000148741 001__ 148741
000148741 005__ 20250923084444.0
000148741 0247_ $$2doi$$a10.3934/math.20241688
000148741 0248_ $$2sideral$$a142020
000148741 037__ $$aART-2024-142020
000148741 041__ $$aeng
000148741 100__ $$aShiromani, Ram
000148741 245__ $$aAn efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, part ¿
000148741 260__ $$c2024
000148741 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148741 5203_ $$aThis work is the continuation of [11], where a two-dimensional elliptic singularly perturbed weakly system, for which small parameters affected both the diffusion and the convection terms, was solved; moreover, all perturbation parameters could have different orders of magnitude, which is the most interesting and difficult case for this type of problem. It is well known that then, in general, overlapping regular or parabolic boundary layers appear in the solution of the continuous problem. To solve numerically the problem, the classical upwind finite difference scheme, defined on special piecewise uniform Shsihkin meshes, was used, proving its uniform convergence, with respect to all parameters, for four different ratios between them. In this paper, we complete the previous analysis, considering the two cases for these possible ratios, that were not considered in [11]. To see in practice the efficiency of the numerical method, we show the numerical results obtained with our algorithm for a test problem, when the cases analyzed in this work are fixed; from those results, the uniform convergence of the numerical algorithm follows, in agreement with the theoretical results.
000148741 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-136441NB-I00
000148741 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000148741 590__ $$a1.8$$b2024
000148741 592__ $$a0.483$$b2024
000148741 591__ $$aMATHEMATICS, APPLIED$$b78 / 343 = 0.227$$c2024$$dQ1$$eT1
000148741 593__ $$aMathematics (miscellaneous)$$c2024$$dQ2
000148741 591__ $$aMATHEMATICS$$b41 / 483 = 0.085$$c2024$$dQ1$$eT1
000148741 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000148741 700__ $$0(orcid)0000-0003-1263-1996$$aClavero, Carmelo$$uUniversidad de Zaragoza
000148741 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000148741 773__ $$g9, 12 (2024), 35570-35598$$tAIMS Mathematics$$x2473-6988
000148741 8564_ $$s6823184$$uhttps://zaguan.unizar.es/record/148741/files/texto_completo.pdf$$yVersión publicada
000148741 8564_ $$s1744791$$uhttps://zaguan.unizar.es/record/148741/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000148741 909CO $$ooai:zaguan.unizar.es:148741$$particulos$$pdriver
000148741 951__ $$a2025-09-22-14:53:13
000148741 980__ $$aARTICLE