ‖�‖∞

{

‖f‖∞ + ‖Bn,q(f, .)‖∞
}

. (16)

Using (15) in (16), we get the right side inequality of (12). Next, from (10), we obtain

|f (q,�)n (x) − f (x)| ≤ ‖�i‖∞
{

‖f (q,�)n ‖∞ + ‖Bn,q(f, .)‖∞
}

, x ∈ Ii, i ∈ ℕN−1, n ∈ ℕ,

which implies that
‖f‖∞ − ‖f (q,�)n ‖∞ ≤ ‖f (q,�)n − f‖∞ ≤ ‖�‖∞

{

‖f (q,�)n ‖∞ + ‖Bn,q(f, .)‖∞
}

.

Using (15) in the above inequality, we get the left side inequality of (12).
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Proposition 2. If we consider p-norm ‖f‖p =
(

∫I |f (t)|
pdt

)1∕p
, 1 < p <∞, for f ∈ (I), the following inequality holds.

‖f (q,�)n − f‖p ≤
||�||∞

1 − ||�||∞
‖f − Bn,q(f )‖p (17)

Proof. From (10), we have

‖f (q,�)n − f‖pp = ∫
I

|(f (q,�)n − f )(x)|pdx

=
N−1
∑

i=1

xi+1

∫
xi

|�i(L−1i (x)|
p
|(f (q,�)n − Bn,q(f ))◦L−1i (x)|

pdx

=
N−1
∑

i=1
∫
I

ai|�i(x̃)|p|(f (q,�)n − Bn,q(f ))(x̃)|pdx̃

≤
N−1
∑

i=1
ai‖�‖

p
∞ ∫

I

|(f (q,�)n − Bn,qf )(x)|pdx

= ‖�‖p∞‖f
(q,�)
n − Bn,q(f )‖

p
p .

In the above computation, we have used the change of variable x̃ = L−1i (x) at the 3rd step and
N−1
∑

i=1
ai = 1 at the final step. From

the above estimation, we have

‖f (q,�)n − f‖p ≤ ‖�‖∞‖f
(q,�)
n − Bn,q(f )‖p

≤ ‖�‖∞(‖f (q,�)n − f‖p + ‖f − Bn,q(f )‖p).

Further simplification of the above inequality gives the desired estimation in (17).

Examples. Now, we want to see some examples of q-fractal functions for a given function f (x) = x1∕4, x ∈ [0, 1]. The quantum
fractal functions in Figures 1(a)-(c) are generated with respect to the partition Δ = {0, 0.25, 0.5, 1} of [0, 1]. The quantum
fractal functions f (0.2,�)2 , f (0.7,�)2 , and f (0.7,�)98 are generated at the sixth iteration respectively in Figures 1(a)-(c) with the choice
of the scaling functions �i(x) =

1
1+e−10x

, x ∈ [0, 1], i ∈ ℕ3. By comparing the quantum fractal functions f (0.2,�)2 and f (0.7,�)2 , one
can observe the effects of q in the shape of the quantum fractal function. According to Theorem 1, the quantum fractal function
f (0.7,�)31 provides a better approximation for x1∕4, x ∈ [0, 1] than that obtained by f (0.7,�)2 . By observing Figures 1(b)-(c), one can
ask why the fractal functions f (0.7,�)2 and f (0.7,�)98 don’t have the same sort of irregularity even if their scaling functions are same.
This is due to the following reason: The fractal function f (0.7,�)2 exhibits irregularity on all scales whereas the fractal function
f (0.7,�)31 exhibits irregularity on small scales. Further, small scales of irregularity of the fractal function f (0.7,�)98 can be observed
from Figure 1(d) which is a part of f (0.7,�)98 under magnification.

4 MULTIVALUED QUANTUM FRACTAL OPERATOR

The definition of quantum �-fractal function  (q,�)
Δ,Bn

(f ) = f (q,�)Δ,Bn
= f (q,�)n corresponding to each f ∈ (I) yields a multivalued

quantum fractal operator  (q,�) ∶ (I)⇉ (I) defined by

 (q,�)(f ) = { (q,�)
n (f )}∞n=1 = {f

(q,�)
n }∞n=1.

Let us record some definitions which are needed for our further investigations.

Definition 1 ([36]). Let X and Y be two real normed linear spaces over ℝ. For a multi-valued map T ∶ X → Y , the domain of
T is defined by Dom(T ) = {x ∈ X ∶ T (x) ≠ ∅}. Then T ∶ X ⇉ Y is

• convex if for all x1, x2 ∈ Dom(T ) and for all � ∈ [0, 1],

�T (x1) + (1 − �)T (x2) ⊆ T (�x1 + (1 − �)x2).
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(a) The quantum fractal function f (0.2,�)2 .
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(b) The quantum fractal function f (0.7,�)2 .
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(c) The quantum fractal function f (0.7,�)98 .
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(d) A part of f (0.7,�)98 under magnification.

FIGURE 1 The quantum fractal approximants of x1∕4, x ∈ [0, 1].

• process if for all x ∈ Dom(T ) and for all � > 0,

T (�x) = �T (x) and 0 ∈ T (0).

• linear if for all x1, x2 ∈ Dom(T ) and for all �, 
 ∈ ℝ,

�T (x1) + 
T (x2) ⊆ T (�x1 + 
x2).

• Lipschitz if there exists a constant � > 0 such that for all x1, x2 ∈ Dom(T )

T (x1) ⊆ T (x2) + �‖x1 − x2‖UY ,

where UY is the closed unit ball in Y .

Theorem 2. [Corollary 1.4, [37]] Let X and Y be real vector spaces and P0(Y ) be the collection of all nonempty subsets of Y .
A multivalued map T ∶ X → P0(Y ) is linear and T (0) = {0} if and only if T is single-valued map.

Theorem 3. [Corollary 1.4, [37]] Let X and Y be real vector spaces and P0(Y ) be the collection of all nonempty subsets of Y .
If a multivalued map T ∶ X → P0(Y ) is such that T (x0) is a singleton for some x0 ∈ X, then T ∶ X → P0(Y ) is convex if and
only if T is single-valued and affine.

Theorem 4. The multivalued quantum fractal operator  (q,�) ∶ (I)⇉ (I) defined by  (q,�)(f ) = {f (q,�)n }∞n=1 is not linear.

Proof. Clearly  (q,�) is multivalued. Also, from definition  (q,�)(0) = {0}. Hence, by Theorem 2,  (q,�) is not linear.

Remark 1. Note that Bn,q ∶ (p, ‖ ⋅ ‖p) → (p, ‖ ⋅ ‖p) is not bounded on (p(I), ‖ ⋅ ‖p). Thus, we can not use the standard
density argument to extend the continuous quantum Bernstein fractal functions to (p(I), ‖ ⋅ ‖p). Therefore, we will construct
p-quantum fractal Bernstein fractal functions by using Kantorovich-Bernstein polynomials in the following.
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5 KANTOROVICH-BERNSTEIN FRACTAL FUNCTIONS IN P SPACES

In this section, for a given function f ∈ p(I), 1 ≤ p ≤∞, using q-Kantorovich-Bernstein operator Φq,n [34] as base function,
we develop (q, �)-Kantorovich-Bernstein fractal functions in the following:
It is known [34] that for f ∈ p(I), 1 ≤ p ≤∞, ‖f − Φq,n(f )‖p → 0 as n→∞, where

Φq,n(f ; x) =
1

(xN − x1)n

n
∑

k=0

(

n
k

)

q
(x − x1)k(xN − x)n−k[n + 1]q

x1+
(k+1)(xN−x1)

[n+1]q

∫
x1+

k(xN−x1)
[n+1]q

f (t)dqt,

where dqt denotes the q-integration [38].
The proof of the following theorem can be obtained using the arguments similar to those used in [39].

Theorem 5. Let f ∈ p(I), 1 ≤ p ≤ ∞. Suppose Δ = {x1, x2,… , xN} be a partition of I satisfying x1 < x2 < … <
xN , Ii ∶= [xi, xi+1), i ∈ ℕN−2, IN−1 = [xN−1, xN ]. Let Li(x) = aix + bi satisfy (1). If �i ∈ ∞(I) for all i ∈ ℕN−1 and
b(x) = Φq,n(f ; x) ∈ p(I), then the RB-operator given in (6) maps p(I) onto itself. Further, if the scaling function satisfies
the condition

⎧

⎪

⎨

⎪

⎩

[

∑

i∈ℕN−1
ai‖�i‖

p
∞

]
1
p

< 1 if 1 ≤ p <∞,

‖�‖∞ < 1 if p = ∞,

then T is a contraction on p, and gives a fixed point f (q,�)n ∈ p(I) for each n ∈ ℕ, which satisfies the self-referential equation
(4).

From here we will assume that these conditions on the scaling functions are satisfied.
We define a (q, �)-Kantorovich-Bernstein fractal function as the solution of the fixed point equation:

f (q,�)n (x) = f (x) + (f (q,�)n (L−1i (x)) − Φq,n(f ;L−1i (x)))�i(L
−1
i (x)) ∀x ∈ Ii, n ∈ ℕ, i ∈ NN−1. (18)

Theorem 6. For f ∈ p(I) and the scaling functions satisfying the conditions given in Theorem 5, there exists a sequence
{f (q,�)n (x)}∞n=1 of (q, �)-Kantorovich-Bernstein fractal functions that converges uniformly to f on I.

Proof. From (18) for 1 ≤ p <∞, we obtain

‖f (q,�)n − f‖pp = ∫
I

|(f (q,�)n − f )(x)|pdx

=
∑

i∈ℕN−1
∫
Ii

|

|

|

(f (q,�)n (L−1i (x)) − Φq,n(f ;L−1i (x)))�i(L
−1
i (x))

|

|

|

p
dx

=
∑

i∈ℕN−1

ai ∫
I

|

|

|

(f (q,�)n (t) − Φq,n(f ; t))�i(t)
|

|

|

p
dt

≤
∑

i∈ℕN−1

ai‖�i‖
p
∞ ∫

I

|

|

|

(f (q,�)n (t) − Φq,n(f ; t))
|

|

|

p
dt

=
∑

i∈ℕN−1

ai‖�i‖
p
∞‖f

(q,�)
n − Φq,n(f )‖pp.

Taking pth root in both sides, we have

‖f (q,�)n − f‖p ≤

[

∑

i∈ℕN−1

ai‖�i‖
p
∞

]
1
p

‖f (q,�)n − Φq,n(f )‖p,

≤

[

∑

i∈ℕN−1

ai‖�i‖
p
∞

]
1
p
[

‖f (q,�)n − f‖p + ‖f − Φq,n(f )‖p
]

,
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and further implication gives

‖f (q,�)n − f‖p ≤

[

∑

i∈ℕN−1
ai‖�i‖

p
∞

]
1
p

1 −

[

∑

i∈ℕN−1
ai‖�i‖

p
∞

]
1
p

‖f − Φq,n(f )‖p. (19)

A similar calculation as in Proposition 2, we obtain

‖f (q,�)n − f‖∞ ≤
‖�‖∞

1 − ‖�‖∞
‖f − Φq,n(f )‖∞. (20)

From the last two inequalities, we get the desired result.

Theorem 7. The (q, �)-Kantorovich-Bernstein fractal operator  (q,�)
Δ,Φq,n

∶ p(I) → p(I), 1 ≤ p ≤ ∞, n ∈ ℕ defined by
 (q,�)
Δ,Φq,n

(f ) = f (q,�)n is linear and bounded.

Proof. Let f and g be in p(I) and �1, �2 be real scalars. The functional equations for the corresponding (q, �)-Kantorovich-
Bernstein fractal functions are given by

f (q,�)n (x) = f (x) + �i(L−1i (x))(f
(q,�)
n (L−1i (x)) − Φq,n(f ;L−1i (x))),

g(q,�)n (x) = g(x) + �i(L−1i (x))(g
(q,�)
n (L−1i (x)) − Φq,n(g;L−1i (x))) ∀x ∈ Ii, i ∈ ℕN−1.

Thus, we can write

(�1f (q,�)n + �2g(q,�)n )(x) =(�1f + �2g)(x) + �i(L−1i (x))[(�1f
(q,�)
n + �2g(q,�)n )(L−1i (x))

− Φq,n(�1f + �2g;L−1i (x))]
(21)

from which we obtain that �1f
(q,�)
n + �2g

(q,�)
n is a fixed point of the operator

(Tℎ)(x) = (�1f + �2g)(x) + �i(L−1i (x))(ℎ − Φq,n(�1f + �2g;L−1i (x)).

Now using the uniqueness of fixed point, we get

 (q,�)
Δ,Φq,n

(�1f + �2g) = �1f (q,�)n + �2g(q,�)n = �1
(q,�)
Δ,Φq,n

(f ) + �2
(q,�)
Δ,Φq,n

(g).

Again with help of (19)-(20), we have

‖ (q,�)
Δ,Φq,n

(f )‖p = ‖f (q,�)n ‖p

≤ ‖f (q,�)n − f‖p + ‖f‖p

≤ R
1 − R

‖f − Φq,n(f )‖p + ‖f‖p

≤ R
1 − R

‖Id − Φq,n‖p‖f‖p + ‖f‖p, (22)

where

R =

⎧

⎪

⎨

⎪

⎩

[

∑

i∈ℕN−1
ai‖�i‖

p
∞

]
1
p

, for 1 ≤ p <∞,

‖�‖∞, for p = ∞.

(23)

Since ‖Id − Φq,n‖p → 0 as n→∞, so for given � = 1, there existsM ∈ ℕ such that

‖Id − Φq,n‖p < 1 ∀ n > M.

Consider � = max{‖Id − Φq,1‖p, ‖Id − Φq,2‖p,… , ‖Id − Φq,M‖p, 1}. Then from (22) we get

‖ (q,�)
Δ,Φq,n

‖ ≤ 1 + R
1 − R

�,

which implies  (q,�)
Δ,Φq,n

is bounded operator for each n ∈ ℕ.
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Theorem 8. Consider a scaling function which satisfies
[

∑

i∈ℕN−1

ai‖�i‖
p
∞

]
1
p

< min{1, ‖Φq,n‖
−1}, if 1 ≤ p <∞,

‖�‖∞ < min{1, ‖Φq,n‖
−1}, if p = ∞.

Then the corresponding fractal operator is bounded below. In particular,  (q,�)
Δ,Φq,n

is injective and has a closed range.

Proof. From the reverse triangle inequality and the proof of Theorem 6, we obtain

‖f‖p − ‖f (q,�)n ‖p ≤ ‖f − f (q,�)n ‖p

≤ R‖f (q,�)n − Φq,n(f )‖p
≤ R‖f (q,�)n ‖p + R‖Φq,n‖‖f‖p

⇒ ‖f‖p ≤
1 + R

1 − R‖Φq,n‖
‖f (q,�)n ‖p. (24)

Since ‖Φq,n‖
−1 > R, the operator  (q,�)

Δ,Φq,n
is bounded below and so injective. Now to prove  (q,�)

Δ,Φq,n
has a closed range, let f (q,�)n,m

be a sequence in  (q,�)
Δ,Φq,n

(p(I)) such that f (q,�)n,m → f̃ , and thus, f (q,�)n,m is a Cauchy sequence. Now

‖fm − fr‖p ≤
1 + R

1 − R‖Φq,n‖
‖f (q,�)m,n − f (q,�)r,n ‖p

which shows that {fm} is a Cauchy sequence in p(I). Since p(I) is a complete metric space, there exists f ∈ p(I) such that
fm → f . Using the continuity of  (q,�)

Δ,Φq,n
, we have f̃ =  (q,�)

Δ,Φq,n
(f ) = f (q,�)n .

6 APPROXIMATION BY KANTOROVICH-BERNSTEIN FRACTAL FUNCTIONS

Denote Λ ∶= {�i}+∞i=1 , �i ≠ �j if i ≠ j, �i ∈ ℝ+, �0 = 0. The collection Λm = {x�0 , x�1 ,… , x�m} is called a finite Müntz
system. The linear span of Λm is known as Müntz space and denoted byMm(Λ). Let I = [a, b], a > 0 and Δ ∶= {x1,… , xN}
be a partition of I satisfying a = x1 < … < xN = b. Choose the scaling function � = (�1, �2,… , �N−1) ∈ (∞(I))N−1
as per the prescription given in Theorem 5. We know that Φq,n ∶ p(I) → p(I) is a bounded linear map and the Müntz
monomial x�i ∈ p(I) even if �i >

−1
p
. Therefore, we can define the (q, �)-Kantorovich-Bernstein fractal Müntz monomial

(x�i)(q,�)n ∶=  (q,�)
Δ,Φq,n

(x�i).

Definition 2. A (q, �)-Kantorovich-Bernstein fractal Müntz polynomial is a finite linear combination of the functions (x�i)(q,�)n ,
where �i ∈ Λ, i ∈ ℕ, and � ∈ (∞(I))N−1 satisfies the condition of Theorem 5. In particular, when � = 0, this linear
combination is called quantum Bernstein Müntz polynomial.

Let S = {(x�i)(q,�)n ∶ i, n ∈ ℕ}. The set
M (q,�)(Λ) ∶= Span(S)

is defined as the quantum Bernstein fractal Müntz space associated with Λ. We need the following definition in the sequel:

Definition 3. ([40]) A set A is fundamental in a normed linear space B if the family of linear combinations of elements of A is
a dense set of B.

Theorem 9. Quantum fractal version of first Müntz theorem: Let Δ be a partition of I = [a, b], b > 0. If the scaling vector
� is chosen according to Theorem 5, then the system S restricted to values �i such that −

1
2
< �i →∞ is fundamental in 2(I),

whenever
∑

�i≠0

1
�i
= +∞.

Proof. Let g ∈ 2(I) and � > 0 be given. From classical Müntz’s first theorem (see for instance [40]), it is known that the set
of functions {x�1 , x�2 ,…}, where − 1

2
< �i →∞ is fundamental in the least-square norm if and only if

∑

�i≠0

1
�i
= +∞.

Thus, for �∕2 > 0, there exists a Müntz polynomial qm ∈ Span{x�1 , x�2 ,…} such that

‖g − qm‖2 <
�
2
. (25)
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With the scaling function �, we construct the (q, �)-Kantorovich-Bernstein fractal Müntz polynomial as (qm)
(q,�)
n =  (q,�)

Δ,Φq,n
(qm)

by using the linearity of  (q,�)
Δ,Φq,n

. Since ‖qm − Φq,n(qm)‖2 → 0 as n→∞, there existsM1 ∈ ℕ such that

‖qm − Φq,n(qm)‖2 <

�
[

1 −
√

∑

i∈ℕN−1
ai‖�i‖2∞

]

2
√

∑

i∈ℕN−1
ai‖�i‖2∞

for n > M1. (26)

Using (26) in (19), we obtain

‖(qm)(q,�)n − qm‖2 ≤

√

∑

i∈ℕN−1
ai‖�i‖2∞

1 −
√

∑

i∈ℕN−1
ai‖�i‖2∞

‖qm − Φq,n(qm)‖2 <
�
2

for n > M1. (27)

Combining (25) and (27), we have

‖g − (qm)(q,�)n ‖2 ≤ ‖g − qm‖2 + ‖(qm)(q,�)n − qm‖2 < � for n > M1.

Consequently (qm)
(q,�)
n ∈M (q,�)(Λ) approximates to g in 2-norm and the set considered is fundamental in 2(I).

Corollary 1. The system S is complete in 2(I) if the scaling vector � is chosen according to the prescription of Theorem 5,
− 1
2
< �i →∞ and

∑

�i≠0

1
�i
= +∞.

Proof. In the above theorem, we have proved that {(x�i)(q,�)n ∶ i, n ∈ ℕ} where �i satisfy the conditions described
is fundamental in the normed linear space 2(I). According to Banach’s theorem (see for instance [41]), the system S is
complete.

We can generalize the above results for any fundamental system of p(I), 1 ≤ p < ∞. The proof follows similar lines and
hence it is omitted.

Theorem 10. Let Δ be a partition of I = [a, b], a > 0 and the scaling vector � be chosen according to the prescription of
Theorem 5. If the system {fj ∶ j ∈ ℕ} is fundamental in p(I), 1 ≤ p < ∞, then the corresponding quantum Bernstein fractal
system {(f �ij )

(q,�)
n ∶ i, j, n ∈ ℕ} is also fundamental whenever − 1

p
< �i →∞ and

∑

�i≠0

1
�i
= +∞.

Now, we will state the full Müntz theorem in Lp[0, 1], 1 ≤ p ≤ ∞ for quantum fractal Bernstein Müntz polynomials. The
proof follows similar steps as described in Theorem 9 with proper choice of classical Müntz polynomial, i.e., the exponents
satisfy the condition prescribed by Borwein and Erdélyi [42].

Theorem 11. Let 1 ≤ p ≤ ∞ and Δ ∶= 0 = x0 < x1 <… xN = 1 be a partition of I = [0, 1]. Let Λ ∶= {�i}∞i=0 be a sequence

of distinct real numbers greater than −1
p
, and such that

∞
∑

i=0

�i+
1
p

(�i+
1
p
)2+1

= ∞. Then, the system {(x�i)(q,�)n ∶ i, n ∈ ℕ} is fundamental

in p(I).

7 CONCLUSION

In the present paper, we have introduced a new approximation method using q-Bernstein polynomial as the base function in the
structure of fractal interpolants. For a given function f ∈ (I), the convergence of the sequence of the quantum fractal functions
towards f does not need any further condition on the scaling functions so that these approximants can be smooth or nonsmooth
depending on the norm of the scaling functions. The shape of the proposed fractal approximants depends on the free variable
q ∈ (0, 1) apart from the scaling functions. Hence, for the given continuous function f , the proposed quantum fractal approxi-
mants provide a large number of approximants than that would be obtained by the existing fractal approximants. It is observed
that the multivalued quantum fractal operator  (q,�) ∶ (I) ⇉ (I) is not linear. The (q, �)-Kantorovich-Bernstein fractal
functions in p spaces are developed and their approximation properties (quantum analogue of Müntz theorems) are studied.
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