000148881 001__ 148881
000148881 005__ 20250214141228.0
000148881 0247_ $$2doi$$a10.1016/j.camwa.2025.01.011
000148881 0248_ $$2sideral$$a142072
000148881 037__ $$aART-2025-142072
000148881 041__ $$aeng
000148881 100__ $$0(orcid)0000-0003-1263-1996$$aClavero, Carmelo$$uUniversidad de Zaragoza
000148881 245__ $$aAn efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms
000148881 260__ $$c2025
000148881 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148881 5203_ $$aIn this work we are interested in constructing a uniformly convergent method to solve a 2D elliptic singularly perturbed weakly system of convection-diffusion type. We assume that small positive parameters appear at both the diffusion and the convection terms of the partial differential equation. Moreover, we suppose that both the diffusion and the convection parameters can be distinct and also they can have a different order of magnitude. Then, the nature of the overlapping regular or parabolic boundary layers, which, in general, appear in the exact solution, is much more complicated. To solve the continuous problem, we use the classical upwind finite difference scheme, which is defined on piecewise uniform Shishkin meshes, which are given in a different way depending on the value and the ratio between the four singular perturbation parameters which appear in the continuous problem. So, the numerical algorithm is an almost first order uniformly convergent method. The numerical results obtained with our algorithm for a test problem are presented; these results corroborate in practice the good behavior and the uniform convergence of the algorithm, aligning with the theoretical results.
000148881 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-136441NB-I00
000148881 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000148881 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000148881 700__ $$aShiromani, Ram
000148881 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000148881 773__ $$g181 (2025), 287-322$$pComput. math. appl.$$tCOMPUTERS & MATHEMATICS WITH APPLICATIONS$$x0898-1221
000148881 8564_ $$s19567923$$uhttps://zaguan.unizar.es/record/148881/files/texto_completo.pdf$$yPreprint
000148881 8564_ $$s1732405$$uhttps://zaguan.unizar.es/record/148881/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000148881 909CO $$ooai:zaguan.unizar.es:148881$$particulos$$pdriver
000148881 951__ $$a2025-02-14-14:11:26
000148881 980__ $$aARTICLE