000148817 001__ 148817
000148817 005__ 20250123145734.0
000148817 0247_ $$2doi$$a10.1016/j.fm.2018.10.007
000148817 0248_ $$2sideral$$a108265
000148817 037__ $$aART-2019-108265
000148817 041__ $$aeng
000148817 100__ $$0(orcid)0000-0002-5895-2157$$aGayán Ordás, Elisa$$uUniversidad de Zaragoza
000148817 245__ $$aIdentification of novel genes involved in high hydrostatic pressure resistance of Escherichia coli
000148817 260__ $$c2019
000148817 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148817 5203_ $$aHigh hydrostatic pressure (HHP) is an interesting hurdle in minimal food processing that aims to synergistically combine different stresses to improve food microbiological safety and stability without compromising quality. For a proper understanding and design of hurdle technology, the cellular impact of the applied stresses on foodborne pathogens should be well-established. To study the mechanism of HHP-mediated cell injury and death, we screened for loss-of-function mutations in E. coli MG1655 that affected HHP sensitivity. More specifically, ca. 6000 random transposon insertion mutants were individually exposed to HHP, after which the phenotype of the most resistant or sensitive mutations was confirmed by de novo gene deletions in the parental strain. We found that disruption of rbsK, rbsR, hdfR and crl decreased HHP resistance, while disruption of sucC and sucD (encoding subunits of the succinyl-CoA synthetase) increased HHP resistance. More detailed study of the tricarboxylic acid cycle enzymes encoded by the sdhCDAB-sucABCD operon surprisingly showed that disruption of the sucA or sucB gene (encoding subunits of the 2-oxoglutarate dehydrogenase complex) notably decreased HHP survival. We also found that the increased HHP resistance of a ¿sucC and ¿sucD mutant was mediated by increased basal RpoS activity levels, although it did not correlate with their heat resistance. Our results reveal that compromising TCA cycle enzymes can profoundly affect HHP resistance in E. coli.
000148817 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000148817 590__ $$a4.155$$b2019
000148817 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b33 / 156 = 0.212$$c2019$$dQ1$$eT1
000148817 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b25 / 138 = 0.181$$c2019$$dQ1$$eT1
000148817 591__ $$aMICROBIOLOGY$$b36 / 133 = 0.271$$c2019$$dQ2$$eT1
000148817 592__ $$a1.318$$b2019
000148817 593__ $$aFood Science$$c2019$$dQ1
000148817 593__ $$aMicrobiology$$c2019$$dQ2
000148817 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000148817 700__ $$aRutten, Nele
000148817 700__ $$aVan Impe, Jan
000148817 700__ $$aMichiels, Chris
000148817 700__ $$aAertsen, Abram
000148817 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000148817 773__ $$g78 (2019), 171-178$$pFood microbiol.$$tFOOD MICROBIOLOGY$$x0740-0020
000148817 8564_ $$s312737$$uhttps://zaguan.unizar.es/record/148817/files/texto_completo.pdf$$yPostprint
000148817 8564_ $$s666203$$uhttps://zaguan.unizar.es/record/148817/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000148817 909CO $$ooai:zaguan.unizar.es:148817$$particulos$$pdriver
000148817 951__ $$a2025-01-23-14:55:09
000148817 980__ $$aARTICLE